1 Hilbert function

1.1 Graded rings

Let G be a commutative semigroup. A commutative ring R is called G-graded
when it has a (weak) direct sum decomposition R = ), R; (that is, the R;
are additive subgroups, and every element r of R can be written in a unique way
as finite sum r = r; + ... + 7, where the r; are nonzero and belong to distinct
R;) and moreover R, R; C R, ;.

Elements that belong to one of the R; are called homogeneous. The r; that
occur in the unique representation of r are called the homogeneous components
of r.

Exercise Give an example of a graded commutative ring R that has an
identity element 1 that is not homogeneous. Show that this cannot happen when
R is N-graded.

Now let G be a commutative monoid. A commutative ring R with identity
1 is called G-graded when it is G-graded as commutative ring, and moreover
1 € Ry, where 0 is the zero element of G.

Clearly, if H is a monoid containing G, and R is G-graded, then R is also
H-graded.

Example A polynomial ring R = k[xy, ..., Z,,] is N-graded (and therefore
also Z-graded): Take for R; the set of all polynomials that are homogeneous of
total degree i. It is also N™-graded: Take for R; the set of all polynomials that
are homogeneous of multidegree 1.

1.2 Graded modules

Let R be G-graded, and let H be a monoid containing G. An R-module M is
called H-graded when it has a (weak) direct sum decomposition M =}, M;
such that RlMJ Q Mi+j~

For example, it is natural to work with N-graded rings and Z-graded mod-
ules. Or perhaps N™-graded rings and Z"-graded modules.

An important special case of a graded R-module, is R itself, but with shifted
grading: put M = R and M; = Rj,1;. Let us call this module R(").

A submodule N of M is called a graded submodule when it is generated by
the intersections N; = N N M;. (Then it is called homogeneous.) If this is the
case, then the quotient module M/N is graded, with grading (M/N); = M;/N;.

Example In k[z,y, 2] the ideal (22 + y3 + 2°) will be homogeneous if we
choose the grading that assigns degrees 15, 10, 6 to x,y, 2z, respectively.

1.3 Hilbert function

Consider the situation of a G-graded k-algebra R: all R; are vector spaces over
k. Given an H-graded R-module M, put

F(M,X) =Y H(M,i)\
i€H
where H(M,i) = dimy M;.
The function H(M,.) from H to N is called the Hilbert function of M.



Theorem 1.1 Suppose R is finitely generated by homogeneous elements ry, ...,
rs of degrees g1, ..., gs, respectively. If M is finitely generated H-graded R-
module, where H is an additive group, then

P(M, )
Hj‘:l(l — A\99)

for some finite sum P(M,\) =", ap\" with integral coefficients ay,.

F(M,\) =

Proof: Induction on the number s of generators of the k-algebra R. If s =0,
then R = Ry = k, and F(M, ) has only finitely many terms.

If s > 0, then let r be one of the generators of R (of degree g, say). The
module M/rM is a finitely generated S-module, where S is the subring of R
generated by the generators different from r. By induction F'(M/rM, ) has a
representation of the required form.

Next, consider K, = {m € M | rm = 0}. Again, this is a finitely generated
S-module, so F(K,, \) has the required form.

Finally, all will be proved if we show that

F(M/rM,\) — MF(K,,\)

F(M,\) = Y

But that is the same as saying that
F(M,X) = F(M/rM, X) = X(F(M, ) - F(K,, \))

that is,
dim(rM),4qg = dim(M); — dim(K,);

and that is clear (since i 4+ g = j + g implies i = j). =

1.4 Examples

Below, R will be N-graded.

Consider R = k. We have F(R,\) = 1.

Consider R = k[x]. We have F(R,A) =1+ A+ X2 +...=1/(1-)).

Consider R = k[z,y]. We have F(R,\) = 1+2A+3X\2+4X3+... = 1/(1-))2.

And indeed, for R = k[z1, ..., %] we have F(R,\) = 1/(1 — \)™.

Consider R = k[x,y]/(zy). We have F(R,\) = 1+ 2\ +2)\2 +2)\3 + ... =
14+X)/1-A).

Consider R = k[z,y]/(z? +y?). We have F(R,\) = 1+2XA+2)\2+2)\3 + ... =
(IT+X)/(1=N).

1.5 Automated examples

When the rings are more complicated, it is easier to let a computer algebra pack-
age do the work. Fetch Macaulay from http://www.math.uiuc.edu/Macaulay2.

First repeat the above calculation. In the above the field k does not play
any role. Let us take k = F19; = Z/101Z.



b /M2

Macaulay 2, version 0.9
i1 : R=ZZ/101[x,y]

ol =R

ol : PolynomialRing

i2 : Q=R/ideal (x"2+y~2)
02 = Q
02 : QuotientRing

i3 : poincare Q
2

03 =1- 8T

03 : Zz[zZ"1]

The output of the function poincare is the numerator of the righthand side
fraction in the theorem above. So, 1 — T2 really means (1 —T2)/(1 — T)? since
we have two variables, both of degree 1. And that is indeed the same as the
(1+T)/(1—T) that we found above.

1.6 Geometric significance

Given a projective variety X, with homogeneous coordinate ring R = k[Xo, ..., X;n]/I(X),
the dimension H(R,4) = dimR; tells us how many independent functions of de-
gree 1 there are on X.

That gives geometric information. For example, if X is a set of three points
in the plane, then H(R,1) will be 2 if the three points are collinear, and 3
otherwise. On the other hand, H(R,n) will be 3 for n > 1.

Let us confirm using Macaulay. We expect to find either 14+2A+3A2+3\34 ...
or 1+3A+3X%+3A3 + ..., that is, either (1+A+A?)/(1—X) or (1+2X)/(1—\).

i1 : R=ZZ/101[x,y,z]
ol =R
ol : PolynomialRing

i2 : S=ideal(x,y)*ideal(x,z)*ideal(x,y+z)

3 2 2 2 2 2 2 2 2
02 = ideal (x , X y + X 2, X 2, X¥y*¥Z + X*¥Z , X §, XXy + X*ky*z, X*ky*z, y Zz + y*z )
02 : Ideal of R

i3 : T=radical S

2 2
03 = ideal (x, y z + y*z )
03 : Ideal of R

i4 : Q=R/T
o4 = (Q
04 : QuotientRing

i5 : poincare Q



3 4
o5 =1 - 8T - $T + $T
o5 : Zz[ZZ~1]

That was the case of three collinear points, and we find (1—-T—T3+T%)/(1—
T)3=(1+T+T?/(1—T), as expected. And for three non-collinear points:

i2 : S=ideal(x,y)*ideal(x,z)*ideal(y,z)

2 3
o5 =1 - 3$T + 2$T

That is, we find (1 — 372 +273)/(1 - T)3 = (1+2T)/(1 —T), as expected.

Exercise Show that if X is a set of n points in projective space, then
H(R,i) = n for sufficiently large i. How large?

1.7 The Hilbert polynomial

Consider R = k[z1,...,xm,]/I(X) with N-grading. Looking at the values that
the Hilbert function H(R,7) takes, we see that they are a bit messy for small
i, and then are described by a polynomial in ¢ for sufficiently large i. This
polynomial is called the Hilbert polynomial.

The special case of Theorem 1.1 where R = k[z1,...,2y]/] and we use the
Z-grading where all z; have degree 1, says for any finitely generated Z-graded

R-module that
P(M, )

(1 _ )\)nL
for some finite sum P(M,\) = >, ap A" with integral coefficients ay,.

Now F(M,\) = Yo, H(M, AT and 1/(1 = X)™ = 3.0 ((FmIN, so
F(M,X\) =3 502nan ('7+m11))\j+h and

F(M,\) =

m—
t—h+m-—1
H(M,i) = .
(or.0) =S ("0
h<i
This shows that for sufficiently large i (namely, for i > max{hla; # 0})
we have H(M,i) = p(i), where p(i) is the polynomial p(i) = ", an (1_};:1’1‘_1).

This is the Hilbert polynomial.

We see that the leading coefficient of the Hilbert polynomial is (>, ap)/(m—
DI IfY7, ap = 0, then P(M, \) has a factor (1—\) and we can first simplify the
expression for F(M,\). This shows that if the Hilbert polynomial has degree
d, then its leading coefficient (3, ay)/d! is an integer divided by d!.

1.8 Properties of the Hilbert polynomial

The degree of the Hilbert polynomial is the dimension of X.

Thus, for a finite set the Hilbert polynomial will be a constant, namely the
size of the set.



For a curve the Hilbert polynomial is linear, say of the form ai + b, and the
value 1 — b is called the arithmetic genus of the curve.

A third invariant that can be read off from the Hilbert polynomial is the
degree of the variety. If a projective variety X has dimension d and lives in P™
then a general linear subspace of dimension m — d will hit X in finitely many
points, and the number of points is called the degree of X. Now if X has degree
¢, the leading coefficient of the Hilbert polynomial will be ¢/d!.

Let us do an example. If X is a conic in the plane, then we expect to see
dimension 1, genus 0, degree 2, so the Hilbert polynomial should be 2¢ + 1.
And for X given by 22 + y? = 22 we find Hilbert function (1 —72)/(1 —T)3 =
1+ 3T +5T% 4+ 772 + ..., indeed with Hilbert polynomial 2i + 1.

Or, with X a cubic curve in the plane we expect dimension 1, genus 1, degree
3, so the Hilbert polynomial should be 3i. And for X given by % + ¢34+ 23 =0
we find Hilbert function (1-73)/(1-T)3 = 1+3T+6T%+9T3+..., as expected.

1.9 Dimension

Above we said that the degree of the Hilbert polynomial equals the dimension
of the variety. Let us prove this for varieties embedded in a projective space
P

As definition of dimension we use: a variety X embedded in P™ has dimen-
sion d when there is a linear subspace of projective dimension n —d — 1 in P™
disjoint from X while all linear subspaces of projective dimension n — d meet
X.

So, let U be a linear subspace of projective dimension n — d — 1 disjoint
from X. The quotient space P™/U is a projective space P?. We find a map
7: X — P? by sending # € X to the (n — d)-space spanned by z and U. This
map is onto, since no (n — d)-space is disjoint from X. Now 7* is an injection of
k[Xo, ..., X4] into the coordinate ring R of X, so H(R,i) > (Hf) for all 4, and
the Hilbert polynomial of X has degree not less than d.

Now conversely. This time we use as definition of dimension: the transcen-
dence degree of its function field over k. (In the projective setting we can take
as the function field the homogeneous part of degree 0 of the quotient field of
R.)

Let S be the isomorphic image of k[Xy, ..., X4] in R. Now R is finitely
generated as S-module because R and S have the same transcendence degree
over k.

If R has generators y; of degrees d; over S, so that every element of R can
be written in the form ) s;y; with s; € S, then we find a degree-preserving
surjection @S(~%) — R given by (85)5 — > 8Y;

It follows that H(R,i) < Y. (”dg‘if')7 and the Hilbert polynomial of X has
degree not larger than d. O



