
1 Nullstellensatz

1.1 Finite generation

Let R be a commutative ring with 1.
An R-module is an abelian group M that admits left multiplication by

elements from R, where this multiplication is associative and distributive over
addition.

The module M is called module-generated over R by a subset N if each
element m ∈ M has a representation m =

∑
rini with ri ∈ R and ni ∈ N .

In other words, M is module-generated over R by a subset N if M is the
smallest R-submodule of M containing N .

The module M is called module-finite over R if M is module-generated over
R by a finite subset N .

Now let S be a commutative ring containing the ring R. The ring S is called
ring-generated over R by a subset T if each element s ∈ S has a representation
s =

∑
rizi with ri ∈ R and each zi a monomial over T , that is, of the form

te1
1 ...tem

m for certain t1, ..., tm ∈ T and nonnegative integers e1, ..., em.
In other words, S is ring-generated over R by a subset T if S is the smallest

subring of S containing R and T .
The ring S is called ring-finite over R if S is ring-generated over R by a

finite subset T .

For example, a finite-dimensional vector space V over a field k is module-
finite over k. And a polynomial ring k[x1, ..., xn] in finitely many variables is
ring-finite over k.

Lemma 1.1 Let R ⊆ S ⊆ T be commutative rings. If T is module-finite over
S, and S is module-finite over R, then T is module-finite over R.

Proof: Exercise. 2

1.2 Integrality

Let S be a commutative ring containing the commutative ring R. An element
s ∈ S is called integral over R if it satisfies a monic equation sn + a1s

n−1 + ... +
an = 0 with coefficients ai in R.

Proposition 1.2 Let S be a domain with subring R. Let T be the set of
elements in S that are integral over R. Then T is a subring of S containing R.

That T contains R is clear: r ∈ R satisfies the equation x− r = 0. That T
is a subring will follow from the following lemma.

Lemma 1.3 Let S be a domain with subring R. Let s ∈ S. Equivalent are:
(i) s is integral over R,
(ii) R[s] is module-finite over R,
(iii) there is a subring R′ of S containing R[s] that is module-finite over R.
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Proof: (i) implies (ii): an equation sn + a1s
n−1 + ... + an = 0 expresses sn

in terms of 1, s, ..., sn−1, so R[s] is module-generated by these finitely many
elements.

(ii) implies (iii): take R′ = R[s].
(iii) implies (i): Suppose R′ is module-generated over R by t1, ..., tn. Write

the products sti using these generators: sti =
∑

cijtj with cij ∈ R. Let A =
sI − C where I is the identity matrix and C = (cij). Then At = 0, where t is
the column vector (tj). In the quotient field of S we conclude that detA = 0,
and that is the required monic equation for s. 2

Proof of the proposition: if a, b ∈ S are integral over R, then R[a] is module-
finite over R, and R[a, b] is module-finite over R[a], so R[a, b] is module-finite
over R. Now let s be one of the elements a + b, a− b, ab. Take R′ = R[a, b] in
the above lemma to find that s is integral over R. That means we proved that
T is closed under addition, subtraction and multiplication. 2

1.3 Weak Nullstellensatz

Theorem 1.4 Let k be an algebraically closed field. Let I be an ideal of the
polynomial ring k[x1, ..., xn]. If 1 /∈ I, then V (I) 6= ∅.

In the proof of this theorem, we’ll need the following proposition.

Proposition 1.5 Let L be a field containing a field k. If L is ring-finite over
k, then L is module-finite over k.

Proof of the theorem: If I is made larger, V (I) gets smaller. So, it suffices
to show this for a maximal ideal I. If the ideal I is maximal, the quotient
L = k[x1, ..., xn]/I is a field. We have a natural embedding of k into L. If
this embedding is an isomorphism, then there are elements ai ∈ k that map
to the residue classes xi + I, i.e., have the property that xi − ai ∈ I. Now
I = (x1− a1, ..., xn − an) since the right hand side is a maximal ideal contained
in I. Consequently, V (I) = {(a1, ..., an)} is a single point, and therefore non-
empty.

Remains to show that the embedding of k into L really is an isomorphism.
This follows from Proposition 1.5. Indeed, let us identify k with its image in
L. In our situation L = k[x1, ..., xn]/I is ring-generated by the residue classes
xi + I, so by this proposition L is module-finite over k, and by Lemma 1.3
every element of L is integral (and in partiticular algebraic) over k. But k is
algebraically closed, so L = k. 2

Proof of the proposition: We have L = k[s1, ..., sn] for certain elements
s1, ..., sn ∈ L, and want to find a finite set module-generating L over k. Use
induction on n.

If n > 1 then put K = k(s1). Then L = K[s2, ..., sn], and by induction on n
we see that L is module-finite over K. If K is also module-finite over k, then L
is module-finite over k (by Lemma 1.1) and we are done.

So, suppose K = k(s1) is not module-finite over k, so that s1 is transcendent
over k, and K ' k(x). Let us write x instead of s1.

Since L is module-finite over K, every element of L is integral over K.
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Now look at the subring T of L consisting of the elements of L that are
integral over k[x]. If s ∈ L has equation sn+a1s

n−1+...+an = 0 with coefficients
ai in K = k(x), then these ai are rational expressions ai = fi(x)/gi(x). Let
h = h(x) be a common multiple of all denominators gi(x). Then hs satisfies
(hs)n + (ha1)(hs)n−1 + ... + hnan = 0, a monic equation with all coefficients in
k[x], so that hs ∈ T .

If we do this for s = s2, ..., sn, and take for h the least common multiple
(or just the product) of all denominators encountered for all sj , then we find a
single h such that hsj ∈ T for all j.

Let z be an arbitrary element of L. Since L = k[x, s2, ..., sn] this element
can be written as a sum of terms, each a monomial in the sj . It follows that
hNz ∈ T for sufficiently high exponent N .

Now that this holds for all elements z ∈ L, take a particular one, for example
z = 1/f where f ∈ k[x] is an irreducible polynomial not dividing h. Now if
hN/f ∈ T , then we have an equation (hN/f)m + c1(hN/f)m−1 + ... = 0 with
coefficients ci ∈ k[x]. Multiplying by fm−1 we find that hNm/f ∈ k[x]. But
that is false since f is irreducible and does not divide h.

So, the assumption that K = k(s1) is not module-finite over k leads to a
contradiction, and this finishes the n > 1 part of the proof by induction.

Remains to look at n = 1. Given is L = k[s]. To show that L is module-finite
over k.

Consider the map from k[x] onto k[s] sending x to s. Its kernel is some ideal
I, and k[x]/I ' k[s] = L.

If I 6= (0), then I = (g(x)) for some polynomial g(x) since k[x] is a PID.
W.l.o.g. g(x) is monic, and we see that s is integral over k because g(s) = 0,
and hence L is module-finite over k as desired.

And if I = (0), then L ' k[x], but k[x] is not a field since it does not contain
1/x.

This proves everything. 2

1.4 Nullstellensatz

Theorem 1.6 Let k be algebraically closed. Let I be an ideal in k[x1, ..., xn].
Then I(V (I)) = Rad(I). That is, if g ∈ k[x1, ..., xn] and g vanishes on V (f1, ..., fm),
then there is an N such that gN =

∑
cifi for certain ci ∈ k[x1, ..., xn].

Proof: Apply the Weak Nullstellensatz in n+1 dimensions: Look at the ideal
J = (f1, ..., fm, xn+1g− 1) in k[x1, ..., xn, xn+1]. Since V (J) = ∅, it follows that
1 ∈ J , i.e.,

1 =
∑

aifi + a.(xn+1g − 1)

for certain a, ai ∈ k[x1, ..., xn, xn+1]. Put xn+1 = 1/y and multiply by a power
of y to remove denominators:

yN =
∑

bifi + b.(g − y)

for certain b, bi ∈ k[x1, ..., xn, y]. Now put y = g. 2

One sees that for algebraically closed fields there is a 1-1 correspondence
between closed sets (sets of the form V (f1, ..., fm)) and radical ideals of k[x1, ..., xn]
(ideals I that equal their radical).
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