Regular differential forms

1 Regular differential forms - the affine case

Let X be an affine algebraic variety with coordinate ring k[X]. The k[X]-module $\Omega[X]$ of regular differential forms is generated by elements df $(f \in k[X])$ with relations

$$d(f+g) = df + dg$$
$$d(fg) = fdg + gdf$$
$$d\alpha = 0 \quad (\alpha \in k)$$

So, elements of $\Omega[X]$ are sums of terms gdf with $f, g \in k[X]$.

Example The affine parabola $y = x^2$ has dy = 2xdx and, using this, all occurrences of y and dy can be eliminated. The regular differential forms are $\omega = g(x)dx$ with $g \in k[x]$.

Example The affine cubic curve $y^2 = x^3 + x$ has $2ydy = (3x^2 + 1)dx$. An example of a regular differential form is

$$\omega = \frac{dx}{2y} = \frac{dy}{3x^2 + 1}.$$

Is it really OK to have fractions? According to the definition we should have

$$\omega = f dx + g dy \quad \text{with} \quad f, g \in k[X].$$

Here

$$2y\omega = dx$$
$$(3x^2 + 1)\omega = dy$$

so we need $2yf + (3x^2 + 1)g = 1$ for certain $f, g \in k[X]$. By the Nullstellensatz that means $X \cap V(2y, 3x^2 + 1) = \emptyset$, and this is true: the curve is nonsingular. Of course we can also compute explicitly: take

$$f(x,y) = -\frac{9}{4}xy$$
 and $g(x,y) = \frac{3}{2}x^2 + 1.$

Then $2yf + (3x^2 + 1)g = -\frac{9}{2}x(x^3 + x) + (\frac{3}{2}x^2 + 1)(3x^2 + 1) = 1$. Hence

$$\omega = \frac{dx}{2y} = \frac{dy}{3x^2 + 1} = -\frac{9}{4}xydx + (\frac{3}{2}x^2 + 1)dy.$$

2 Regular differential forms - the projective case

If X is a projective variety, it has a covering with affine pieces. Now a regular differential form is one that is regular in each piece.

Example Take the projective line \mathbf{P}^1 . It has projective coordinates (X, Y). It is covered by the two affine pieces $A_1 = \mathbf{P}^1 \setminus \{(1,0)\}$ and $A_2 = \mathbf{P}^1 \setminus \{(0,1)\}$. In A_1 the projective coordinates can be chosen as (X, 1), and in A_2 the projective coordinates can be chosen as (1, Y). In $A_1 \cap A_2$ the projective point (X, Y) corresponds to (X/Y, 1) in A_1 and to (1, Y/X) in A_2 , so the Y of A_2 is the 1/X of A_1 .

Suppose we have a regular differential form on \mathbf{P}^1 . Restricted to A_1 it looks like f(X)dX. Restricted to A_2 it looks like g(Y)dY. And both forms agree on $A_1 \cap A_2$. That is, $f(X)dX = g(Y)dY = g(\frac{1}{X})d(\frac{1}{X}) = g(\frac{1}{X}).\frac{-1}{X^2}.dX$ but that is impossible: there are no polynomials f(X) and g(X) such that $f(X) = g(\frac{1}{X}).\frac{-1}{X^2}$. It follows that there are no regular differential forms on \mathbf{P}^1 .

Example Take the projective curve $Y^2Z = X^3 + XZ^2$. The projective plane \mathbf{P}^2 is covered by three affine pieces: A_1 is the part with $Z \neq 0$ and coordinates (X, Y, 1), A_2 is the part with $Y \neq 0$ and coordinates (U, 1, V), A_3 is the part with $X \neq 0$ and coordinates (1, S, T), where on $A_1 \cap A_2$ we have U = X/Y, V = 1/Y, and on $A_1 \cap A_3$ we have S = Y/X, T = 1/X, and on $A_2 \cap A_3$ we have S = 1/U, T = V/U. In our case (where $Y^2Z = X^3 + XZ^2$) the part A_3 is superfluous, since already A_1 and A_2 cover the curve. (In the projective plane the only point not covered by $A_1 \cup A_2$ is (1, 0, 0), but that does not lie on our curve.)

Claim:

$$\omega = \frac{dX}{2Y} = \frac{dY}{3X^2 + 1} = \frac{dU}{2UV - 1} = \frac{-dV}{3U^2 + V^2}$$

is a regular differential form.

Check: In A_1 we have the equation $Y^2 = X^3 + X$ and we already saw that $\frac{dX}{2Y} = \frac{dY}{3X^2+1}$ is a regular differential form on that affine piece. In A_2 we have the equation $V = U^3 + UV^2$ and in the same way we see that $\frac{dU}{2UV-1} = \frac{-dV}{3U^2+V^2}$ is a regular differential form on that affine piece. Finally, in the intersection $A_1 \cap A_2$ we have

$$\omega = \frac{dY}{3X^2 + 1} = \frac{1}{3(\frac{U}{V})^2 + 1} \cdot \frac{-1}{V^2} \cdot dV = \frac{-dV}{3U^2 + V^2}.$$

Thus ω is a regular differential form as claimed.

3 An algebraic definition of the genus

So far we saw that there are no regular differential forms on the projective line \mathbf{P}^1 and we found one such form for the elliptic curve $Y^2 = X^3 + X$.

Theorem 3.1 Let X be a nonsingular projective curve. Then $\dim_k \Omega[X] = g$.

Earlier the genus g was defined as the number of holes in the two-dimensional real surface that is the one-dimensional complex curve. This theorem can be taken as definition when k is not the field of complex numbers.

Description of the regular differential forms

If the nonsingular projective curve X is given by the equation f(X, Y) = 0 for some polynomial f of degree d, then $f_X dX + f_Y dY = 0$ (where f_X and f_Y are the derivatives of f w.r.t. X and Y), and the regular differential forms look like

$$\omega = \frac{gdX}{f_Y} = \frac{-gdY}{f_X}$$

for some polynomial g(X, Y) of degree at most d - 3.

(Nonsingularity implies that f_X and f_Y do not vanish simultaneously on the curve, so that ω can be written without fractions.)

(Why d-3? Consider the change from (X, Y, 1) to (U, 1, V), with $Y = \frac{1}{V}$ and $dY = -\frac{1}{V^2}dV$. If f(X, Y) has degree d and $f_X(X, Y)$ has degree d-1 and g(X, Y) has degree e, then

$$\frac{-g(X,Y)dY}{f_X} = \frac{g(\frac{U}{V},\frac{1}{V})}{f_X(\frac{U}{V},\frac{1}{V})} \cdot \frac{1}{V^2} \cdot dV$$

behaves like $V^{-e} \cdot V^{-2} \cdot V^{d-1}$ near V = 0, and since the value must be well-defined for V = 0 we must have $e \le d - 3$.)

Since a polynomial of degree at most d has $(d+1)+d+\ldots+1 = \frac{1}{2}(d+2)(d+1)$ coefficients, we find $g = \frac{1}{2}(d-1)(d-2)$ for a nonsingular curve of degree d.

4 Rational differential forms

Rational differential forms are sums of terms gdf where now $f, g \in k(X)$. For a nonsingular curve X, the set $\Omega(X)$ of rational differential forms is a 1-dimensional vector space over k(X).