1 Nullstellensatz

1.1 Finite generation

Let R be a commutative ring with 1 .
An R-module is an abelian group M that admits left multiplication by elements from R, where this multiplication is associative and distributive over addition.

The module M is called module-generated over R by a subset N if each element $m \in M$ has a representation $m=\sum r_{i} n_{i}$ with $r_{i} \in R$ and $n_{i} \in N$.

In other words, M is module-generated over R by a subset N if M is the smallest R-submodule of M containing N.

The module M is called module-finite over R if M is module-generated over R by a finite subset N.

Now let S be a commutative ring containing the ring R. The ring S is called ring-generated over R by a subset T if each element $s \in S$ has a representation $s=\sum r_{i} z_{i}$ with $r_{i} \in R$ and each z_{i} a monomial over T, that is, of the form $t_{1}^{e_{1}} \ldots t_{m}^{e_{m}}$ for certain $t_{1}, \ldots, t_{m} \in T$ and nonnegative integers e_{1}, \ldots, e_{m}.

In other words, S is ring-generated over R by a subset T if S is the smallest subring of S containing R and T.

The ring S is called ring-finite over R if S is ring-generated over R by a finite subset T.

For example, a finite-dimensional vector space V over a field k is modulefinite over k. And a polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ in finitely many variables is ring-finite over k.

Lemma 1.1 Let $R \subseteq S \subseteq T$ be commutative rings. If T is module-finite over S, and S is module-finite over R, then T is module-finite over R.

Proof: Exercise.

1.2 Integrality

Let S be a commutative ring containing the commutative ring R. An element $s \in S$ is called integral over R if it satisfies a monic equation $s^{n}+a_{1} s^{n-1}+\ldots+$ $a_{n}=0$ with coefficients a_{i} in R.

Proposition 1.2 Let S be a domain with subring R. Let T be the set of elements in S that are integral over R. Then T is a subring of S containing R.

That T contains R is clear: $r \in R$ satisfies the equation $x-r=0$. That T is a subring will follow from the following lemma.

Lemma 1.3 Let S be a domain with subring R. Let $s \in S$. Equivalent are:
(i) s is integral over R,
(ii) $R[s]$ is module-finite over R,
(iii) there is a subring R^{\prime} of S containing $R[s]$ that is module-finite over R.

Proof: (i) implies (ii): an equation $s^{n}+a_{1} s^{n-1}+\ldots+a_{n}=0$ expresses s^{n} in terms of $1, s, \ldots, s^{n-1}$, so $R[s]$ is module-generated by these finitely many elements.
(ii) implies (iii): take $R^{\prime}=R[s]$.
(iii) implies (i): Suppose R^{\prime} is module-generated over R by t_{1}, \ldots, t_{n}. Write the products $s t_{i}$ using these generators: $s t_{i}=\sum c_{i j} t_{j}$ with $c_{i j} \in R$. Let $A=$ $s I-C$ where I is the identity matrix and $C=\left(c_{i j}\right)$. Then $A t=0$, where t is the column vector $\left(t_{j}\right)$. In the quotient field of S we conclude that $\operatorname{det} A=0$, and that is the required monic equation for s.

Proof of the proposition: if $a, b \in S$ are integral over R, then $R[a]$ is modulefinite over R, and $R[a, b]$ is module-finite over $R[a]$, so $R[a, b]$ is module-finite over R. Now let s be one of the elements $a+b, a-b, a b$. Take $R^{\prime}=R[a, b]$ in the above lemma to find that s is integral over R. That means we proved that T is closed under addition, subtraction and multiplication.

1.3 Weak Nullstellensatz

Theorem 1.4 Let k be an algebraically closed field. Let I be an ideal of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$. If $1 \notin I$, then $V(I) \neq \emptyset$.

In the proof of this theorem, we'll need the following proposition.
Proposition 1.5 Let L be a field containing a field k. If L is ring-finite over k, then L is module-finite over k.

Proof of the theorem: If I is made larger, $V(I)$ gets smaller. So, it suffices to show this for a maximal ideal I. If the ideal I is maximal, the quotient $L=k\left[x_{1}, \ldots, x_{n}\right] / I$ is a field. We have a natural embedding of k into L. If this embedding is an isomorphism, then there are elements $a_{i} \in k$ that map to the residue classes $x_{i}+I$, i.e., have the property that $x_{i}-a_{i} \in I$. Now $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ since the right hand side is a maximal ideal contained in I. Consequently, $V(I)=\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$ is a single point, and therefore nonempty.

Remains to show that the embedding of k into L really is an isomorphism. This follows from Proposition 1.5. Indeed, let us identify k with its image in L. In our situation $L=k\left[x_{1}, \ldots, x_{n}\right] / I$ is ring-generated by the residue classes $x_{i}+I$, so by this proposition L is module-finite over k, and by Lemma 1.3 every element of L is integral (and in partiticular algebraic) over k. But k is algebraically closed, so $L=k$.

Proof of the proposition: We have $L=k\left[s_{1}, \ldots, s_{n}\right]$ for certain elements $s_{1}, \ldots, s_{n} \in L$, and want to find a finite set module-generating L over k. Use induction on n.

If $n>1$ then put $K=k\left(s_{1}\right)$. Then $L=K\left[s_{2}, \ldots, s_{n}\right]$, and by induction on n we see that L is module-finite over K. If K is also module-finite over k, then L is module-finite over k (by Lemma 1.1) and we are done.

So, suppose $K=k\left(s_{1}\right)$ is not module-finite over k, so that s_{1} is transcendent over k, and $K \simeq k(x)$. Let us write x instead of s_{1}.

Since L is module-finite over K, every element of L is integral over K.

Now look at the subring T of L consisting of the elements of L that are integral over $k[x]$. If $s \in L$ has equation $s^{n}+a_{1} s^{n-1}+\ldots+a_{n}=0$ with coefficients a_{i} in $K=k(x)$, then these a_{i} are rational expressions $a_{i}=f_{i}(x) / g_{i}(x)$. Let $h=h(x)$ be a common multiple of all denominators $g_{i}(x)$. Then $h s$ satisfies $(h s)^{n}+\left(h a_{1}\right)(h s)^{n-1}+\ldots+h^{n} a_{n}=0$, a monic equation with all coefficients in $k[x]$, so that $h s \in T$.

If we do this for $s=s_{2}, \ldots, s_{n}$, and take for h the least common multiple (or just the product) of all denominators encountered for all s_{j}, then we find a single h such that $h s_{j} \in T$ for all j.

Let z be an arbitrary element of L. Since $L=k\left[x, s_{2}, \ldots, s_{n}\right]$ this element can be written as a sum of terms, each a monomial in the s_{j}. It follows that $h^{N} z \in T$ for sufficiently high exponent N.

Now that this holds for all elements $z \in L$, take a particular one, for example $z=1 / f$ where $f \in k[x]$ is an irreducible polynomial not dividing h. Now if $h^{N} / f \in T$, then we have an equation $\left(h^{N} / f\right)^{m}+c_{1}\left(h^{N} / f\right)^{m-1}+\ldots=0$ with coefficients $c_{i} \in k[x]$. Multiplying by f^{m-1} we find that $h^{N m} / f \in k[x]$. But that is false since f is irreducible and does not divide h.

So, the assumption that $K=k\left(s_{1}\right)$ is not module-finite over k leads to a contradiction, and this finishes the $n>1$ part of the proof by induction.

Remains to look at $n=1$. Given is $L=k[s]$. To show that L is module-finite over k.

Consider the map from $k[x]$ onto $k[s]$ sending x to s. Its kernel is some ideal I, and $k[x] / I \simeq k[s]=L$.

If $I \neq(0)$, then $I=(g(x))$ for some polynomial $g(x)$ since $k[x]$ is a PID. W.l.o.g. $g(x)$ is monic, and we see that s is integral over k because $g(s)=0$, and hence L is module-finite over k as desired.

And if $I=(0)$, then $L \simeq k[x]$, but $k[x]$ is not a field since it does not contain $1 / x$.

This proves everything.

1.4 Nullstellensatz

Theorem 1.6 Let k be algebraically closed. Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then $I(V(I))=\operatorname{Rad}(I)$. That is, if $g \in k\left[x_{1}, \ldots, x_{n}\right]$ and g vanishes on $V\left(f_{1}, \ldots, f_{m}\right)$, then there is an N such that $g^{N}=\sum c_{i} f_{i}$ for certain $c_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$.
Proof: Apply the Weak Nullstellensatz in $n+1$ dimensions: Look at the ideal $J=\left(f_{1}, \ldots, f_{m}, x_{n+1} g-1\right)$ in $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Since $V(J)=\emptyset$, it follows that $1 \in J$, i.e.,

$$
1=\sum a_{i} f_{i}+a .\left(x_{n+1} g-1\right)
$$

for certain $a, a_{i} \in k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Put $x_{n+1}=1 / y$ and multiply by a power of y to remove denominators:

$$
y^{N}=\sum b_{i} f_{i}+b \cdot(g-y)
$$

for certain $b, b_{i} \in k\left[x_{1}, \ldots, x_{n}, y\right]$. Now put $y=g$.
One sees that for algebraically closed fields there is a 1-1 correspondence between closed sets (sets of the form $V\left(f_{1}, \ldots, f_{m}\right)$) and radical ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ (ideals I that equal their radical).

