
Ovals and conics in a finite projective plane

1 Arcs, ovals and hyperovals

Consider a projective plane Π of order n. It has n2 +n+1 points, and as many
lines; there are n + 1 points on each line and as many lines on each point.

An arc in Π is a set of points, no three collinear.
If A is an arc, then |A| ≤ n + 2. (Indeed, choose a point P on the arc. Each

of the n + 1 lines on P contains at most 1 other point of A.) We see that if
equality holds then each line meets A in either 0 or 2 points.

If n is odd and n > 1, and A is an arc, then |A| ≤ n + 1. (Indeed, choose a
point Q outside A. If |A| = n + 2 then precisely (n + 2)/2 lines on Q meet A,
but this number is not integral.)

An oval in Π is an arc of size n + 1. A hyperoval is an arc of size n + 2.
Hyperovals can exist only in planes of even order n.

A line is called tangent to an oval if it meets the oval in precisely one point.
If A is an oval then there is a unique tangent in each if its points.

Proposition 1.1 If n is even, every oval is contained in a unique hyperoval.

Proof: Consider an oval A, and let there be ni points outside that are on
precisely i tangents. We find ∑

ni = n2

(namely n2 + n + 1− |A|), ∑
ini = n(n + 1)

(namely n outside points on each of the n + 1 tangents) and∑ (
i

2

)
ni =

(
n + 1

2

)
(the pairs of tangents). Combining these three equations yields∑

(i− 1)(i− n− 1)ni = 0.

But each outside point is on at least one tangent (since |A| is odd) and on at
most n + 1 tangents, so all terms are nonpositive. It follows that all terms are
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zero, and n1 = n2− 1, nn+1 = 1. Add the single point that is on n+1 tangents
to A to get a hyperoval. 2

The intersection point of all tangents to an oval in a plane of even order is
called the nucleus of the oval.

Of course one can go in the other direction, and obtain an oval from a
hyperoval by removing an arbitrary point.

2 Conics

Now let Π be the finite projective plane of order q that is coordinatized by the
field Fq.

Every nondegenerate conic in Π is an oval. (If a line and a conic meet in
at least three points, then the line is contained in the conic, so the conic is the
union of two lines, and is degenerate. Also, the conic has precisely q + 1 points
since there is at least one point by Chevalley-Warning, and there is a unique
tangent at each point.)

A famous theorem by Segre says that the reverse holds if q is odd.

Theorem 2.1 Let q be odd. Then each oval in the projective plane Π over Fq

is a conic.

We first need a lemma.

Lemma 2.2 Let O be an oval in the projective plane over Fq, q odd. Let P,Q,R
be three distinct points of O. Let ABC be the triangle of which the sides AB,
BC, CA are tangent to O in the points R, P , Q, respectively. Then the three
lines AP , BQ and CR are concurrent.

Proof: Choose coordinates such that P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1).
Then the equations for the lines AB, BC, CA are Y = cX, Z = aY , X = bZ
for certain nonzero constants a, b, c. Let T = (x, y, z) be a point of the oval
distinct from P,Q,R. (Then x, y, z are nonzero.) The three lines TP , TQ, TR
have equations Z = z

y Y , X = x
z Z, Y = y

xX, respectively. If we vary the point T
we see all lines through P,Q,R this way, except for the three tangent lines and
the sides of the triangle PQR. Now the product of all nonzero elements of Fq

is −1 (since we can pair w and w−1 for w 6= ±1), and multiplying all directions
of the lines containing precisely one of P,Q,R we find (−1)3 = abc

∏
z
y

x
z

y
x , so

that abc = −1. Now A = (b, bc, 1), B = (1, c, ac), C = (ab, 1, a) and the three
lines AP , BQ and CR all pass through the point (1,−c, ac) = (−b, bc, 1) =
(ab, 1,−a). 2

The result abc = −1 of the proof of the above lemma can also be phrased
as: Suppose an oval passes through three points P,Q,R, and has the tangents
at P and Q in common with a conic through P,Q,R. Then it also has the
tangent at R in common with that conic. (Indeed, a conic through P,Q,R
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has equation pXY + qY Z + rXZ = 0, and the tangents at these points are
Z = −p

r Y , X = − q
pZ and Y = − r

q X. If −p
r = a and − q

p = b, then − r
q = c.)

Proof (of the theorem): Choose three distinct points P,Q,R on the oval O,
and let S be the common point constructed in the above lemma. Choose co-
ordinates such that P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1), S = (1, 1, 1). We
are in the case a = b = c = −1 of the proof of the lemma, so the tangents at
P,Q,R are Y + Z = 0, X + Z = 0, X + Y = 0, respectively.

Now choose a point T = (x, y, z) distinct from P,Q,R on the oval.
The conic XY + Y Z + XZ + sZ2 = 0 passes through P and Q and has

tangents Y + Z = 0, X + Z = 0. Choose s so that it also passes through T .
Then conic and oval have the same tangent at T , and that tangent is (y+z)X +
(x + z)Y + (y + x + 2sz)Z = 0.

The conic XY + Y Z + XZ + tY 2 = 0 passes through P and R and has
tangents Y + Z = 0, X + Y = 0. Choose t so that it also passes through T .
Then conic and oval have the same tangent at T , and that tangent is (y+z)X +
(z + x + 2ty)Y + (x + y)Z = 0.

Since both equations must coincide we have s = t = 0, and each point of the
oval lies on the conic with equation XY + XZ + Y Z = 0. 2
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