
1 Projective space

The ordinary plane R2 has the problem that parallel lines do not meet. So,
introduce ‘ideal’ points at infinity, and an ideal line containing those points, to
get a projective plane in which two points always determine a unique line, and
two lines always determine a unique point.

A model of this projective plane is found in R3 by taking the lines through
the origin as projective points. The original plane can be taken to be the plane
Z = 1. Each line 〈(x, y, z)〉 with z 6= 0 hits this plane in a unique point, namely
(x/z, y/z, 1), the ‘old point’ (x/z, y/z). The lines 〈(x, y, 0)〉 correspond to the
ideal points, the plane Z = 0 to the ideal line (the ‘line at infinity’).

Now generalize to arbitrary fields and dimensions.

Let V be a vector space over a field F . The associated projective space PV
is the lattice of subspaces of V (where incidence is inclusion). Projective points,
lines, planes, ..., i-spaces, ... are d-dimensional linear subspaces of V with d = 1,
2, 3, ..., i+1, ... . We shall always use vector space dimension, never projective
dimension. Points will be projective points - elements of V are called vectors.

When V is coordinatized, a projective point is a 1-space {(λx1, ..., λxn)|λ ∈
F} and we can say that this point has coordinates (x1, ..., xn) provided we agree
that (x1, ..., xn) and (αx1, ..., αxn) denote the same point (for α ∈ F , α 6= 0).
Such coordinates are called homogeneous coordinates.

We would like to describe sets of points by an equation f(X1, ..., Xn) = 0.
For this to be meaningful, one wishes f(x1, ..., xn) = 0 iff f(αx1, ..., αxn) = 0
(for α ∈ F , α 6= 0). This leads us to consider homogeneous polynomials, that is,
polynomials in which the total degree of each term is the same (say d). These
satisfy our restraint, since f(αx1, ..., αxn) = αdf(x1, ..., xn).

2 Chevalley-Warning

Below we shall need that a quadric on a projective plane over a finite field F
has at least one point. This is a very special case of the following.

Theorem 2.1 Given homogeneous polynomials f1, ..., fm over F (of respective
degrees d1, ..., dm) in the variables X1, ..., Xn, where

∑
di < n. Then there is a

common zero (x1, ..., xn) 6= (0, ..., 0).

Proof: Consider ∑
x∈F n

∏
i

(1− fi(x)q−1).

It is the total number of solutions (considered as an element of F ) of f1 = ... =
fm = 0. But

∑
z∈F zj = 0 unless j is a nonzero multiple of q − 1, so in the

expansion of the above sum only terms of degree at least n(q − 1) contribute,
but there are no such terms. Consequently, the number of solutions is 0 (mod
charF ). Since (0, ..., 0) is a solution, there are also other solutions. 2

It follows that a quadric in dimension at least 3 is nonempty.
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3 Quadrics over finite fields

A homogeneous polynomial of degree one (a linear form) defines a hyperplane.
A homogeneous polynomial of degree two (a quadratic form) defines a quadric.
We want to classify quadrics in projective spaces over finite fields.

3.1 Quadratic forms

Let us first describe quadratic forms in a coordinate-free way. A quadratic form
is a map Q : V → F such that Q(λu) = λ2Q(u) (for λ ∈ F , u ∈ V ) and having
the property that B defined by B(u, v) = Q(u + v)−Q(u)−Q(v) is a bilinear
form. We have B(u, u) = 2Q(u), so if charF 6= 2 then we can retrieve Q from
B. (But if charF = 2, then many quadratic forms yield the same bilinear form.)

3.2 Nondegeneracy

Two points 〈u〉 and 〈v〉 are called orthogonal if B(u, v) = 0. If U is a subspace
of V , then U⊥ denotes the subspace of V consisting of the vectors orthogonal
to each element of U . The bilinear form B is called nondegenerate if V ⊥ = 0.
The quadratic form Q is called nondegenerate if Q does not vanish on any point
in V ⊥.

3.3 Orthogonal direct sums

We write V = U ⊥ W if V = U ⊕ W (that is, V = U + W and U ∩ W = 0)
and B(u, w) = 0 for all u ∈ U , w ∈ W . If this is the case, then Q is determined
by its restrictions to U and W . Indeed, Q(u + w) = Q(u) + Q(w). And
conversely, given arbitrary quadratic forms QU on U and QW on W , the formula
Q(u+w) = QU (u)+QW (w) defines a quadratic form Q on U ⊕W , and for this
form V = U ⊥ W .

3.4 Classification

Thus, it suffices to classify pairs (V,Q) where V cannot be decomposed as
orthogonal direct sum. In particular, we may suppose that V ⊥ = 0 (unless
V = V ⊥ is of dimension 1 and we have Q = 0).

Now suppose dimV ≥ 3. Then by Chevalley-Warning there is a point 〈u〉
with Q(u) = 0. Since V ⊥ = 0 there is a vector w with B(u, w) = λ 6= 0.
With v = w + βu we find Q(v) = Q(w) + βλ, so for β = −Q(w)/λ we have
Q(v) = 0. After scaling v we may assume that B(u, v) = 1. Thus, we have
found a line H = 〈u〉+〈v〉 with quadratic form defined by Q(u) = Q(v) = 0 and
B(u, v) = 1. (With u and v as unit vectors, the form is X1X2.) Such a line is
called a hyperbolic line. Clearly, H is nondegenerate, and we have V = H ⊥ H⊥

where also H⊥ is nondegenerate. In this way we can peel off hyperbolic lines
until the dimension n of V has become less than 3.

If n = 0 then PV has no points and Q = 0.
If n = 1 then PV has a single point and the number of nonisomorphic

possibilities equals 1+ |F ∗/F ∗2|. Indeed, if the single point is 〈u〉, then changing
u by a constant α changes Q(u) by α2, so either Q(u) = 0 (u is singular) or Q(u)
lies in one of the cosets of F ∗2 in F ∗. For finite fields this means that either
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charF = 2 and there are just two possibilities: Q(u) vanishes or not, or charF
is odd, and there are three possibilities: Q(u) is zero, a square or a nonsquare.

If n = 2 and V is not a hyperbolic line, then Q never vanishes on PV , and
the line is called an elliptic line.

Thus: V is the orthogonal direct sum of its radical V ⊥, a number of hyper-
bolic lines, and perhaps a single point or an elliptic line.

By change of coordinates H ⊥ P can be transformed into H ⊥ P ′ where
Q(P ) consists of squares, and Q(P ′) of nonsquares. So, for odd n > 1 the
type of the point occurring in the decomposition on a nondegenerate quadratic
form is irrelevant. Also, any two elliptic lines are equivalent. The parity of the
number of elliptic lines occurring in a decomposition is an invariant (found from
the determinant of Q).

Thus: over a finite field we have in even dimension n > 0 precisely two types
of nondegenerate quadrics: hyperbolic quadrics that are an orthogonal direct
sum of hyperbolic lines, and elliptic quadrics, that are not. In odd dimension
n > 1 there is only one type of nondegenerate quadric.

The maximal totally singular subspaces (subspaces where Q vanishes iden-
tically) have dimension m for a hyperbolic quadric in n = 2m dimensions, and
m− 1 for an elliptic quadric in n = 2m dimensions, and m for a nondegenerate
quadric in n = 2m + 1 dimensions.

The (vector space) dimension of the maximal totally singular subspaces is
called the Witt index.
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