
Resultant and discriminant

1 Resultant

Definition

The resultant R(f, g) of two polynomials f(x) = a0x
n + ... + an and g(x) =

b0x
m + ... + bm with a0b0 6= 0 is defined as

R(f, g) = am
0 bn

0

∏
i,j

(αi − βj)

where the αi are the roots of f(x) and the βj those of g(x).

Application

A trivial but useful observation is that if f and g are monic,∏
α root of f

g(α) = (−1)mn
∏

β root of g

f(β)

(since f(x) =
∏

α(x− α) and g(x) =
∏

β(x− β) so that both sides are equal to
R(f, g)).

For example, ∏
ζn=1

(ζ2 − 2) = (
√

2
n
− 1)((−

√
2)n − 1).

Properties

From the definition it is clear that R(f, g) = 0 if and only if f and g have a
common root.

Since R(f, g) is a symmetric function of the roots of f and g, it can be ex-
pressed in terms of the coefficients. The expression is the following determinant

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 ... ... ... an

a0 a1 ... ... ... an

...
a0 a1 ... ... ... an

b0 b1 ... ... bm

b0 b1 ... ... bm

...
...

b0 b1 ... ... bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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of order m + n (with m rows containing coefficients of f and n rows containing
coefficients of g).

Proof One has R(f, g) = 0 if and only if f and g have a common root, that
is, if and only if f and g have nontrivial g.c.d., that is, if and only if there are
polynomials r(x) and s(x) of degrees not more than m−1 and n−1, respectively,
such that r(x)f(x) + s(x)g(x) = 0. Considering the m + n coefficients of r(x)
and s(x) as unknowns, this equation gives m + n homogeneous equations in
m + n unknowns, with nontrivial solution iff the determinant vanishes. But
both this determinant and R(f, g) are expressions of degree m in the ai and n
in the bj . So, this determinant must equal R(f, g) up to a constant, and looking
at the coefficient of am

0 bn
m shows that the constant is 1. 2

If a0b0 = 0 we can take this determinant as the definition of R(f, g). Now
R(f, g) = a0R(f, ḡ) if b0 = 0, where ḡ(x) is the polynomial of degree m − 1
with g(x) = ḡ(x), and similar for a0 = 0. In particular, if a0 = b0 = 0
then R(f, g) = 0. This is natural if one passes to homogeneous polynomials
F (X, Y ) =

∑
aiX

n−iY i and G(X, Y ) =
∑

biX
n−iY i. Now R(f, g) = 0 ex-

presses that the varieties V (F ) and V (G) on the projective line have a common
point, and when a0 = b0 = 0 this common point is (1, 0).

Exercise The resultant R(f(x), g(t − x)) is a polynomial of degree mn in the
variable t, with the mn roots αi + βj .

Exercise The resultant R(f, g) viewed as a polynomial in the coefficients ai

and bj is homogeneous of degree mn if the variables ai and bi are taken to have
weight i.

Exercise There exist polynomials r(x) and s(x) of degrees not more than m−1
and n− 1, respectively, and with coefficients that are polynomials with integral
coefficients in the ai and bj , such that r(x)f(x) + s(x)g(x) = R(f, g).

(Hint: Solve Ay = b with Cramer’s rule, where A is the matrix with detA =
R(f, g), and y is the column vector (xn+m−1, ..., 1), and b is the column vector
(xm−1f(x), ..., f(x), xn−1g(x), ..., g(x)).)

2 Discriminant

The discriminant D of a polynomial f(x) as above is defined as

D = a2n−2
0 (−1)n(n−1)/2

∏
i 6=j

(αi − αj) = a2n−2
0

∏
i<j

(αi − αj)2.

We have R(f, f ′) = (−1)n(n−1)/2a0D.
Indeed, from f(x) = a0

∏
i(x−αi) we get f ′(x) = a0

∑
j

∏
i 6=j(x−αi) so that

f ′(αj) = a0

∏
i 6=j(αj−αi) and R(f, f ′) = an−1

0

∏
i f ′(αi) = a2n−1

0

∏
i 6=j(αj−αi).

Example For f(x) = ax2 + bx + c and f ′(x) = 2ax + b we find

R(f, f ′) =

∣∣∣∣∣∣
a b c
2a b 0
0 2a b

∣∣∣∣∣∣ = −a(b2 − 4ac)

so that D = b2 − 4ac.
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Example For f(x) = x3 + bx + c and f ′(x) = 3x2 + b we find

R(f, f ′) =

∣∣∣∣∣∣∣∣∣∣
1 0 b c 0
0 1 0 b c
3 0 b 0 0
0 3 0 b 0
0 0 3 0 b

∣∣∣∣∣∣∣∣∣∣
= 4b3 + 27c2

so that D = −4b3 − 27c2.

3 Intersection multiplicity

Given two curves f(x, y) = 0 and g(x, y) = 0 without common component, we
want to assign intersection multiplicities to their common points in such a way
that Bezout’s theorem holds. Let f and g have degrees n and m, respectively,
and choose coordinates in such a way that these curves do not pass through the
origin (0, 0), and such that the origin does not lie on a line joining two intersec-
tion points of the curves. Write the equations homogeneously: F (X, Y, Z) = 0
and G(X, Y, Z) = 0, and consider F and G as polynomials in Z with coefficients
in k[X, Y ]. Our assumptions imply that F and G are polynomials of degrees n
and m in Z with coefficients Ai and Bi that are homogeneous polynomials of
degree i in X and Y . Now R(F,G) is a homogeneous polynomial of total degree
mn in X and Y , call it R(X, Y ), and we can define the intersection multiplicity
of the curves F = 0 and G = 0 at P = (X0, Y0, Z0) to be the multiplicity of
the root (X0, Y0) of R(X, Y ). (Remains of course to check that this definition
does not depend on the choices made.) With this definition Bezout’s theorem
becomes the simple statement that the sum of the multiplicities of the roots of
a polynomial equals the degree of that polynomial.

Example Consider the two curves Y = X3 and Y = X5. The homogeneous
equations are Y Z2 = X3 and Y Z4 = X5, and the common points are the points
(0, 0, 1), (1, 1, 1), (−1,−1, 1), (0, 1, 0). The point (1, 0, 0) does not lie on a line
joining two common points, so make this the origin by interchanging X and Z.
Now our polynomials are F (X, Y, Z) = Z3−X2Y and G(X, Y, Z) = Z5−X4Y ,
and computing a determinant of order 8 we find R(X, Y ) = X10Y 3(Y 2 −X2)
with roots (0, 1), (1, 0), (1, 1), (1,−1) of multiplicities 10, 3, 1, 1, so that our two
curves have intersection multiplicities 10, 3, 1, 1 at the points (0, 1, 0), (0, 0, 1),
(1, 1, 1), (−1,−1, 1).
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