
Riemann-Roch and algebraic geometry codes

1 Riemann-Roch: statement

Theorem 1.1 [Riemann] Let D be a divisor on a nonsingular projective curve
X of genus g. Then

l(D) ≥ deg(D) + 1− g.

Theorem 1.2 [Roch] In fact,

l(D)− l(W −D) = deg(D) + 1− g

where W is a canonical divisor of X.

This theorem says something about the dimensions l(D) of linear spaces L(D)
associated with the curve X. All required definitions follow.

2 Divisors

A divisor on a smooth (i.e., nonsingular) projective curve X is a formal sum of
points:

D =
∑

nP P

where P ∈ X, nP ∈ Z, only finitely many nonzero.

The degree of the divisor D is

deg D =
∑

nP .

Clearly, divisors form an Abelian group under addition, and deg is a homo-
morphism from this group to Z.

(If k is not algebraically closed, one uses sums of closed points, where a closed
point is a minimal 0-dimensional subvariety defined over k, that is, the orbit of
a point defined over k̄ under the Galois group.)

(If X is not necessarily a curve, a divisor is a formal sum of subvarieties of
codimension 1.)

One writes
D ≥ 0

if nP ≥ 0 for all P .
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3 Principal divisors

Given f ∈ k(X), f 6= 0, the principal divisor (f) is defined by

(f) =
∑

vP (f)P

where vP (f) = #zeros−#poles of f at P .

Now deg(f) = 0.

The principal divisors form a subgroup of the group of divisors: (f)+(g) = (fg).
The Picard group (or divisor class group) is the quotient group

Pic(X) = {divisors}/{principal divisors}.

4 The spaces L(D)

Given a divisor D on a curve X, define

L(D) = {0} ∪ {f ∈ k(X), f 6= 0 | (f) + D ≥ 0}.

These spaces are finite-dimensional. Let l(D) = dimk L(D).

Now we can read the statement of Riemann’s theorem. It says that the dimen-
sion of the space L(D) is at least 1− g +

∑
nP , where L(D) is the space of of

rational functions f on X where if nP < 0 the function f is required to have
a zero of multiplicity at least −nP at P , and if nP = 0 the function f must
be regular at P (that is, have no pole there), and if nP > 0 the function f is
allowed to have an nP -fold pole at P .

5 Canonical divisors

Let ω be a rational differential form. Then W = (ω) =
∑

vP (ω)P is called a
canonical divisor. Here vP (ω) = #zeros−#poles of ω at P , where by definition
vP (ω) = vP (f) if ω = fdt locally at P .

Any two canonical divisors differ by a principal divisor.

6 Genus

We have g = l(W ) = dimk L(W ).

Indeed, L(W ) = {f | (f) + (ω) ≥ 0} = {f | fω is a regular diff. form}, so
l(W ) = dimk L(W ) = dimk Ω[X] = g.

7 Corollaries

We saw that when g is defined as dimk Ω[X] then g = l(W ). But when g is
defined by the statement of Riemann-Roch, l(D)− l(W −D) = deg(D) + 1− g,
then the same conclusion holds.
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Corollary 7.1 l(W ) = g.

Proof Pick D = 0 and use l(0) = 1. 2

Corollary 7.2 deg(W ) = 2g − 2.

Proof Pick D = W . 2

Corollary 7.3 If deg(D) > 2g − 2 then l(D) = deg(D) + 1− g.

Proof If deg(D) < 0 then l(D) = 0. 2

8 Algebraic Geometry Codes

Pick a divisor D, say with 2g − 1 < deg D < n, and let P1, ..., Pn be points
outside the support of D.

Make a code
C = {(f(P1), ..., f(Pn)) | f ∈ L(D)}.

Theorem 8.1 The code C has word length n, dimension k = l(D) = deg(D)+
1− g and minimum distance d ≥ n− deg(D).

Proof That C has word length n is clear. The statement about the dimension
was a corollory above. If C has minimum distance d, then there is a function
f such that f ∈ L(D′) where D′ = D −

∑
f(Pi)=0 Pi, with deg(D′) = deg(D)−

(n− d) ≥ 0. 2

This means that if g is small we get reasonably good codes: the Singleton
bound says k +d ≤ n+1 and the codes constructed here have k +d ≥ n+1−g.
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