Regular differential forms

1 Regular differential forms - the affine case

Let X be an affine algebraic variety with coordinate ring $k[X]$. The $k[X]$-module $\Omega[X]$ of regular differential forms is generated by elements $d f(f \in k[X])$ with relations

$$
\begin{gathered}
d(f+g)=d f+d g \\
d(f g)=f d g+g d f \\
d \alpha=0 \quad(\alpha \in k)
\end{gathered}
$$

So, elements of $\Omega[X]$ are sums of terms $g d f$ with $f, g \in k[X]$.
Example The affine parabola $y=x^{2}$ has $d y=2 x d x$ and, using this, all occurrences of y and $d y$ can be eliminated. The regular differential forms are $\omega=g(x) d x$ with $g \in k[x]$.
Example The affine cubic curve $y^{2}=x^{3}+x$ has $2 y d y=\left(3 x^{2}+1\right) d x$. An example of a regular differential form is

$$
\omega=\frac{d x}{2 y}=\frac{d y}{3 x^{2}+1}
$$

Is it really OK to have fractions? According to the definition we should have

$$
\omega=f d x+g d y \text { with } f, g \in k[X] .
$$

Here

$$
\begin{gathered}
2 y \omega=d x \\
\left(3 x^{2}+1\right) \omega=d y
\end{gathered}
$$

so we need $2 y f+\left(3 x^{2}+1\right) g=1$ for certain $f, g \in k[X]$. By the Nullstellensatz that means $X \cap V\left(2 y, 3 x^{2}+1\right)=\emptyset$, and this is true: the curve is nonsingular. Of course we can also compute explicitly: take

$$
f(x, y)=-\frac{9}{4} x y \text { and } g(x, y)=\frac{3}{2} x^{2}+1
$$

Then $2 y f+\left(3 x^{2}+1\right) g=-\frac{9}{2} x\left(x^{3}+x\right)+\left(\frac{3}{2} x^{2}+1\right)\left(3 x^{2}+1\right)=1$. Hence

$$
\omega=\frac{d x}{2 y}=\frac{d y}{3 x^{2}+1}=-\frac{9}{4} x y d x+\left(\frac{3}{2} x^{2}+1\right) d y
$$

2 Regular differential forms - the projective case

If X is a projective variety, it has a covering with affine pieces. Now a regular differential form is one that is regular in each piece.

Example Take the projective line \mathbf{P}^{1}. It has projective coordinates (X, Y). It is covered by the two affine pieces $A_{1}=\mathbf{P}^{1} \backslash\{(1,0)\}$ and $A_{2}=\mathbf{P}^{1} \backslash\{(0,1)\}$. In A_{1} the projective coordinates can be chosen as $(X, 1)$, and in A_{2} the projective coordinates can be chosen as $(1, Y)$. In $A_{1} \cap A_{2}$ the projective point (X, Y) corresponds to $(X / Y, 1)$ in A_{1} and to $(1, Y / X)$ in A_{2}, so the Y of A_{2} is the $1 / X$ of A_{1}.

Suppose we have a regular differential form on \mathbf{P}^{1}. Restricted to A_{1} it looks like $f(X) d X$. Restricted to A_{2} it looks like $g(Y) d Y$. And both forms agree on $A_{1} \cap A_{2}$. That is, $f(X) d X=g(Y) d Y=g\left(\frac{1}{X}\right) d\left(\frac{1}{X}\right)=g\left(\frac{1}{X}\right) \cdot \frac{-1}{X^{2}} \cdot d X$ but that is impossible: there are no polynomials $f(X)$ and $g(X)$ such that $f(X)=g\left(\frac{1}{X}\right) \cdot \frac{-1}{X^{2}}$. It follows that there are no regular differential forms on \mathbf{P}^{1}.
Example Take the projective curve $Y^{2} Z=X^{3}+X Z^{2}$. The projective plane \mathbf{P}^{2} is covered by three affine pieces: A_{1} is the part with $Z \neq 0$ and coordinates $(X, Y, 1), A_{2}$ is the part with $Y \neq 0$ and coordinates $(U, 1, V), A_{3}$ is the part with $X \neq 0$ and coordinates $(1, S, T)$, where on $A_{1} \cap A_{2}$ we have $U=X / Y$, $V=1 / Y$, and on $A_{1} \cap A_{3}$ we have $S=Y / X, T=1 / X$, and on $A_{2} \cap A_{3}$ we have $S=1 / U, T=V / U$. In our case (where $Y^{2} Z=X^{3}+X Z^{2}$) the part A_{3} is superfluous, since already A_{1} and A_{2} cover the curve. (In the projective plane the only point not covered by $A_{1} \cup A_{2}$ is $(1,0,0)$, but that does not lie on our curve.)

Claim:

$$
\omega=\frac{d X}{2 Y}=\frac{d Y}{3 X^{2}+1}=\frac{d U}{2 U V-1}=\frac{-d V}{3 U^{2}+V^{2}}
$$

is a regular differential form.
Check: In A_{1} we have the equation $Y^{2}=X^{3}+X$ and we already saw that $\frac{d X}{2 Y}=\frac{d Y}{3 X^{2}+1}$ is a regular differential form on that affine piece. In A_{2} we have the equation $V=U^{3}+U V^{2}$ and in the same way we see that $\frac{d U}{2 U V-1}=\frac{-d V}{3 U^{2}+V^{2}}$ is a regular differential form on that affine piece. Finally, in the intersection $A_{1} \cap A_{2}$ we have

$$
\omega=\frac{d Y}{3 X^{2}+1}=\frac{1}{3\left(\frac{U}{V}\right)^{2}+1} \cdot \frac{-1}{V^{2}} \cdot d V=\frac{-d V}{3 U^{2}+V^{2}}
$$

Thus ω is a regular differential form as claimed.

3 An algebraic definition of the genus

So far we saw that there are no regular differential forms on the projective line \mathbf{P}^{1} and we found one such form for the elliptic curve $Y^{2}=X^{3}+X$.

Theorem 3.1 Let X be a nonsingular projective curve. Then $\operatorname{dim}_{k} \Omega[X]=g$.
Earlier the genus g was defined as the number of holes in the two-dimensional real surface that is the one-dimensional complex curve. This theorem can be taken as definition when k is not the field of complex numbers.

Description of the regular differential forms

If the nonsingular projective curve X is given by the equation $f(X, Y)=0$ for some polynomial f of degree d, then $f_{X} d X+f_{Y} d Y=0$ (where f_{X} and f_{Y} are the derivatives of f w.r.t. X and Y), and the regular differential forms look like

$$
\omega=\frac{g d X}{f_{Y}}=\frac{-g d Y}{f_{X}}
$$

for some polynomial $g(X, Y)$ of degree at most $d-3$.
(Nonsingularity implies that f_{X} and f_{Y} do not vanish simultaneously on the curve, so that ω can be written without fractions.)
(Why $d-3$? Consider the change from $(X, Y, 1)$ to $(U, 1, V)$, with $Y=\frac{1}{V}$ and $d Y=-\frac{1}{V^{2}} d V$. If $f(X, Y)$ has degree d and $f_{X}(X, Y)$ has degree $d-1$ and $g(X, Y)$ has degree e, then

$$
\frac{-g(X, Y) d Y}{f_{X}}=\frac{g\left(\frac{U}{V}, \frac{1}{V}\right)}{f_{X}\left(\frac{U}{V}, \frac{1}{V}\right)} \cdot \frac{1}{V^{2}} \cdot d V
$$

behaves like $V^{-e} . V^{-2} . V^{d-1}$ near $V=0$, and since the value must be well-defined for $V=0$ we must have $e \leq d-3$.)

Since a polynomial of degree at most d has $(d+1)+d+\ldots+1=\frac{1}{2}(d+2)(d+1)$ coefficients, we find $g=\frac{1}{2}(d-1)(d-2)$ for a nonsingular curve of degree d.

4 Rational differential forms

Rational differential forms are sums of terms $g d f$ where now $f, g \in k(X)$. For a nonsingular curve X, the set $\Omega(X)$ of rational differential forms is a 1-dimensional vector space over $k(X)$.

