
Regular differential forms

1 Regular differential forms - the affine case

Let X be an affine algebraic variety with coordinate ring k[X]. The k[X]-module
Ω[X] of regular differential forms is generated by elements df (f ∈ k[X]) with
relations

d(f + g) = df + dg

d(fg) = fdg + gdf

dα = 0 (α ∈ k)

So, elements of Ω[X] are sums of terms gdf with f, g ∈ k[X].

Example The affine parabola y = x2 has dy = 2xdx and, using this, all oc-
currences of y and dy can be eliminated. The regular differential forms are
ω = g(x)dx with g ∈ k[x].

Example The affine cubic curve y2 = x3 + x has 2ydy = (3x2 + 1)dx. An
example of a regular differential form is

ω =
dx

2y
=

dy

3x2 + 1
.

Is it really OK to have fractions? According to the definition we should have

ω = fdx + gdy with f, g ∈ k[X].

Here
2yω = dx

(3x2 + 1)ω = dy

so we need 2yf + (3x2 + 1)g = 1 for certain f, g ∈ k[X]. By the Nullstellensatz
that means X ∩ V (2y, 3x2 + 1) = ∅, and this is true: the curve is nonsingular.
Of course we can also compute explicitly: take

f(x, y) = −9
4
xy and g(x, y) =

3
2
x2 + 1.

Then 2yf + (3x2 + 1)g = − 9
2x(x3 + x) + ( 3

2x2 + 1)(3x2 + 1) = 1. Hence

ω =
dx

2y
=

dy

3x2 + 1
= −9

4
xydx + (

3
2
x2 + 1)dy.

1



2 Regular differential forms - the projective case

If X is a projective variety, it has a covering with affine pieces. Now a regular
differential form is one that is regular in each piece.

Example Take the projective line P1. It has projective coordinates (X, Y ). It
is covered by the two affine pieces A1 = P1 \ {(1, 0)} and A2 = P1 \ {(0, 1)}. In
A1 the projective coordinates can be chosen as (X, 1), and in A2 the projective
coordinates can be chosen as (1, Y ). In A1 ∩ A2 the projective point (X, Y )
corresponds to (X/Y, 1) in A1 and to (1, Y/X) in A2, so the Y of A2 is the 1/X
of A1.

Suppose we have a regular differential form on P1. Restricted to A1 it
looks like f(X)dX. Restricted to A2 it looks like g(Y )dY . And both forms
agree on A1 ∩ A2. That is, f(X)dX = g(Y )dY = g( 1

X )d( 1
X ) = g( 1

X ).−1
X2 .dX

but that is impossible: there are no polynomials f(X) and g(X) such that
f(X) = g( 1

X ).−1
X2 . It follows that there are no regular differential forms on P1.

Example Take the projective curve Y 2Z = X3 + XZ2. The projective plane
P2 is covered by three affine pieces: A1 is the part with Z 6= 0 and coordinates
(X, Y, 1), A2 is the part with Y 6= 0 and coordinates (U, 1, V ), A3 is the part
with X 6= 0 and coordinates (1, S, T ), where on A1 ∩ A2 we have U = X/Y ,
V = 1/Y , and on A1 ∩ A3 we have S = Y/X, T = 1/X, and on A2 ∩ A3 we
have S = 1/U , T = V/U . In our case (where Y 2Z = X3 + XZ2) the part A3 is
superfluous, since already A1 and A2 cover the curve. (In the projective plane
the only point not covered by A1 ∪ A2 is (1, 0, 0), but that does not lie on our
curve.)

Claim:
ω =

dX

2Y
=

dY

3X2 + 1
=

dU

2UV − 1
=

−dV

3U2 + V 2

is a regular differential form.
Check: In A1 we have the equation Y 2 = X3 + X and we already saw that

dX
2Y = dY

3X2+1 is a regular differential form on that affine piece. In A2 we have
the equation V = U3 +UV 2 and in the same way we see that dU

2UV−1 = −dV
3U2+V 2

is a regular differential form on that affine piece. Finally, in the intersection
A1 ∩A2 we have

ω =
dY

3X2 + 1
=

1
3(U

V )2 + 1
.
−1
V 2

.dV =
−dV

3U2 + V 2
.

Thus ω is a regular differential form as claimed.

3 An algebraic definition of the genus

So far we saw that there are no regular differential forms on the projective line
P1 and we found one such form for the elliptic curve Y 2 = X3 + X.

Theorem 3.1 Let X be a nonsingular projective curve. Then dimk Ω[X] = g.

Earlier the genus g was defined as the number of holes in the two-dimensional
real surface that is the one-dimensional complex curve. This theorem can be
taken as definition when k is not the field of complex numbers.
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Description of the regular differential forms

If the nonsingular projective curve X is given by the equation f(X, Y ) = 0 for
some polynomial f of degree d, then fXdX + fY dY = 0 (where fX and fY are
the derivatives of f w.r.t. X and Y ), and the regular differential forms look like

ω =
gdX

fY
=
−gdY

fX

for some polynomial g(X, Y ) of degree at most d− 3.

(Nonsingularity implies that fX and fY do not vanish simultaneously on the
curve, so that ω can be written without fractions.)

(Why d − 3? Consider the change from (X, Y, 1) to (U, 1, V ), with Y = 1
V

and dY = − 1
V 2 dV . If f(X, Y ) has degree d and fX(X, Y ) has degree d− 1 and

g(X, Y ) has degree e, then

−g(X, Y )dY

fX
=

g(U
V , 1

V )
fX(U

V , 1
V )

.
1

V 2
.dV

behaves like V −e.V −2.V d−1 near V = 0, and since the value must be well-defined
for V = 0 we must have e ≤ d− 3.)

Since a polynomial of degree at most d has (d+1)+d+...+1 = 1
2 (d+2)(d+1)

coefficients, we find g = 1
2 (d− 1)(d− 2) for a nonsingular curve of degree d.

4 Rational differential forms

Rational differential forms are sums of terms gdf where now f, g ∈ k(X).
For a nonsingular curve X, the set Ω(X) of rational differential forms is a
1-dimensional vector space over k(X).
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