Coherent configurations

A. E. Brouwer

Abstract

Definition and a few examples.

0.1 Relations

A coherent configuration is a finite set X (of points) together with a collection $\mathcal{R}=\left\{R_{i} \mid i \in I\right\}$ of nonempty binary relations on X, satisfying the following four conditions:
(i) \mathcal{R} is a partition of $X \times X$, that is, any ordered pair of points is in a unique relation R_{i}.
(ii) There is a subset H of the index set I such that $\left\{R_{h} \mid h \in H\right\}$ is a partition of the diagonal $\{(x, x) \mid x \in X\}$.
(iii) For each R_{i}, its converse $\left\{(y, x) \mid(x, y) \in R_{i}\right\}$ is also one of the relations in \mathcal{R}, say, $R_{i^{\prime}}$.
(iv) For $i, j, k \in I$ and $(x, y) \in R_{k}$, the number of $z \in X$ such that $(x, z) \in R_{i}$ and $(z, y) \in R_{j}$ is a constant $p_{i j}^{k}$ that does not depend on the choice of x, y.

Coherent configurations were introduced by Higman in order to 'do group theory without groups', see example (ii) below.
The number $|I|$ of relations is called the rank of the coherent configuration.
From (ii) we get a partition of X into sets $X_{h}(h \in H)$ called fibers, defined by $R_{h}=\left\{(x, x) \mid x \in X_{h}\right\}$ for $h \in H$. It follows from (iv) that for any $i \in I$ we have $R_{i} \subseteq X_{s} \times X_{t}$ for certain fibers X_{s}, X_{t}. Consequently, any subset H_{0} of H determines a sub-cc with point set $\bigcup_{h \in H_{0}} X_{h}$.

0.2 Matrices

Let A_{i} be the adjacency matrix of R_{i}, defined by $\left(A_{i}\right)_{x y}=1$ if $(x, y) \in R_{i}$ and $\left(A_{i}\right)_{x y}=0$ otherwise. In terms of the A_{i} the above definition becomes: The A_{i} ($i \in I$) are nonzero 0-1 matrices with rows and columns indexed by X such that
(i) $\sum_{i \in I} A_{i}=J$, where J is the all-1 matrix.
(ii) $\sum_{h \in H} A_{h}=I$, where I is the identity matrix.
(iii) $\left(A_{i}\right)^{\top}=A_{i^{\prime}}$ for $i \in I$.
(iv) $A_{i} A_{j}=\sum_{k} p_{i j}^{k} A_{k}$.

0.3 The adjacency algebra

By (iv) above, the matrices A_{i} form the basis for an $|I|$-dimensional algebra \mathcal{A} (over an arbitrary field F) called the (F-) adjacency algebra. The algebra \mathcal{A} is closed for both matrix multiplication and Hadamard (entrywise) multiplication.

If $F=\mathbb{C}$, the algebra \mathcal{A} is closed for taking the conjugate transpose $M^{*}=\bar{M}^{\top}$ of a matrix M, and \mathcal{A} is a C^{*}-algebra.
By (iii), the real or complex adjacency algebra \mathcal{A} is semisimple. (Its radical contains together with a matrix M also $M^{\top} M$ or $M^{*} M$, but these matrices can be diagonalized and are nilpotent so are zero. Hence $\operatorname{rad} \mathcal{A}=0$.) It follows that \mathcal{A} is the direct sum of simple two-sided ideals: $\mathcal{A}=\sum_{k} \mathcal{I}_{k}$ where the \mathcal{I}_{k} annihilate each other. Take $F=\mathbb{C}$, then each \mathcal{I}_{k} is isomorphic to a matrix algebra $M_{n_{k}}(\mathbb{C})$ of matrices of order n_{k} over \mathbb{C}. We see that $\operatorname{dim} \mathcal{A}=\sum_{k} n_{k}^{2}$.
Since $M_{n}(\mathbb{C})$ has a basis of matrices $e_{i j}$ (with a 1 entry at the (i, j)-position and 0 elsewhere) that multiply according to $e_{i j} e_{k l}=e_{i l}$ if $j=k$, and $e_{i j} e_{k l}=0$ otherwise, we can find matrices E_{h} in \mathcal{A}, n_{k}^{2} in each ideal \mathcal{I}_{k}, where the E_{h} in $\mathcal{I}_{k} \cong M_{n_{k}}(\mathbb{C})$ multiply like the $e_{i j}$ (taken in some order). Let $E_{h^{\prime}}=E_{h}^{*}$.
Now \mathcal{A} has two bases, namely that of the A_{i} and that of the E_{j}, and we can express each basis in terms of the other. Define constants $P_{i j}$ and $Q_{i j}$ by $A_{i}=\sum P_{j i} E_{j}$ and $E_{j}=\frac{1}{|X|} \sum Q_{i j} A_{i}$. (The order of indices, and the factor $\frac{1}{|X|}$ are traditional.)
Consider the bilinear form on \mathcal{A} given by $(M, N)=\operatorname{tr} M^{*} N$. This form is nondegenerate, and the A_{i} are mutually orthogonal, and the E_{j} are, too. It follows that if M is an arbitrary matrix of order $v=|X|$, the projection πM of M on \mathcal{A} is given by $\pi M=\sum_{i} \frac{\left(A_{i}, M\right)}{\left(A_{i}, A_{i}\right)} A_{i}=\sum_{j} \frac{\left(E_{j}, M\right)}{\left(E_{j}, E_{j}\right)} E_{j}$. For $M=y x^{*}$ of rank 1 , we find

$$
\sum_{i} \frac{x^{*} A_{i^{\prime}} y}{\left(A_{i}, A_{i}\right)} A_{i}=\sum_{j} \frac{x^{*} E_{j^{\prime}} y}{\left(E_{j}, E_{j}\right)} E_{j}
$$

for all $x, y \in V$. (This is a form of Roos' identity.)
For $M=x x^{*}$, which is symmetric and positive semidefinite, the projection πM is also symmetric and positive semidefinite, and we find Hobart's result that $\sum_{i} \frac{1}{\left(A_{i}, A_{i}\right)}\left(x^{*} A_{i} x\right) A_{i}$ is psd. (This is a form of Delsarte's LP bound.)

One has $\left(A_{i}, A_{i}\right)=k_{i}\left|X_{g}\right|$ when $R_{i} \subseteq X_{g} \times X_{h}$ and A_{i} has row sums k_{i} $\left(=p_{i i}^{g}\right)$. One has $\left(E_{i}, E_{i}\right)=m_{i}$ when the standard module $V=\mathbb{C}^{X}$ contains m_{i} copies of the \mathcal{I}_{k} corresponding to E_{i}. Computing $\left(A_{i}, E_{j}\right)$ in two ways, we find $\left(A_{i}, E_{j}\right)=\frac{1}{|X|} Q_{i j}\left(A_{i}, A_{i}\right)=\frac{1}{|X|} Q_{i j} k_{i}\left|X_{g}\right|$ and $\left(A_{i}, E_{j}\right)=\overline{P_{j i}}\left(E_{j}, E_{j}\right)=\overline{P_{j i}} m_{j}$.

0.4 Association schemes

A coherent configuration (cc) is called homogeneous if I_{0} consists of a single element, which then is written 0 .

A cc is called commutative when $A_{i} A_{j}=A_{j} A_{i}$ for all $i, j \in I$ (or, equivalently, when $p_{i j}^{k}=p_{j i}^{k}$ for all $\left.i, j, k \in I\right)$.

A cc is called symmetric when $A_{i}^{\top}=A_{i}$ for all $i \in I$ (or, equivalently, when $i^{\prime}=i$ for all $i \in I$).

Every symmetric cc is commutative. Every nonempty commutative cc is homogeneous. Every homogeneous cc of rank at most 5 is commutative. A nonempty symmetric cc is called a (symmetric) association scheme. (For most authors association schemes are by definition symmetric, but Delsarte used the term more generally for homogeneous commutative coherent configurations, so one often adds 'symmetric' to avoid ambiguity.) For association schemes the adjacency algebra is also known as the Bose-Mesner algebra.

0.5 Examples

(i) The empty coherent configuration has $X=\emptyset$. It has $\mathcal{R}=\emptyset$ and is symmetric but not homogeneous, and not an association scheme.
(ii) Let G be a permutation group acting on the set X. Then X together with the partition \mathcal{R} of $X \times X$ into orbits of G (acting on $X \times X$ via $g(x, y)=$ $(g x, g y))$ is a coherent configuration. A coherent configuration obtained in this way is called Schurian. This coherent configuration is homogeneous when G has precisely 1 orbit, i.e., when X is nonempty and G is transitive on X.
(iii) Let \mathcal{S} be an arbitrary collection of relations on X. Then there is a unique coarsest \mathcal{R} such that (X, \mathcal{R}) is a coherent configuration and all elements of \mathcal{S} are unions of relations in \mathcal{R}. (Proof: Consider the algebra generated by the matrices I, J and the $0-1$ adjacency matrices for the elements of \mathcal{S} under taking ordinary and Hadamard products. It has a basis of minimal idempotents for Hadamard multiplication, and this yields \mathcal{R}.) In particular, a graph Γ (directed or not) determines a coherent configuration $\mathrm{cc}(\Gamma)$.
(iiia) The discrete coherent configuration on a set X is the unique coherent configuration in which all singletons are fibers. It has rank $|X|^{2}$ and is the finest coherent configuration on X.
(iiib) The indiscrete coherent configuration on a set X is the coherent configuration determined by the complete graph on X. It is the coarsest coherent configuration on X. If $|X|>1$ it has rank 2 .
(iv) Up to isomorphism, there are four coherent configurations on 3 points. The indiscrete one is $\mathrm{cc}\left(K_{3}\right)$ and is an association scheme of rank 2 . The coherent configuration determined by the cyclically directed triangle is commutative and homogeneous and has rank 3. The path P_{3} of length 2 determines $\operatorname{cc}\left(P_{3}\right)$ of rank 5 . The discrete cc has rank 9.

Let us give very explicit details.
a) The indiscrete scheme $\operatorname{cc}\left(K_{3}\right)$ has adjacency algebra $\mathcal{A}=\langle I, J-I\rangle$ with idempotents $\frac{1}{3} J$ and $I-\frac{1}{3} J$ and $P=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$.
b) The cyclically directed triangle has adjacency algebra $\mathcal{A}=\left\langle I, A, A^{2}\right\rangle$, where $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ with idempotents $\frac{1}{3}\left(I+\rho A+\rho^{2} A^{2}\right)$ for $\rho=1, \omega, \omega^{2}$, where ω is a primitive cube root of unity, and $P=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \frac{\omega}{\omega} \\ 1 & \omega & \omega \\ \omega\end{array}\right]$.
c) The scheme $\operatorname{cc}\left(P_{3}\right)$ has adjacency algebra

$$
\mathcal{A}=\left\langle\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right\rangle .
$$

Here \mathcal{A} is the sum of the three minimal left ideals of dimensions $2,2,1$ generated by the idempotents $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \frac{1}{2}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right], \frac{1}{2}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]$. The sum of the first two is a two-sided ideal of dimension 4 isomorphic to $M_{2}(\mathbb{C})$, the third is isomorphic to $M_{1}(\mathbb{C})$. The basis of the E_{j} can be taken as

$$
\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \frac{1}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\right\} .
$$

Now $P=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$. The isomorphism of \mathcal{A} with $M_{2}(\mathbb{C}) \oplus M_{1}(\mathbb{C})$ sends the adjacency matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$ of the path P_{3} to $\sqrt{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+[0]$, so that A has eigenvalues $\sqrt{2}, 0,-\sqrt{2}$.
d) The discrete cc on 3 points has adjacency algebra $\mathcal{A}=M_{3}(\mathbb{C})$, and both the 9 matrices A_{i} and the 9 matrices E_{j} are the 9 matrices $e_{i j}$ with a single 1 .

