
1 Hilbert function

1.1 Graded rings

Let G be a commutative semigroup. A commutative ring R is called G-graded
when it has a (weak) direct sum decomposition R =

∑
i∈G Ri (that is, the Ri

are additive subgroups, and every element r of R can be written in a unique way
as finite sum r = r1 + ... + rm where the rj are nonzero and belong to distinct
Ri) and moreover RiRj ⊆ Ri+j .

Elements that belong to one of the Ri are called homogeneous. The rj that
occur in the unique representation of r are called the homogeneous components
of r.

Exercise Give an example of a graded commutative ring R that has an
identity element 1 that is not homogeneous. Show that this cannot happen when
R is N-graded.

Now let G be a commutative monoid. A commutative ring R with identity
1 is called G-graded when it is G-graded as commutative ring, and moreover
1 ∈ R0, where 0 is the zero element of G.

Clearly, if H is a monoid containing G, and R is G-graded, then R is also
H-graded.

Example A polynomial ring R = k[x1, ..., xm] is N-graded (and therefore
also Z-graded): Take for Ri the set of all polynomials that are homogeneous of
total degree i. It is also Nm-graded: Take for Ri the set of all polynomials that
are homogeneous of multidegree i.

1.2 Graded modules

Let R be G-graded, and let H be a monoid containing G. An R-module M is
called H-graded when it has a (weak) direct sum decomposition M =

∑
i∈H Mi

such that RiMj ⊆ Mi+j .
For example, it is natural to work with N-graded rings and Z-graded mod-

ules. Or perhaps Nn-graded rings and Zn-graded modules.
An important special case of a graded R-module, is R itself, but with shifted

grading: put M = R and Mj = Rh+j . Let us call this module R(h).
A submodule N of M is called a graded submodule when it is generated by

the intersections Ni = N ∩Mi. (Then it is called homogeneous.) If this is the
case, then the quotient module M/N is graded, with grading (M/N)i = Mi/Ni.

Example In k[x, y, z] the ideal (x2 + y3 + z5) will be homogeneous if we
choose the grading that assigns degrees 15, 10, 6 to x, y, z, respectively.

1.3 Hilbert function

Consider the situation of a G-graded k-algebra R: all Ri are vector spaces over
k. Given an H-graded R-module M , put

F (M,λ) =
∑
i∈H

H(M, i)λi

where H(M, i) = dimkMi.
The function H(M, .) from H to N is called the Hilbert function of M .
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Theorem 1.1 Suppose R is finitely generated by homogeneous elements r1, ...,
rs of degrees g1, ..., gs, respectively. If M is finitely generated H-graded R-
module, where H is an additive group, then

F (M,λ) =
P (M,λ)∏s

j=1(1− λgj )

for some finite sum P (M,λ) =
∑

h ahλh with integral coefficients ah.

Proof: Induction on the number s of generators of the k-algebra R. If s = 0,
then R = R0 = k, and F (M,λ) has only finitely many terms.

If s > 0, then let r be one of the generators of R (of degree g, say). The
module M/rM is a finitely generated S-module, where S is the subring of R
generated by the generators different from r. By induction F (M/rM,λ) has a
representation of the required form.

Next, consider Kr = {m ∈ M | rm = 0}. Again, this is a finitely generated
S-module, so F (Kr, λ) has the required form.

Finally, all will be proved if we show that

F (M,λ) =
F (M/rM, λ)− λgF (Kr, λ)

1− λg

But that is the same as saying that

F (M,λ)− F (M/rM,λ) = λg(F (M,λ)− F (Kr, λ))

that is,
dim(rM)j+g = dim(M)j − dim(Kr)j

and that is clear (since i + g = j + g implies i = j). 2

1.4 Examples

Below, R will be N-graded.
Consider R = k. We have F (R, λ) = 1.
Consider R = k[x]. We have F (R, λ) = 1 + λ + λ2 + ... = 1/(1− λ).
Consider R = k[x, y]. We have F (R, λ) = 1+2λ+3λ2+4λ3+... = 1/(1−λ)2.
And indeed, for R = k[x1, ..., xm] we have F (R, λ) = 1/(1− λ)m.
Consider R = k[x, y]/(xy). We have F (R, λ) = 1 + 2λ + 2λ2 + 2λ3 + ... =

(1 + λ)/(1− λ).
Consider R = k[x, y]/(x2 +y2). We have F (R, λ) = 1+2λ+2λ2 +2λ3 + ... =

(1 + λ)/(1− λ).

1.5 Automated examples

When the rings are more complicated, it is easier to let a computer algebra pack-
age do the work. Fetch Macaulay from http://www.math.uiuc.edu/Macaulay2.

First repeat the above calculation. In the above the field k does not play
any role. Let us take k = F101 = Z/101Z.
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% ./M2
Macaulay 2, version 0.9
i1 : R=ZZ/101[x,y]
o1 = R
o1 : PolynomialRing

i2 : Q=R/ideal(x^2+y^2)
o2 = Q
o2 : QuotientRing

i3 : poincare Q
2

o3 = 1 - $T
o3 : ZZ[ZZ^1]

The output of the function poincare is the numerator of the righthand side
fraction in the theorem above. So, 1− T 2 really means (1− T 2)/(1− T )2 since
we have two variables, both of degree 1. And that is indeed the same as the
(1 + T )/(1− T ) that we found above.

1.6 Geometric significance

Given a projective variety X, with homogeneous coordinate ring R = k[X0, ..., Xm]/I(X),
the dimension H(R, i) = dimRi tells us how many independent functions of de-
gree i there are on X.

That gives geometric information. For example, if X is a set of three points
in the plane, then H(R, 1) will be 2 if the three points are collinear, and 3
otherwise. On the other hand, H(R,n) will be 3 for n > 1.

Let us confirm using Macaulay. We expect to find either 1+2λ+3λ2+3λ3+...
or 1+3λ+3λ2 +3λ3 + ..., that is, either (1+λ+λ2)/(1−λ) or (1+2λ)/(1−λ).

i1 : R=ZZ/101[x,y,z]
o1 = R
o1 : PolynomialRing

i2 : S=ideal(x,y)*ideal(x,z)*ideal(x,y+z)
3 2 2 2 2 2 2 2 2

o2 = ideal (x , x y + x z, x z, x*y*z + x*z , x y, x*y + x*y*z, x*y*z, y z + y*z )
o2 : Ideal of R

i3 : T=radical S
2 2

o3 = ideal (x, y z + y*z )
o3 : Ideal of R

i4 : Q=R/T
o4 = Q
o4 : QuotientRing

i5 : poincare Q
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3 4
o5 = 1 - $T - $T + $T
o5 : ZZ[ZZ^1]

That was the case of three collinear points, and we find (1−T−T 3+T 4)/(1−
T )3 = (1 + T + T 2)/(1− T ), as expected. And for three non-collinear points:

...
i2 : S=ideal(x,y)*ideal(x,z)*ideal(y,z)
...

2 3
o5 = 1 - 3$T + 2$T

That is, we find (1− 3T 2 + 2T 3)/(1− T )3 = (1 + 2T )/(1− T ), as expected.

Exercise Show that if X is a set of n points in projective space, then
H(R, i) = n for sufficiently large i. How large?

1.7 The Hilbert polynomial

Consider R = k[x1, ..., xm]/I(X) with N-grading. Looking at the values that
the Hilbert function H(R, i) takes, we see that they are a bit messy for small
i, and then are described by a polynomial in i for sufficiently large i. This
polynomial is called the Hilbert polynomial.

The special case of Theorem 1.1 where R = k[x1, ..., xm]/I and we use the
Z-grading where all xi have degree 1, says for any finitely generated Z-graded
R-module that

F (M,λ) =
P (M,λ)
(1− λ)m

for some finite sum P (M,λ) =
∑

h ahλh with integral coefficients ah.
Now F (M,λ) =

∑
i≥i0

H(M, i)λi and 1/(1 − λ)m =
∑

j≥0

(
j+m−1

m−1

)
λj , so

F (M,λ) =
∑

j≥0

∑
h ah

(
j+m−1

m−1

)
λj+h and

H(M, i) =
∑
h≤i

ah

(
i− h + m− 1

m− 1

)
.

This shows that for sufficiently large i (namely, for i ≥ max{h|ah 6= 0})
we have H(M, i) = p(i), where p(i) is the polynomial p(i) =

∑
h ah

(
i−h+m−1

m−1

)
.

This is the Hilbert polynomial.

We see that the leading coefficient of the Hilbert polynomial is (
∑

h ah)/(m−
1)!. If

∑
h ah = 0, then P (M,λ) has a factor (1−λ) and we can first simplify the

expression for F (M,λ). This shows that if the Hilbert polynomial has degree
d, then its leading coefficient (

∑
h ah)/d! is an integer divided by d!.

1.8 Properties of the Hilbert polynomial

The degree of the Hilbert polynomial is the dimension of X.

Thus, for a finite set the Hilbert polynomial will be a constant, namely the
size of the set.
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For a curve the Hilbert polynomial is linear, say of the form ai + b, and the
value 1− b is called the arithmetic genus of the curve.

A third invariant that can be read off from the Hilbert polynomial is the
degree of the variety. If a projective variety X has dimension d and lives in Pm

then a general linear subspace of dimension m − d will hit X in finitely many
points, and the number of points is called the degree of X. Now if X has degree
c, the leading coefficient of the Hilbert polynomial will be c/d!.

Let us do an example. If X is a conic in the plane, then we expect to see
dimension 1, genus 0, degree 2, so the Hilbert polynomial should be 2i + 1.
And for X given by x2 + y2 = z2 we find Hilbert function (1− T 2)/(1− T )3 =
1 + 3T + 5T 2 + 7T 3 + ..., indeed with Hilbert polynomial 2i + 1.

Or, with X a cubic curve in the plane we expect dimension 1, genus 1, degree
3, so the Hilbert polynomial should be 3i. And for X given by x3 + y3 + z3 = 0
we find Hilbert function (1−T 3)/(1−T )3 = 1+3T +6T 2+9T 3+..., as expected.

1.9 Dimension

Above we said that the degree of the Hilbert polynomial equals the dimension
of the variety. Let us prove this for varieties embedded in a projective space
Pn.

As definition of dimension we use: a variety X embedded in Pn has dimen-
sion d when there is a linear subspace of projective dimension n− d− 1 in Pn

disjoint from X while all linear subspaces of projective dimension n − d meet
X.

So, let U be a linear subspace of projective dimension n − d − 1 disjoint
from X. The quotient space Pn/U is a projective space Pd. We find a map
π : X → Pd by sending x ∈ X to the (n− d)-space spanned by x and U . This
map is onto, since no (n−d)-space is disjoint from X. Now π∗ is an injection of
k[X0, ..., Xd] into the coordinate ring R of X, so H(R, i) ≥

(
i+d
d

)
for all i, and

the Hilbert polynomial of X has degree not less than d.

Now conversely. This time we use as definition of dimension: the transcen-
dence degree of its function field over k. (In the projective setting we can take
as the function field the homogeneous part of degree 0 of the quotient field of
R.)

Let S be the isomorphic image of k[X0, ..., Xd] in R. Now R is finitely
generated as S-module because R and S have the same transcendence degree
over k.

If R has generators yj of degrees dj over S, so that every element of R can
be written in the form

∑
sjyj with sj ∈ S, then we find a degree-preserving

surjection ⊕S(−dj) → R given by (sj)j 7→
∑

sjyj .
It follows that H(R, i) ≤

∑(
i+d−dj

d

)
, and the Hilbert polynomial of X has

degree not larger than d. 2
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