Mordell's theorem

1 Mordell's theorem

Theorem 1.1 [Mordell] Let C be a nonsingular cubic curve with rational coefficients. Then the group Γ of rational points on C is finitely generated.

That is, there are rational points $P_1, ..., P_t$ on C such that every rational point on C is of the form $n_1P_1 + ... + n_tP_t$ with $n_i \in \mathbb{Z}$.

Viewing Γ as direct product of r copies of \mathbf{Z} $(r \geq 0)$ and some cyclic groups of prime power order, we can find generators $P_1, ..., P_r$ of infinite order and $Q_1, ..., Q_s$ of finite order, where Q_i has order $p_i^{e_i}$ for some prime p_i , such that the representation $P = n_1 P_1 + ... + n_r P_r + m_1 Q_1 + ... + m_s Q_s$ is unique $(n_i \in \mathbf{Z}, m_i \in \mathbf{Z}/p_i^{e_i}\mathbf{Z})$.

The number r is called the *rank* of C.

The group Γ is finite if and only if r = 0.

It is easy to find the points of finite order.

Theorem 1.2 [Nagell-Lutz] Let C be a nonsingular cubic curve with integral coefficients and equation $y^2 = x^3 + ax^2 + bx + c$, provided with the zero point $\mathcal{O} = (0, 1, 0)$. Then the points of finite order on C have integral coordinates. If (x, y) has finite order, then either y = 0, or y|D, where $D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$ is the discriminant of the curve.

In the general case where C has rational coefficients, one can use a coordinate transformation $x' = d^2x$, $y' = d^3y$ to make the coefficients integral.

Note that there may well be points (x, y) with y|D that do not have finite order. (But the points (x, y) with y = 0 have order 2.)

The torsion group (subgroup of Γ consisting of the elements of finite order) has restricted shape: there are only 15 possibilities.

Theorem 1.3 [Mazur] The torsion group is one of $\mathbf{Z}/n\mathbf{Z}$ ($1 \le n \le 10$ or n = 12) or $\mathbf{Z}/2m\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ ($1 \le m \le 4$).

So it is easy to find the Q_i . There is no known algorithm to find the P_i , but there are results for very many special cases.

It is unknown whether the rank r is bounded. Examples with larger r are being found every year. The current champion is the curve

 $y^2 + xy + y = x^3 - x^2 - 20067762415575526585033208209338542750930230312178956502x +$

34481611795030556467032985690390720374855944359319180361266008296291939448732243429 with rank 28 found by Elkies (2006). For the record ranks for given torsion, see http://web.math.hr/~duje/tors/tors.html.

2 Proof of Mordell's theorem

After a change of coordinates we may assume the curve has the equation $y^2 = x^3 + ax^2 + bx + c$ with integral a, b, c.

Define the *height* of a rational number $r = \frac{m}{n}$ (with gcd(m, n) = 1) by

$$H(r) = H(\frac{m}{n}) = \max(|m|, |n|)$$

and the height of a rational point P = (x, y) on C by

$$H(P) = H(x).$$

Also define $H(\mathcal{O}) = 1$. Let the *logarithmic height* of P be $h(P) := \log H(P)$.

The theorem is an easy consequence of four lemmas, the first three of which use the height function to describe the growth of coordinates under addition.

Lemma 2.1 For any constant M, the set $\{P \in \Gamma \mid h(P) \leq M\}$ is finite.

Lemma 2.2 Let $P_0 \in \Gamma$ be fixed. There is a constant $\kappa_0 = \kappa_0(a, b, c, P_0)$ such that $h(P + P_0) \leq 2h(P) + \kappa_0$ for all $P \in \Gamma$.

Lemma 2.3 There is a constant $\kappa = \kappa(a, b, c)$ such that $h(2P) \ge 4h(P) - \kappa$ for all $P \in \Gamma$.

The fourth lemma is the difficult part.

Lemma 2.4 The subgroup 2Γ has finite index in Γ .

Now the proof of Mordell's theorem is straightforward from these lemmas. Pick representatives $Q_1, ..., Q_n$ of the cosets of 2Γ in Γ . Then for arbitrary $P \in \Gamma$ we can write

$$P = 2P_1 + Q_{i_1}$$

and then

$$P_1 = 2P_2 + Q_{i_2}$$
$$\dots$$
$$P_{m-1} = 2P_m + Q_{i_m}.$$

Let $\kappa' = \kappa'(a, b, c)$ be the largest of the constants $\kappa_0(a, b, c, -Q_i)$. Then

$$h(P-Q_i) \leq 2h(P) + \kappa'$$
 for all P, Q_i

and

$$4h(P_j) \le h(2P_j) + \kappa = h(P_{j-1} - Q_{i_j}) + \kappa \le 2h(P_{j-1}) + \kappa + \kappa'$$

so that $h(P_m) \leq \kappa + \kappa'$ for m sufficiently large. Now

$$\{Q_1, \dots, Q_m\} \cup \{P \mid h(P) \le \kappa + \kappa'\}$$

is a finite generating set for Γ .

3 Proof of Lemmas 1-3

Lemma 1 is clear.

Lemma 2

For Lemma 2, first observe that the denominator of $x^3 + ax^2 + bx + c$ is that of x^3 and equals that of y^2 , so that a point P = (x, y) of the curve satisfies $x = \frac{m}{e^2}$ and $y = \frac{n}{e^3}$ where m, n, e are integers with gcd(m, e) = gcd(n, e) = 1. It follows that

$$m \le H(P), \ e \le H(P)^{1/2}, \ n \le K.H(P)^{3/2},$$

where that last inequality is from substitution of $x = \frac{m}{e^2}$ and $y = \frac{n}{e^3}$ in $y^2 = x^3 + ax^2 + bx + c$ to get $n^2 = m^3 + am^2e^2 + bme^4 + ce^6 \le (1 + |a| + |b| + |c|)H(P)^3$.

Now let P = (x, y) and $P_0 = (x_0, y_0)$ and $P + P_0 = (\xi, \eta)$. We want to bound $h(P + P_0)$ in terms of h(P). (W.l.o.g. $P \neq \mathcal{O}, P_0, -P_0$, those finitely many points are handled by increasing κ_0 later. Now all points are finite and distinct.) The line $y = \lambda x + \mu$ hits the curve $y^2 = x^3 + ax^2 + bx + c$ in three points with x-coordinates satisfying $(\lambda x + \mu)^2 = x^3 + ax^2 + bx + c$ and their sum is minus the coefficient of x^2 . It follows that $x + x_0 + \xi = \lambda^2 - a$, where $\lambda = \frac{y-y_0}{x-x_0}$. Now

$$\xi = \left(\frac{y - y_0}{x - x_0}\right)^2 - a - x_0 - x = \frac{Ay + Bx^2 + Cx + D}{Ex^2 + Fx + G}$$

for certain integers A, B, C, D, E, F, G independent of x (where y^2 was replaced by $x^3 + ax^2 + bx + c$, cancelling the x^3 term). Thus,

$$H(P + P_0) = H(\xi) \le \max(|Ane + Bm^2 + Cme^2 + De^4|, |Em^2 + Fme^2 + Ge^4|)$$
$$\le \max(|AK| + |B| + |C| + |D|, |E| + |F| + |G|).H(P)^2$$

and after taking logarithms

$$h(P+P_0) \le 2h(P) + \kappa_0.$$

Lemma 3

For Lemma 3, put P = (x, y) and $2P = (\xi, \eta)$. W.l.o.g. $2P \neq \mathcal{O}$. As before we get $2x + \xi = \lambda^2 - a$, where $\lambda = \frac{dY}{dX}(P) = \frac{3x^2 + 2ax + b}{2y}$, so that

$$\xi = \lambda^2 - a - 2x = \frac{x^4 + \dots}{4x^3 + \dots}$$

and numerator and denominator here have no common roots since the curve is nonsingular.

It suffices to prove the lower bound in

Lemma 3.1 Let $f(x), g(x) \in \mathbf{Z}[x]$ be two polynomials without common roots (in C). Let d be the maximum of their degrees. Then, if $r \in \mathbf{Q}$, $g(r) \neq 0$ then

$$dh(r) - \kappa \le h(\frac{f(r)}{g(r)}) \le dh(r) + \kappa$$

for some constant κ depending on f, g.

Proof Since gcd(f,g) = 1 there are $u, v \in \mathbf{Q}(x)$ with u(x)f(x) + v(x)g(x) = 1. For $r = \frac{m}{n}$ (with gcd(m, n) = 1) let $F(r) = n^d f(r)$ and $G(r) = n^d g(r)$ so that F(r) and G(r) are integers. Now $u(r)F(r) + v(r)G(r) = n^d$.

Let A be the l.c.m. of the denominators of the coefficients of u, v and let e be the maximum of their degrees. Then $An^e u(r)$ and $An^e v(r)$ are integers, and hence $gcd(F(r), G(r))|An^{d+e}$. On the other hand, if say $f(x) = a_0x^d + \dots + a_d$ has degree d, then $F(r) = a_0m^d + \dots + a_dn^d$ and $gcd(n, F(r))|a_0$ and $gcd(F(r), G(r))|Aa_0^{d+e}.$

Put $R := Aa_0^{d+e}$. Now

$$H(\frac{f(r)}{g(r)}) = H(\frac{F(r)}{G(r)}) \ge \frac{1}{R}\max(|F(r)|, |G(r)|)$$

gives

$$\frac{H(\frac{f(r)}{g(r)})}{H(r)^d} \ge \frac{\max(|F(r)|, |G(r)|)}{R\max(|m|^d, |n|^d)} = \frac{\max(|f(r)|, |g(r)|)}{R\max(|r|^d, 1)}$$

The righthand side is bounded below by a positive constant C (since there is a finite nonzero limit when r tends to infinity, and a nonzero minimum on a compact piece since f and g do not vanish simultaneously. So

$$H(\frac{f(r)}{g(r)}) \ge C.H(r)^d$$

and

$$h(\frac{f(r)}{g(r)}) \ge dh(r) - \kappa$$

as desired. The other inequality is easier (and not needed).

2Γ has finite index in Γ 4

Remains to prove Lemma 4. Since that is difficult, we only do a special case, namely that where $x^3 + ax^2 + bx + c$ has a rational root x_0 , that is, where there is a rational point $(x_0, 0)$ of order 2. Change coordinates so that this point becomes (0, 0). Now the equation is $y^2 = x^3 + ax^2 + bx$, that is, c = 0.

The discriminant becomes $D = b^2(a^2 - 4b)$, and since the curve is nonsingular. this is nonzero.

Play with two curves: C defined by $y^2 = x^3 + ax^2 + bx$ and \overline{C} defined by

 $y^2 = x^3 + \bar{a}x^2 + \bar{b}x$, where $\bar{a} = -2a$ and $\bar{b} = a^2 - 4b$. Now $\bar{a} = 4a$ and $\bar{b} = \bar{a}^2 - 4\bar{b} = 16b$ so that \bar{C} becomes the curve $y^2 = x^3 + 4ax^2 + 16bx$, and $(x, y) \in \bar{C}$ iff $(\frac{1}{4}x, \frac{1}{8}y) \in C$.

Define $\phi: C \to \overline{C}$ by $(x, y) \mapsto (\overline{x}, \overline{y})$ with $\overline{x} = x + a + \frac{b}{x} = \frac{y^2}{x^2}$ and $\overline{y} = y(1 - \frac{b}{x^2})$ for $x \neq 0$, and map both (0, 0) and \mathcal{O} to $\overline{\mathcal{O}}$. Then ϕ is a group homomorphism with kernel $\{(0, 0), \mathcal{O}\}$.

Define $\psi : \overline{C} \to C$ as the composition of $\overline{\phi}$ and $(x, y) \mapsto (\frac{1}{4}x, \frac{1}{8}y)$. Then ψ is a group homomorphism with kernel $\{(0, 0), \overline{O}\}$.

The composition of ϕ and ψ is the map $P \mapsto 2P$ on C.

All these statements follow by straightforward computation.

The desired result that 2Γ has finite index in Γ will follow from the two facts that $\phi\Gamma$ has finite index in $\overline{\Gamma}$, and $\psi\overline{\Gamma}$ has finite index in Γ . By symmetry it suffices to show one of these, say the latter.

We need a description of $\phi\Gamma$. We have

(i) $\overline{\mathcal{O}} \in \phi \Gamma$.

(ii) $(0,0) \in \phi\Gamma$ iff $\bar{b} = a^2 - 4b$ is a square.

(iii) $(\bar{x}, \bar{y}) \in \phi \Gamma$ for $\bar{x} \neq 0$ iff \bar{x} is a square in **Q**.

(Indeed, (i) is clear. We have $\bar{x} = \frac{y^2}{x^2}$, so \bar{x} is a square, and $\bar{x} = 0$ iff y = 0, that is, $x(x^2 + ax + b) = 0$ for some rational point (x, y) with $x \neq 0$ on C, that is, if $a^2 - 4b$ is a square. Finally, if $\bar{x} = r^2$, then the point (x, y) with $x = \frac{1}{2}(r^2 - a + \frac{\bar{y}}{r})$ and y = xr lies on C and maps to (\bar{x}, \bar{y}) .)

Let \mathbf{Q}^* be the multiplicative group of the nonzero rationals, and \mathbf{Q}^{*2} the subgroup of squares. Define a map $\alpha : \Gamma \to \mathbf{Q}^*/\mathbf{Q}^{*2}$ by $P = (x, y) \mapsto x$ for $x \neq 0, (0, 0) \mapsto b, \mathcal{O} \mapsto 1$.

Now α is a group homomorphism: First of all, it maps the unit element \mathcal{O} to the unit element 1. Suppose $P_1+P_2+P_3 = \mathcal{O}$. We show that $\alpha(P_1)\alpha(P_2)\alpha(P_3) = 1$. (And that suffices to prove that α is a homomorphism.) The points P_1, P_2, P_3 lie on a line $y = \lambda x + \mu$ and x_1, x_2, x_3 are roots of $(\lambda x + \mu)^2 = x^3 + ax^2 + bx$. The product of the roots is minus the constant term, that is, is μ^2 , so that $\alpha(P_1)\alpha(P_2)\alpha(P_3) = x_1x_2x_3 = \mu^2 = 1$ in $\mathbf{Q}^*/\mathbf{Q}^{*2}$. If $P_1 = (0,0)$ then $\mu = 0$ and x_2, x_3 are roots of $\lambda^2 x = x^2 + ax + b$ and $\alpha(P_1)\alpha(P_2)\alpha(P_3) = bx_2x_3 = b^2 = 1$ in $\mathbf{Q}^*/\mathbf{Q}^{*2}$. If $P_1 = \mathcal{O}$ then $P_2 = -P_3$ and $x_2 = x_3$ and $\alpha(P_1)\alpha(P_2)\alpha(P_3) = 1.x_2x_3 = 1$ in $\mathbf{Q}^*/\mathbf{Q}^{*2}$.

Next, the image of α is finite (and is contained in the set of divisors of b): Let $P = (x, y) = (\frac{m}{e^2}, \frac{n}{e^3})$ be a point of C. Then $\alpha(P) = \frac{m}{e^2} = m$ in $\mathbf{Q}^*/\mathbf{Q}^{*2}$. From $n^2 = m(m^2 + ame^2 + be^4)$ we see that each prime divisor p of m occurs to some even power in m, unless it also occurs (to an odd power) in $m^2 + ame^2 + be^4$ and hence in be^4 , and hence in b, since gcd(m, e) = 1.

Next, from the description of the image of ϕ (applied to ψ) it is clear that the kernel of α is precisely the image of ψ . Consequently, α induces an isomorphism from $\Gamma/\psi(\bar{\Gamma})$ to a subgroup of $\mathbf{Q}^*/\mathbf{Q}^{*2}$ contained in the subgroup of divisors of b. In particular, $\Gamma/\psi(\bar{\Gamma})$ is finite.