1 Projective space

The ordinary plane \mathbf{R}^{2} has the problem that parallel lines do not meet. So, introduce 'ideal' points at infinity, and an ideal line containing those points, to get a projective plane in which two points always determine a unique line, and two lines always determine a unique point.

A model of this projective plane is found in \mathbf{R}^{3} by taking the lines through the origin as projective points. The original plane can be taken to be the plane $Z=1$. Each line $\langle(x, y, z)\rangle$ with $z \neq 0$ hits this plane in a unique point, namely $(x / z, y / z, 1)$, the 'old point' $(x / z, y / z)$. The lines $\langle(x, y, 0)\rangle$ correspond to the ideal points, the plane $Z=0$ to the ideal line (the 'line at infinity').

Now generalize to arbitrary fields and dimensions.
Let V be a vector space over a field F. The associated projective space $P V$ is the lattice of subspaces of V (where incidence is inclusion). Projective points, lines, planes, \ldots, i-spaces, \ldots are d-dimensional linear subspaces of V with $d=1$, $2,3, \ldots, i+1, \ldots$. We shall always use vector space dimension, never projective dimension. Points will be projective points - elements of V are called vectors.

When V is coordinatized, a projective point is a 1 -space $\left\{\left(\lambda x_{1}, \ldots, \lambda x_{n}\right) \mid \lambda \in\right.$ $F\}$ and we can say that this point has coordinates $\left(x_{1}, \ldots, x_{n}\right)$ provided we agree that $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)$ denote the same point (for $\alpha \in F, \alpha \neq 0$). Such coordinates are called homogeneous coordinates.

We would like to describe sets of points by an equation $f\left(X_{1}, \ldots, X_{n}\right)=0$. For this to be meaningful, one wishes $f\left(x_{1}, \ldots, x_{n}\right)=0$ iff $f\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)=0$ (for $\alpha \in F, \alpha \neq 0$). This leads us to consider homogeneous polynomials, that is, polynomials in which the total degree of each term is the same (say d). These satisfy our restraint, since $f\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)=\alpha^{d} f\left(x_{1}, \ldots, x_{n}\right)$.

2 Chevalley-Warning

Below we shall need that a quadric on a projective plane over a finite field F has at least one point. This is a very special case of the following.

Theorem 2.1 Given homogeneous polynomials f_{1}, \ldots, f_{m} over F (of respective degrees $\left.d_{1}, \ldots, d_{m}\right)$ in the variables X_{1}, \ldots, X_{n}, where $\sum d_{i}<n$. Then there is a common zero $\left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0)$.

Proof: Consider

$$
\sum_{x \in F^{n}} \prod_{i}\left(1-f_{i}(x)^{q-1}\right)
$$

It is the total number of solutions (considered as an element of F) of $f_{1}=\ldots=$ $f_{m}=0$. But $\sum_{z \in F} z^{j}=0$ unless j is a nonzero multiple of $q-1$, so in the expansion of the above sum only terms of degree at least $n(q-1)$ contribute, but there are no such terms. Consequently, the number of solutions is 0 (mod $\operatorname{char} F)$. Since $(0, \ldots, 0)$ is a solution, there are also other solutions.

It follows that a quadric in dimension at least 3 is nonempty.

3 Quadrics over finite fields

A homogeneous polynomial of degree one (a linear form) defines a hyperplane. A homogeneous polynomial of degree two (a quadratic form) defines a quadric. We want to classify quadrics in projective spaces over finite fields.

3.1 Quadratic forms

Let us first describe quadratic forms in a coordinate-free way. A quadratic form is a map $Q: V \rightarrow F$ such that $Q(\lambda u)=\lambda^{2} Q(u)$ (for $\lambda \in F, u \in V$) and having the property that B defined by $B(u, v)=Q(u+v)-Q(u)-Q(v)$ is a bilinear form. We have $B(u, u)=2 Q(u)$, so if char $F \neq 2$ then we can retrieve Q from B. (But if $\operatorname{char} F=2$, then many quadratic forms yield the same bilinear form.)

3.2 Nondegeneracy

Two points $\langle u\rangle$ and $\langle v\rangle$ are called orthogonal if $B(u, v)=0$. If U is a subspace of V, then U^{\perp} denotes the subspace of V consisting of the vectors orthogonal to each element of U. The bilinear form B is called nondegenerate if $V^{\perp}=0$. The quadratic form Q is called nondegenerate if Q does not vanish on any point in V^{\perp}.

3.3 Orthogonal direct sums

We write $V=U \perp W$ if $V=U \oplus W$ (that is, $V=U+W$ and $U \cap W=0$) and $B(u, w)=0$ for all $u \in U, w \in W$. If this is the case, then Q is determined by its restrictions to U and W. Indeed, $Q(u+w)=Q(u)+Q(w)$. And conversely, given arbitrary quadratic forms Q_{U} on U and Q_{W} on W, the formula $Q(u+w)=Q_{U}(u)+Q_{W}(w)$ defines a quadratic form Q on $U \oplus W$, and for this form $V=U \perp W$.

3.4 Classification

Thus, it suffices to classify pairs (V, Q) where V cannot be decomposed as orthogonal direct sum. In particular, we may suppose that $V^{\perp}=0$ (unless $V=V^{\perp}$ is of dimension 1 and we have $Q=0$).

Now suppose $\operatorname{dim} V \geq 3$. Then by Chevalley-Warning there is a point $\langle u\rangle$ with $Q(u)=0$. Since $V^{\perp}=0$ there is a vector w with $B(u, w)=\lambda \neq 0$. With $v=w+\beta u$ we find $Q(v)=Q(w)+\beta \lambda$, so for $\beta=-Q(w) / \lambda$ we have $Q(v)=0$. After scaling v we may assume that $B(u, v)=1$. Thus, we have found a line $H=\langle u\rangle+\langle v\rangle$ with quadratic form defined by $Q(u)=Q(v)=0$ and $B(u, v)=1$. (With u and v as unit vectors, the form is $X_{1} X_{2}$.) Such a line is called a hyperbolic line. Clearly, H is nondegenerate, and we have $V=H \perp H^{\perp}$ where also H^{\perp} is nondegenerate. In this way we can peel off hyperbolic lines until the dimension n of V has become less than 3 .

If $n=0$ then $P V$ has no points and $Q=0$.
If $n=1$ then $P V$ has a single point and the number of nonisomorphic possibilities equals $1+\left|F^{*} / F^{* 2}\right|$. Indeed, if the single point is $\langle u\rangle$, then changing u by a constant α changes $Q(u)$ by α^{2}, so either $Q(u)=0(u$ is singular) or $Q(u)$ lies in one of the cosets of $F^{* 2}$ in F^{*}. For finite fields this means that either
$\operatorname{char} F=2$ and there are just two possibilities: $Q(u)$ vanishes or not, or char F is odd, and there are three possibilities: $Q(u)$ is zero, a square or a nonsquare.

If $n=2$ and V is not a hyperbolic line, then Q never vanishes on $P V$, and the line is called an elliptic line.

Thus: V is the orthogonal direct sum of its radical V^{\perp}, a number of hyperbolic lines, and perhaps a single point or an elliptic line.

By change of coordinates $H \perp P$ can be transformed into $H \perp P^{\prime}$ where $Q(P)$ consists of squares, and $Q\left(P^{\prime}\right)$ of nonsquares. So, for odd $n>1$ the type of the point occurring in the decomposition on a nondegenerate quadratic form is irrelevant. Also, any two elliptic lines are equivalent. The parity of the number of elliptic lines occurring in a decomposition is an invariant (found from the determinant of Q).

Thus: over a finite field we have in even dimension $n>0$ precisely two types of nondegenerate quadrics: hyperbolic quadrics that are an orthogonal direct sum of hyperbolic lines, and elliptic quadrics, that are not. In odd dimension $n>1$ there is only one type of nondegenerate quadric.

The maximal totally singular subspaces (subspaces where Q vanishes identically) have dimension m for a hyperbolic quadric in $n=2 m$ dimensions, and $m-1$ for an elliptic quadric in $n=2 m$ dimensions, and m for a nondegenerate quadric in $n=2 m+1$ dimensions.

The (vector space) dimension of the maximal totally singular subspaces is called the Witt index.

