
Bezout’s theorem

1 Bezout’s theorem

Let C and D be two plane curves, described by equations f(X, Y ) = 0 and
g(X, Y ) = 0, where f and g are nonzero polynomials of degree m and n, respec-
tively. Bezout’s theorem says that if all is well, then C and D meet in precisely
mn points.

1.1 Too many points in common

What can go wrong? If C = D then both curves have all points in common,
probably infinitely many (depending on the field).

Also, if the equation factors, then the curve is the union of several compo-
nents. For example, if C is given by the equation XY = 0, then it is the union
of the two lines given by X = 0 and Y = 0. And if D is given by the equation
Y 3 − X3Y = 0, then it is the union of the line Y = 0 and the cubic curve
Y 2 = X3. Now C and D have the line Y = 0 in common.

But this is the only way there can be too many points in common. So the
first statement is: if C and D do not have a common component, then they
have at most mn points in common.

1.2 Too few points in common

There are several ways there can be ‘missing’ points of intersection. Missing
points can have coordinates in an extension field, they can lie at infinity, and
they can coincide with other common points.

For example, a straight line and a circle may meet in two points, and all is
well. Or in zero points, which means that the quadratic equation one has to
solve to find the points of intersection has a discriminant that is not a square
in the field, and the two points of intersection have coordinates in a quadratic
extension field. Finally, the straight line can be tangent to the circle, and we
must count the point of intersection twice.

And, for example, two parallel lines have a common point at infinity.
So now Bezout’s theorem becomes: If C and D do not have a common

component, then they have at most mn points in common. If the field is alge-
braically closed, and we also count points at infinity, and we count intersection
points with proper multiplicity, then there are precisely mn common points.

1.3 The inequality

Let R = k[X, Y ] be the ring of polynomials in the two variables X, Y with
coefficients in the field k.
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Proposition 1.1 Let f, g ∈ R be nonzero polynomials of degrees m, n, respec-
tively. Let C and D be two plane curves, described by the equations f(X, Y ) = 0
and g(X, Y ) = 0. If f and g do not have a common factor, then |C ∩ D| ≤
dimk R/(f, g) ≤ mn.

Proof:
(1) Given distinct points Pi (1 ≤ i ≤ t), there are polynomials hi ∈ R

(1 ≤ i ≤ t) such that hi(Pi) 6= 0 and hi(Pj) = 0 for all i, j, i 6= j.
(Indeed, if Pi = (xi, yi), put hi(X, Y ) =

∏
xj 6=xi

(X − xj).
∏

yj 6=yi
(Y − yj).)

(2) |C ∩D| ≤ dimk R/(f, g).
(Indeed, if C and D have common points Pi, then make polynomials as in

(1). If
∑

cihi = uf+vg with u, v ∈ R, then substitute the Pi to find ci = 0. This
means that the images hi +(f, g) of the hi in R/(f, g) are linearly independent.)

(3) Let Rd be the k-vectorspace of polynomials p(X, Y ) of total degree at most
d. If d ≥ 0 then s(d) := dimk Rd = 1 + · · ·+ (d + 1) = 1

2 (d + 1)(d + 2).

(4) We have dimk Rd/(f, g) ≤ mn for all d.
(Indeed, consider the sequence of maps

Rd−m ×Rd−n
α→ Rd

π→ Rd/(f, g) → 0

where α is the map α(u, v) = uf + vg and π is the quotient map. Since f and
g do not have a common factor, the kernel of α consists of the pairs (wg,−wf)
with w ∈ Rd−m−n and hence has dimension s(d − m − n) for d ≥ m + n. It
follows that the image of α has dimension s(d−m) + s(d− n)− s(d−m− n).
Since π is surjective, and πα = 0, we find dimk Rd/(f, g) ≤ s(d) − s(d −m) −
s(d− n) + s(d−m− n) = mn.)

(5) We have dimk R/(f, g) ≤ mn.
(Indeed, if we can find more than mn linearly independent elements in

R/(f, g), then for sufficiently large d they will be in Rd/(f, g), contradicting
(4).)
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1.4 Points at infinity

1.4.1 Affine and projective space

Extend affine space to projective space by adding points at infinity, as follows.
A point in n-dimensional affine space has n coordinates (x1, ..., xn) in the un-
derlying field. A point in n-dimensional projective space has n + 1 coordinates
(x1, ..., xn+1), not all zero, where only the ratio is significant: if a 6= 0 then
(x1, ..., xn+1) = (ax1, ..., axn+1).

1.4.2 Equations

An equation like Y = X2 is meaningful in an affine space, but not in a projective
space, since whether equality holds must not change when all cordinates of a
point are multiplied by the same nonzero constant. Thus, for a projective space
one needs homogeneous equations, equations such that all terms have the same
degree, as in Y Z = X2.
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1.4.3 Going back and forth

One can embed n-dimensional affine space into n-dimensional projective space
by (x1, ..., xn) 7→ (x1, ..., xn, 1). Conversely, if xn+1 6= 0 then one can scale
coordinates to make xn+1 = 1, omit this coordinate and find a copy of affine
space. The projective points outside this copy, the ‘points at infinity’, have
xn+1 = 0.

The above describes projective n-space as affine n-space together with points
at infinity. That might give the false impression that projective space has
two types of points. A homogeneous description identifies the projective point
(x1, ..., xn+1) with the line in affine (n+1)-space that passes through the origin
and the point (x1, ..., xn+1). The above identification now identifies a line with
its point of intersection with the hyperplane xn+1 = 1, and the points at infinity
are the lines through the origin that are parallel to that hyperplane.

One goes from affine equation to projective (homogeneous) equation by
making all degrees equal (to the maximum degree) by inserting factors xn+1.
For example, the homogeneous version of the cubic equation Y 2 = X3 − 1 is
Y 2Z = X3 − Z3. And one goes back to the affine equation by substituting
xn+1 = 1.

Example With affine coordinates (X, Y ), consider the line X = 0 and the
parabola Y = X2. In projective coordinates (X, Y, Z), these equations become
X = 0 and Y Z = X2. The two common points are (0, 1, 0) and (0, 0, 1). The
former is the point at infinity of the Y -axis, the latter is the origin (0, 0).

1.4.4 No common points at infinity

Proposition 1.2 Let k be a field, and let F,G ∈ k[X, Y, Z] be homogeneous
polynomials of degrees m, n, respectively. Put f = F (X, Y, 1) and f∗ = F (X, Y, 0)
and define g, g∗ similarly. If f and g do not have a common factor, and f∗ and
g∗ do not have a common factor, then dimk R/(f, g) = mn.

Proof: For a polynomial p, let p∗ be the sum of its terms of highest degree.
Continue the proof of Proposition 1.1. We want to show that dimk Rd/(f, g) =
mn for large d, and the argument of (4) will yield that, if the kernel of π is the
image of α. Suppose π(h) = 0 for some h ∈ Rd. Then h = uf + vg for certain
u, v ∈ R, and we take u, v of smallest degree. If u has degree larger than d−m,
then the terms of highest degree cancel, so u∗f∗ + v∗g∗ = 0. Since f∗ and g∗

do not have a common factor, there is a w ∈ R with u∗ = wg∗ and v∗ = −wf∗.
Now h = (u−wg)f + (v + wf)g where u−wg and v + wf have smaller degrees
than u and v, contradiction. Hence u has degree at most d −m, and similarly
v has degree at most d− n, and h lies in the image of α. 2

Remark The condition that f and g do not have a common factor is equiv-
alent to asking that F and G do not have a common factor. The points at
infinity of the curve f = 0 are the points (a, b, 0) with f∗(a, b) = 0, that is, such
that f∗ has a factor aY − bX. The requirement that f∗ and g∗ do not have a
common factor is equivalent to asking that the curves f = 0 and g = 0 do not
have common points at infinity with coordinates in the algebraic closure k̄ of k.
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1.5 Intersection multiplicity

Let C and D be two plane curves defined by f(X, Y ) = 0 and g(X, Y ) = 0 and
let P be a point. We want to define the intersection multiplicity IP (f, g) of C
and D at the point P . It should be a nonnegative integer, or ∞ in case C and
D have a common component that passes through P .

First an operational definition, a series of rules that suffice to compute
IP (f, g). We have IP (f, g) = IP (g, f), and IP (f, g + fh) = IP (f, g), and
IP (f, gh) = IP (f, g) + IP (f, h) and IP (f, g) = 0 if P is not a common point
of C and D, and IP (f, g) = 1 if C and D are nonsingular at P with distinct
tangents, and IP (f, g) = ∞ iff f and g have a common factor.

Example Consider the two circles X2 + Y 2 = 1 and X2 + Y 2 = 2. Clearly,
any common points must lie at infinity. The homogeneous equations are X2 +
Y 2−Z2 = 0 and X2 +Y 2−2Z2 = 0, and the common points are the two points
(±i, 1, 0). Now let P = (i, 1, 0) and consider the intersection multiplicity at P .
We have IP (X2 +Y 2−Z2, X2 +Y 2−2Z2) = IP (X2 +Y 2−Z2, Z2) = IP (X2 +
Y 2, Z2) = 2IP (X2 + Y 2, Z) = 2IP (X + iY, Z) + 2IP (X − iY, Z) = 0 + 2 = 2.
So, the four common points are the two points (±i, 1, 0), each counted twice.

Example Consider the two curves Y = X3 and Y = X5. The homogeneous
equations are Y Z2 = X3 and Y Z4 = X5, and the common points are the
points (0, 0, 1), (1, 1, 1), (−1,−1, 1), (0, 1, 0). Since (1, 1, 1) and (−1,−1, 1) are
ordinary points on the curves, and the curves have different tangents at each of
these points, the intersection multiplicity at (1, 1, 1) and (−1,−1, 1) is 1. Let
P = (0, 0). Then IP (Y − X3, Y − X5) = IP (Y − X3, X3 − X5) = IP (Y −
X3, X3) + IP (Y − X3, 1 − X2) = 3IP (Y,X) + 0 = 3, so that the origin is a
point with intersection multiplicity 3. Let Q = (0, 1, 0) and make this the origin
by choosing affine coordinates (X/Y, Z/Y ), that is, by putting Y = 1. Then
IQ(X3−Z2, X5−Z4) = IQ(X3−Z2, X5−X3Z2) = IQ(X3−Z2, X3)+IQ(X3−
Z2, X2−Z2) = IQ(Z2, X3)+IQ(X3−X2, X2−Z2) = 6IQ(Z,X)+4IQ(X, Z)+
0 = 10. So, the fifteen common points are the two points (1, 1) and (−1,−1)
each counted once, the point (0, 0) counted three times, and the point at infinity
of the Y -axis (0, 1, 0), counted ten times.

Algorithm Note that the operational definition will always compute some
answer. We may assume that f and g do not have a common factor and that
f(P ) = g(P ) = 0. If P = (x, y) then consider the polynomials f∗(X) := f(X, y)
and g∗(X) := g(X, y). We may suppose f∗ has degree not larger than that of
g∗.

If f∗ is the zero polynomial, then f has a factor (Y − y), and IP (f, g) =
IP (Y − y, g∗) + IP (f0, g), where f = (Y − y)f0. Since f and g do not have a
common factor, g∗ is not the zero polynomial, and g∗(X) = (X−x)ig2(X) with
i ≥ 1 and g2(x) 6= 0, and now IP (Y − y, g∗) = i. So, finding IP (f, g) has been
reduced to finding IP (f0, g).

Since f 6= 0, we arrive after finitely many steps in the situation where f∗ 6=
0. Let f∗ have leading term axd, and let g∗ have leading term bXe. Put
g0 = g − b

a (X − x)e−df . Now IP (f, g) = IP (f, g0) and g∗0 has smaller degree
than g∗ so by induction we are done.

Induction on what? The degrees of f∗ and g∗ go down until one of them is
zero, then we divide f or g by (Y − y), and afterwards the degree of f∗ or g∗

may be very large again. But we have the promise that IP (f, g) is going to be

4



finite, and each time that f∗ = 0 or g∗ = 0 we get a contribution of at least 1,
so this can happen only finitely many times, and the algorithm terminates.

1.5.1 The local ring at P

A local ring is a ring with a unique maximal ideal.
Given a field k and a point P ∈ k2, let OP be the ring of rational functions

u
v with u, v ∈ R and v(P ) 6= 0. This ring has a unique maximal ideal MP =
{u

v ∈ OP | u(P ) = 0} and is called the local ring at P .

1.5.2 Definition of the intersection multiplicity

Let C and D be curves in the plane given by equations f(X, Y ) = 0 and
g(X, Y ) = 0. Let P be a point. Let (f, g)P be the ideal OP f + OP g in OP

generated by f and g.

Definition IP (C,D) = IP (f, g) = dimk OP /(f, g)P .

Proposition 1.3 If f, g do not have a common factor, then OP = R + (f, g)P

(that is, elements of OP have polynomial representatives), and we have IP (f, g) =
dimk OP /(f, g)P ≤ dimk R/(f, g).

Proof: Given finitely many elements of OP , we can write them with common
denominator. If the images of u1

v , ..., ut

v are linearly independent in OP /(f, g)P ,
then u1, ..., ut are linearly independent in R/(f, g) since 1

v ∈ OP . This proves
the statement about dimensions.

Since f, g do not have a common factor, we have dimk R/(f, g) ≤ mn, so
dimk OP /(f, g)P is finite. If u1

v , ..., ut

v is a basis of OP /(f, g)P , then (since
v, 1

v ∈ OP so multiplication by v is invertible) also u1, ..., ut is a basis. 2

Example Let f(X, Y ) = Y and g(X, Y ) = Y −X3. The intersection multi-
plicity of the cubic Y = X3 and the line Y = 0 at P = (0, 0) should be 3. The
quotient ring R/(f, g) is a vector space over k, and the images of 1, X, X2 form
a basis, so dimk R/(f, g) = 3 and also dimk OP /(f, g)P = 3.

Example Let f(X, Y ) = Y 2−X3 and g(X, Y ) = Y 3−X4. Then IP (f, g) =
8 for P = (0, 0). A Gröbner basis for (f, g) is given by {X3−Y 2, XY 2−Y 3, Y 5−
Y 4} so that R/(f, g) has basis with representatives X2Y , X2, XY , X, Y 4, Y 3,
Y 2, Y , 1, and dimk R/(f, g) = 9. But Y − 1 is nonzero in P , so (f, g)P also
contains (Y 5 − Y 4)/(Y − 1) = Y 4, and dimk OP /(f, g)P = 8.

In these examples it was clear that dimk OP /(f, g)P had at most the given
value. That it has precisely the claimed value will follow if we show that IP (f, g)
defined in this way satisfies the rules given earlier.

Proposition 1.4 The algorithm given earlier computes IP (f, g) as defined above.
The rules given earlier are valid.

Proof: The rules IP (f, g) = IP (g, f) and IP (f, g+fh) = IP (f, g) are obvious,
since the ideal (f, g)P does not change.

If f and g have a common factor h, dimk OP /(f, g)P ≥ dimk OP /(h)P = ∞.
Conversely, if f and g do not have a common factor, then dimk OP /(f, g)P ≤
dimk R/(f, g) ≤ mn < ∞ if f and g have degrees m and n, respectively.
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For the rule IP (f, gh) = IP (f, g) + IP (f, h) consider the sequence

0 → OP /(f, h)P
∗g→ OP /(f, gh)P → OP /(f, g)P → 0

where the second arrow is multiplication by g, and the third is the quotient
map. If we show that this sequence is exact, then by taking dimensions our rule
follows. For exactness, the only nontrivial part is showing that ∗g is injective.
If for some z ∈ OP we have zg ∈ (f, gh)P , say zg = uf + vgh where u, v ∈ OP ,
then multiply by the denominators to get the relation z̄g = ūf + v̄gh with
z̄, ū, v̄ ∈ R. We may assume that f and g do not have a common factor. Now
g|ū and z̄ = (ū/g)f + v̄h ∈ (f, h) and we had z ∈ (f, h)P before eliminating
denominators.

If f(P ) 6= 0, then 1
f ∈ OP , so 1 ∈ (f, g)P and OP /(f, g)P = (0) and

IP (f, g) = dimk(0) = 0 as desired.

The final item needed in the algorithm was IP (X − x, Y − y) = 1 for P =
(x, y). W.l.o.g., take P = (0, 0). Now R/(X, Y )' k and OP /(X, Y )P ' k, so
dimk OP /(X, Y )P = 1 as desired.

That proves the claim about the algorithm. Remains the last rule: IP (f, g) =
1 if C and D are nonsingular at P with distinct tangents. W.l.o.g., take P =
(0, 0). If we follow the given algorithm and f and g have nonproportional linear
parts, this remains true upon replacing g by g − cXdf , and after finitely many
steps we reach IP (X, Y ) = 1. 2

1.5.3 Inequality with multiplicities

As before, let f, g be polynomials of degrees m,n, respectively, and assume that
f and g do not have a common factor. This means that the curves C and D
defined by f = 0 and g = 0, respectively, have only finitely many points (namely
at most mn) in common.

Proposition 1.5 We have∑
P

IP (f, g) =
∑
P

dimk OP /(f, g)P ≤ dimk R/(f, g) ≤ mn

where the sums run over P ∈ C ∩D.

Proof: We show that the natural map R →
∏

P OP /(f, g)P (that sends h ∈ R
to the element with P -coordinate h+(f, g)P ) is surjective. Then the statement
of the proposition follows by taking dimensions (since (f, g) is in the kernel of
this map).

In order to show surjectivity it suffices to find for any P and arbitrary z ∈ OP

an element h ∈ R that maps to the element (0, ..., 0, z + (f, g)P , 0, ..., 0) with all
coordinates 0 but with P -coordinate z + (f, g)P .

Start by finding polynomials hP with hP (P ) = 1 and hP (Q) = 0 when P,Q
are distinct points in C ∩D, as in (1) of the proof of Proposition 1.1. If there is
a natural number N such that hN

P ∈ (f, g)Q for Q 6= P , then pick a polynomial
representative p of zh−N

P ∈ OP /(f, g)P (as we can by Proposition 1.3) and put
h = phN

P . This h satisfies the requirements.
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Remains to show the existence of N . It suffices to show: Let p be a polynomial
with p(Q) = 0. Let N ≥ d := dimk OQ/(f, g)Q. Then pN ∈ (f, g)Q. Indeed,
let Ji := piOQ + (f, g)Q. The sequence (Ji)i≥0 of ideals is decreasing, but can
have at most d + 1 different members, so there is an i with 0 ≤ i ≤ d such that
Ji = Ji+1. This means that pi = pi+1u + v with u ∈ OQ and v ∈ (f, g)Q. Since

1
1−pu ∈ OQ it follows that pi = v

1−pu ∈ (f, g)Q, as desired. 2

1.5.4 Equality

Proposition 1.6 Assume that the field k is algebraically closed. Then∑
P

dimk OP /(f, g)P = dimk R/(f, g).

Proof: We have to show that (f, g) is the full kernel of the map π : R →∏
P OP /(f, g)P . Pick h in this kernel. Consider L := {p ∈ R | ph ∈ (f, g)}.

This is an ideal in R. If (x, y) ∈ V (L) then P := (x, y) ∈ C ∩D since f, g ∈ L.
Since π(h)P = 0 we have h = uf + vg for certain u, v ∈ OP . Write u, v
with common denominator p, then p ∈ L and p(P ) 6= 0, contradiction. Hence
V (L) = ∅. Since k is algebraically closed we can apply the Nullstellensatz and
conclude that 1 ∈ L, that is, h ∈ (f, g). 2

1.6 Conclusion

We did all the work required. Assume that k is algebraically closed. The curves
C and D have only finitely many points (affine or at infinity) in common, and
there is a line that misses all these points (since k is infinite). Choose such a line
as line at infinity to find that C and D have precisely mn points in common,
counting multiplicities.

(A detail to check: is the definition of intersection multiplicity invariant for
change of coordinates? But it is.)
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