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Abstract

Definition of the strongly regular graphs on 77 and 100 vertices
belonging to the simple groups Mss and HiS.

1 Sporadic groups

In the classification of finite simple groups one finds apart from the cyclic
groups of prime order, alternating groups, and groups of Lie type, 26 spo-
radic groups. These latter groups can be constructed as automorphism
groups of combinatorial objects. More than half of the sporadics are related
to the Golay codes.

2 The binary Golay codes

Let T" be the 1-skeleton of the icosahedron, so that I' is a graph on 12
vertices, regular of valency 5, where two vertices have either 0 or 2 common
neighbours. Let A be the adjacency matrix of I', a square matrix of order 12
indexed by the vertices of I', where A, is 1 when x and y are neighbours,
and 0 otherwise. Let I be the identity matrix (of order determined by the
context) and J the all-1 matrix.

Consider the binary code spanned by the 12 rows of the 12 x 24 matrix
G = (I J—A). We shall find that it is a self-dual [24, 12, 8]-code, known as
the extended binary Golay code.

Puncturing (deleting a coordinate position) turns this code into a code
with parameters [23,12, 7], known as the perfect binary Golay code.

Both codes are uniquely determined by their parameters.



3 Steiner systems

A Steiner system S(t, k,v) is a collection of subsets of size k (called blocks)
of a fixed set (of points) of size v, such that any set of ¢ points is contained
in a unique block.

The supports of the words of weight 8 in the extended binary Golay code
form the unique Steiner system S(5,8,24).

The derived system of a Steiner system S(t,k,v) is a Steiner system
S(t—1,k—1,v—1). Thus we find S(4,7,23), S(3,6,22), S(2,5,21) (and all
of these systems are uniquely determined by their parameters). That last
system is the projective plane of order 4.

4 Strongly regular graphs

A strongly regular graph with parameters (v, k, A, 1) is a graph with v ver-
tices, regular of valency k, such that any two adjacent vertices have A com-
mon neighbours, and any two nonadjacent vertices have p common neigh-
bours.

A strongly regular graph with parameters (77,16,0,4) is found by taking
as vertices the 77 blocks of S(3,6,22), where two blocks are adjacent when
they are disjoint. This graph has automorphism group Masz.2.

A strongly regular graph with parameters (100,22,0,6) is found by taking
as the 100 = 1422477 vertices a symbol oo, the 22 points and the 77 blocks
of S(3,6,22), where oo is adjacent to the 22 points, the points are mutually
nonadjacent, a point p is adjacent to a block B when p € B, and two blocks
are adjacent when they are disjoint. This graph has automorphism group
HiS.2.

Both graphs are uniquely determined by their parameters.

5 Details

5.1 Golay

A code C is a collection of vectors of a fixed length n over some alphabet Q.
The elements of the code are called code words. If @ is a field then it makes
sense to talk about a linear code, that is a linear subspace of Q". The code
is called binary for Q@ = Fo = {0,1} and ternary for Q = F3 = {0, 1, 2}.



A code has minimum distance (at least) d when any two code words differ
in at least d coordinates. This distance function is called Hamming distance
and written dg. The weight wt(v) of a vector v is its number of nonzero
coordinates, that is, dg(v,0). Since dy(u,v) = dg(0,v — u) = wt(v — u),
the minimum distance of a linear code equals its minimum nonzero weight.
An [n,k,d],; code is a linear code C over F,; of word length n, dimension
k and minimum distance d. Now |C| = ¢*. The subscript ¢ is omitted for
binary codes.

A code C over a field F' is called self-orthogonal when (u,v) = 0 for any
two vectors (code words) u,v € C, where (, ) denotes the standard inner
product (u,v) =Y w;v; (over the field F').

A linear code will be self-orthogonal when it has a self-orthogonal basis.
Since the weight (number of non-zero entries) of a binary vector u equals
(u,u) (mod 2), all vectors in a binary self-orthogonal code have even weight.

Since wt(u + v) = wt(u) + wt(v) — 2wt(u.v), where w.v is the coor-
dinatewise product of u and v, the weight of all code words in a binary
self-orthogonal code will be divisible by 4 when that is true for a basis. (In
that case the code is called “doubly even”.)

In particular, the basis vectors of the extended binary Golay code, formed
by the rows of (I J — A), all have weight 1+ (12 — 5) = 8, and any two
rows have even inner product (since two vertices in the icosahedron have 0
or 2 common neighbours, two distinct rows have inner product 2 or 4) it
follows that the extended binary Golay code is doubly even: all its weights
are divisible by 4.

Careful inspection of the shape of sums of one, two, three or four rows
of (I J— A) shows that no such sum has weight 4. It follows that the binary
linear code spanned by the rows of this matrix is a [24, 12, 8] code, known as
the extended binary Golay code. It can be shown that up to isomorphism
there is a unique such code.

Delete one coordinate position to find a [23,12,7] code, known as the
perfect binary Golay code. This code is perfect, that is: the balls with radius
3 around code words are disjoint (because code words have distance at least
7), and have size 1+ (%) + (%)) + (%)) = 1+23+253+1771 = 2048 = 2'!. The
code has dimension 12, so there are 2'? code words, and the balls around
these code words have a total volume 2'2.211 = 223 the total size of the
space. A code is called perfect when it is e-error-correcting (d = 2e + 1, so
that balls of radius e are mutually disjoint), and the balls of radius e form
a partition of the space.



The perfect code theorem says that any perfect code with d > 5 is either
the perfect binary Golay code (with parameters [23,12,7]) or the perfect
ternary Golay code (with parameters [11,6,5]). There are lots of perfect
codes with d = 3.

The weight enumerator Y a;x® of a code is the polynomial with coeffi-
cients a;, where a; is the number of code words of weight 7. The extended
binary Golay code has weight enumerator 1+ 75928 +25762'2 + 7592164224,
and the perfect binary Golay code has weight enumerator 1425327 +5062% +
128821 4 1288212 4 506x'° 4 253216 4- 223, (For the perfect binary Golay
code the weight enumerator follows from the fact that the code is perfect.
For example, since all vectors of weight 4 must be in one ball around a code
word, there must be (243) / (D = 253 code words of weight 7. Etc. The weight
enumerator of the extended binary Golay code follows by adding a parity
check.)

The support of a code word ¢ = (c1,...,¢,) is the set {i | ¢; # 0}.
Since the perfect binary Golay code is perfect, we immediately see that the
supports of its words of weight 7 form a Steiner system S(4,7,23). The
supports of the words of weight 8 of the extended binary Golay code form
a Steiner system S(5,8,24).

5.2 Steiner systems

Let 0 <t <k <w. A Steiner system S(t,k,v) is a collection of subsets of
size k (called blocks) of a fixed set (of points) of size v, such that any set
of ¢t points is contained in a unique block. (Usually one allows v < ¢ for a
system with no blocks.)

Since there are (;’) possible t-sets, and each block contains (lz) of them,

v

D)/ (’;) blocks (and this number must be an integer).

there are (

Let (X, B) be a Steiner system S(t, k,v), where t > 0. Its derived design
at a point p € X is the design (X \ {p},{B\ {p} | p € B € B}) (all blocks
passing through p, with the point p removed). This is a Steiner system
S(t—1,k—1,v—1). We find that the number of blocks of the Steiner
system S(t, k,v) that pass through a given point p equals (7;:11) / (’;:11) (and
hence this number is an integer). More generally, the number of blocks

passing through s given points, where 0 < s <t equals (}_7)/ (l::j)
For t = 0 a Steiner system contains precisely one block.

For t = 1 a Steiner system is a partition of the point set into blocks.



For ¢t = 2 a Steiner system can be viewed as a system of lines: any two
points determine a unique block (line). A Steiner system S(2,n + 1,n2 +
n + 1) is the same thing as a projective plane of order n. A Steiner system
S(2,n,n?) is the same thing as an affine plane of order n.

A Steiner system S(2,3,v) is also known as a Steiner triple system
STS(v). They exist iff v = 0 or v = 1,3 (mod 6). A Steiner system
S(3,4,v) is also known as a Steiner quadruple system SQS(v). They exist
iff v <2orv=24(mod 6).

There are many examples of Steiner systems with ¢ < 3, but only a few
systems with ¢ > 3 are known, and none with ¢ > 5. (Probably they exist,
but we don’t know how to make them.)

There is a unique Steiner system S(5,8,24). Let us give for this system
the number of blocks passing through ¢ given points, and missing j other
given points, where ¢ + j < 5.

759
253 506
7 176 330
21 56 120 210
) 16 40 80 130
1 4 12 28 52 78

5.3 Strongly regular graphs

There is a lot of theory on strongly regular graphs, see elsewhere. Let us
just give a few very small examples.

The pentagon is a strongly regular graph with parameters (v, k, A\, u) =
(5,2,0,1). The Petersen graph is strongly regular with parameters (10,3,0,1).
The Cartesian product of two complete graphs of size n is strongly regular
with parameters (n?,2(n —1),n — 2,2).

5.4 Computational

No computer is needed, but sometimes it is useful to be able to do compu-
tations on a computer algebra system. Let me try GAP and play around a
little bit.

% gap

gap> LoadPackage ("Guava");

gap> g:=ExtendedBinaryGolayCode() ;

a linear [24,12,8]4 extended binary Golay code over GF(2)



# [24,12,8]4 means: with covering radius 4

gap> WordLength(g);

24

gap> Dimension(g) ;

12

gap> MinimumDistance(g);

8

gap> Size(g);

4096

gap> IsLinearCode (g);

true

gap> IsSelfDualCode(g);

true

gap> WeightDistribution(g);

[t o, 0, 0, 0, 0, 0, O, 759, 0, O, O, 2576, O, O, O, 759, 0, O, O, O,
0, 0, 0, 11

# Find the coordinate position permutation group that fixes the code
# It will be the sporadic simple group M24

gap> gp:=AutomorphismGroup (g);

<permutation group of size 244823040 with 11 generators>

gap> Size(gp);

244823040

gap> IsSimple(gp);

true

gap> 24*%23%22%21%20%48;

244823040

# Simplify the construction of this group and check it is 5-tramsitive

gap> gens:=SmallGeneratingSet(gp);;

gap> m24:=Group(gens) ;

Group([ (1,6,11,14,13,4,21,18,19,12,22)(2,16,3,24,5,17,7,9,15,20,8),
(1,6,14,22,21,4)(2,24,15,16,17,20) (3,11,7,9,13,5) (8,12,18,23,10,19) 1)

gap> Transitivity(m24,[1..24]1);

5

# Construct the perfect Golay code

gap> g23:=PuncturedCode(g) ;

a linear [23,12,7]3 punctured code

gap> IsPerfectCode(g23);

true

gap> WeightDistribution(g23);

[1, 0, 0, O, O, O, O, 253, 506, O, O, 1288, 1288, 0, O, 506, 253, O, O, O,
0, 0, 0, 11]

# Look at some random code word
gap> v:=CodewordNr(g,666) ;
[001000001000100010010111]1]



gap> Support (v) ;

[ 3,9, 13, 17, 20, 22, 23, 24 ]
gap> WeightCodeword(v) ;

8

# Construct the Steiner system S(5,8,24) as a list of characteristic vectors
gap> s:=Filtered(g,v->WeightCodeword(v)=8);;

gap> Size(s);

759

# Idem, but now as a list of sets
gap> ss:=List(s,u->Support(u));;
gap> Size(ss);

759

# Take the derived design twice, to get S(3,6,22)

gap> st:=List(Filtered(ss,a->IsSubsetSet(a, [23,24])),b->Difference(b, [23,24]));;
gap> Size(st);

7

# Just to see what happened, look at the first element of these lists

gap> sl[1];
[00O0000000001010111000111]1]
gap> ss[1];

[ 12, 14, 16, 17, 18, 22, 23, 24 ]

gap> st[1];

[ 12, 14, 16, 17, 18, 22 ]

gap> m23:=Stabilizer (m24,24);

Group([ (1,5,6,8,2,9,16)(3,13,19,22,17,12,18)(4,7,15,14,10,23,20),
(1,20,4,12,22,7,6,14,9,5,8)(2,10,18,21,23,19,17,3,16,11,13) 1)

gap> m22:=Stabilizer (m23,23);

Group([ (1,14,8,20,11,5,10)(2,16,21,22,3,7,17) (4,19,18,9,15,6,12),
(1,2,18,12,11)(3,5,15,6,19) (4,17,16,7,22) (10,13,20,14,21) 1)

gap> Size(m22);

443520

# Same group but this time acting on the 77 blocks

gap> m22a:=Action(m22,st,0nSets);

<permutation group with 2 generators>

# Construct the graph on 77 vertices
gap> LoadPackage ("grape");
gap> g77:=NullGraph(m22a);;
gap> AddEdgeOrbit(g77,[1,2]);
gap> g77;
rec( isGraph := true, order := 77, group := <permutation group of size
443520 with 2 generators>,
adjacencies := [ [ 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17,
18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 35, 36,



37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 52, 55,
56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74,
7711,
representatives := [ 1 ], isSimple := true )

# Hmm - got valency 60, but I wanted valency 16

# Must pick a different edge orbit

gap> g77:=NullGraph(m22a);;

gap> AddEdgeOrbit(g77,[1,4]1);

gap> g77;

rec( isGraph := true, order := 77, group := <permutation group of size

443520 with 2 generators>,
adjacencies := [ [ 4, 12, 21, 26, 29, 31, 43, 51, 53, 54, 57, 60,

68, 72, 75, 76 1 1, representatives := [ 1 ], isSimple := true )

gap> IsDistanceRegular(g77);

true

gap> GlobalParameters(g77);

(ro,o0,161, [1,0,151, [4, 12,011

# So this is a strongly regular graph with parameters (77,16,0,4)

gap> aut:=AutGroupGraph(g77) ;

<permutation group with 6 generators>

gap> Size(aut);

887040

# Its group is M22.2

gap> quit;

%

Maybe the most obscure part of this conversation is the output of the call
GlobalParameters(g77), but the intention will be clear from the diagram
below. It shows that each point has 16 neighbours, that two vertices at
distance 2 have 4 common neighbours, etc.

16 1 15 4

- 12

The icosahedron that we started with has diagram

(—(—(—()  v=n
5 1 2 2 1 5

2 2




