1 Nullstellensatz

1.1 Finite generation

Let R be a commutative ring with 1.

An R-module is an abelian group M that admits left multiplication by
elements from R, where this multiplication is associative and distributive over
addition.

The module M is called module-generated over R by a subset N if each
element m € M has a representation m = > r;n; with r;, € R and n; € N.

In other words, M is module-generated over R by a subset IV if M is the
smallest R-submodule of M containing N.

The module M is called module-finite over R if M is module-generated over
R by a finite subset N.

Now let S be a commutative ring containing the ring R. The ring S is called
ring-generated over R by a subset T if each element s € S has a representation
s =Y riz; with ; € R and each z; a monomial over T, that is, of the form
t7t...tem for certain tq, ..., ¢, € T and nonnegative integers ey, ..., €n,.

In other words, S is ring-generated over R by a subset T if S is the smallest
subring of S containing R and T.

The ring S is called ring-finite over R if S is ring-generated over R by a
finite subset 7.

For example, a finite-dimensional vector space V over a field k is module-
finite over k. And a polynomial ring k[z1,...,2,] in finitely many variables is
ring-finite over k.

Lemma 1.1 Let R C S C T be commutative rings. If T is module-finite over
S, and S is module-finite over R, then T is module-finite over R.

Proof: Exercise. O

1.2 Integrality

Let S be a commutative ring containing the commutative ring R. An element
s € S is called integral over R if it satisfies a monic equation s" +a;s" ™! + ... +
an, = 0 with coefficients a; in R.

Proposition 1.2 Let S be a domain with subring R. Let T be the set of
elements in S that are integral over R. Then T is a subring of S containing R.

That T contains R is clear: r € R satisfies the equation x —r = 0. That T
is a subring will follow from the following lemma.

Lemma 1.3 Let S be a domain with subring R. Let s € S. Equivalent are:
(i) s is integral over R,
(ii) R[s] is module-finite over R,
(i1i) there is a subring R’ of S containing R|[s| that is module-finite over R.



Proof: (i) implies (ii): an equation s™ + a;s" "1 + ... + a,, = 0 expresses s"
in terms of 1, s, ..., s"71, so R[s] is module-generated by these finitely many
elements.

(ii) implies (iii): take R’ = R][s].

(iii) implies (i): Suppose R’ is module-generated over R by t1,...,t,. Write
the products st; using these generators: st; = > ¢;;t; with ¢;; € R. Let A =
sl — C where [ is the identity matrix and C' = (¢;;). Then At = 0, where ¢ is
the column vector (¢;). In the quotient field of S we conclude that det A = 0,
and that is the required monic equation for s. O

Proof of the proposition: if a,b € S are integral over R, then R]a] is module-
finite over R, and R][a,b] is module-finite over Rlal], so Rla,b] is module-finite
over R. Now let s be one of the elements a + b, a — b, ab. Take R’ = R]a, b] in
the above lemma to find that s is integral over R. That means we proved that
T is closed under addition, subtraction and multiplication. O

1.3 Weak Nullstellensatz

Theorem 1.4 Let k be an algebraically closed field. Let I be an ideal of the
polynomial ring klz1,...,xz,). If 1 & I, then V(I) # 0.

In the proof of this theorem, we’ll need the following proposition.

Proposition 1.5 Let L be a field containing a field k. If L is ring-finite over
k, then L is module-finite over k.

Proof of the theorem: If I is made larger, V(I) gets smaller. So, it suffices
to show this for a maximal ideal I. If the ideal I is maximal, the quotient
L = k[zy,...,x,]/I is a field. We have a natural embedding of k into L. If
this embedding is an isomorphism, then there are elements a; € k that map
to the residue classes x; + I, i.e., have the property that z; —a; € I. Now
I=(x1—ai,..,xy —ay) since the right hand side is a maximal ideal contained
in I. Consequently, V(I) = {(a1,...,a,)} is a single point, and therefore non-
empty.

Remains to show that the embedding of k into L really is an isomorphism.
This follows from Proposition 1.5. Indeed, let us identify k£ with its image in
L. In our situation L = k[z1,...,2,]/I is ring-generated by the residue classes
x; + I, so by this proposition L is module-finite over k, and by Lemma 1.3
every element of L is integral (and in partiticular algebraic) over k. But k is
algebraically closed, so L = k. O

Proof of the proposition: We have L = k[sy, ..., s,] for certain elements
$1,..-,8n € L, and want to find a finite set module-generating L over k. Use
induction on n.

If n > 1 then put K = k(s1). Then L = K[sa, ..., $5], and by induction on n
we see that L is module-finite over K. If K is also module-finite over k, then L
is module-finite over k (by Lemma 1.1) and we are done.

So, suppose K = k(s1) is not module-finite over k, so that s; is transcendent
over k, and K ~ k(z). Let us write z instead of s;.

Since L is module-finite over K, every element of L is integral over K.



Now look at the subring T of L consisting of the elements of L that are
integral over k[x]. If s € L has equation s"+a;s"~!+...4+a, = 0 with coefficients
a; in K = k(z), then these a; are rational expressions a; = f;(z)/g:(x). Let
h = h(x) be a common multiple of all denominators g;(x). Then hs satisfies
(hs)™ + (hay)(hs)" ! + ...+ h™a, = 0, a monic equation with all coefficients in
klx], so that hs € T.

If we do this for s = s, ..., 8,, and take for h the least common multiple
(or just the product) of all denominators encountered for all s;, then we find a
single h such that hs; € T for all j.

Let z be an arbitrary element of L. Since L = k[, sa, ..., 8] this element
can be written as a sum of terms, each a monomial in the s;. It follows that
hNz € T for sufficiently high exponent N.

Now that this holds for all elements z € L, take a particular one, for example
z = 1/f where f € k[z] is an irreducible polynomial not dividing h. Now if
RN /f € T, then we have an equation (RN /f)™ + ¢y (AN /f)™ ! + ... = 0 with
coefficients ¢; € k[x]. Multiplying by f™~! we find that hN™/f € k[z]. But
that is false since f is irreducible and does not divide h.

So, the assumption that K = k(s1) is not module-finite over k leads to a
contradiction, and this finishes the n > 1 part of the proof by induction.

Remains to look at n = 1. Given is L = k[s]. To show that L is module-finite
over k.

Consider the map from k[z] onto k[s] sending z to s. Its kernel is some ideal
I, and klz]/I ~ k[s] = L.

If I # (0), then I = (g(z)) for some polynomial g(z) since k[z] is a PID.
W.lo.g. g(x) is monic, and we see that s is integral over k because g(s) = 0,
and hence L is module-finite over k as desired.

And if I = (0), then L ~ k[z], but k[z] is not a field since it does not contain
1/x.

This proves everything. O

1.4 Nullstellensatz

Theorem 1.6 Let k be algebraically closed. Let I be an ideal in klx1, ..., zy].
Then I(V(I)) = Rad(I). Thatis, if g € klx1, ..., x,] and g vanishes on V(f1, ..., fm),
then there is an N such that g™ =" c;f;i for certain c; € klxy, ..., 1,)].

Proof: Apply the Weak Nullstellensatz in n+ 1 dimensions: Look at the ideal
J = (f1,s frn,Tna19 — 1) in k[x1, ..., T, Tpy1]. Since V(J) = 0, it follows that
ledJ, ie,

1= Zaifi +a(zpy19—1)

for certain a,a; € k[x1,...,xn, Tpy1]. Put 2,41 = 1/y and multiply by a power
of y to remove denominators:

yV =Y bifi+b(g-y)
for certain b,b; € k[z1,...,2p,y]. Now put y = g. O

One sees that for algebraically closed fields there is a 1-1 correspondence
between closed sets (sets of the form V' (fy, ..., fin)) and radical ideals of k[x1, ..., ;]
(ideals I that equal their radical).



