Riemann-Roch and algebraic geometry codes

1 Riemann-Roch: statement

Theorem 1.1 [Riemann] Let D be a divisor on a nonsingular projective curve X of genus g. Then

$$
l(D) \geq \operatorname{deg}(D)+1-g .
$$

Theorem 1.2 [Roch] In fact,

$$
l(D)-l(W-D)=\operatorname{deg}(D)+1-g
$$

where W is a canonical divisor of X.

This theorem says something about the dimensions $l(D)$ of linear spaces $L(D)$ associated with the curve X. All required definitions follow.

2 Divisors

A divisor on a smooth (i.e., nonsingular) projective curve X is a formal sum of points:

$$
D=\sum n_{P} P
$$

where $P \in X, n_{P} \in \mathbf{Z}$, only finitely many nonzero.
The degree of the divisor D is

$$
\operatorname{deg} D=\sum n_{P}
$$

Clearly, divisors form an Abelian group under addition, and deg is a homomorphism from this group to \mathbf{Z}.
(If k is not algebraically closed, one uses sums of closed points, where a closed point is a minimal 0 -dimensional subvariety defined over k, that is, the orbit of a point defined over \bar{k} under the Galois group.)
(If X is not necessarily a curve, a divisor is a formal sum of subvarieties of codimension 1.)

One writes

$$
D \geq 0
$$

if $n_{P} \geq 0$ for all P.

3 Principal divisors

Given $f \in k(X), f \neq 0$, the principal divisor (f) is defined by

$$
(f)=\sum v_{P}(f) P
$$

where $v_{P}(f)=\#$ zeros $-\#$ poles of f at P.
Now $\operatorname{deg}(f)=0$.
The principal divisors form a subgroup of the group of divisors: $(f)+(g)=(f g)$. The Picard group (or divisor class group) is the quotient group

$$
\operatorname{Pic}(X)=\{\text { divisors }\} /\{\text { principal divisors }\} .
$$

4 The spaces $L(D)$

Given a divisor D on a curve X, define

$$
L(D)=\{0\} \cup\{f \in k(X), f \neq 0 \mid(f)+D \geq 0\}
$$

These spaces are finite-dimensional. Let $l(D)=\operatorname{dim}_{k} L(D)$.
Now we can read the statement of Riemann's theorem. It says that the dimension of the space $L(D)$ is at least $1-g+\sum n_{P}$, where $L(D)$ is the space of of rational functions f on X where if $n_{P}<0$ the function f is required to have a zero of multiplicity at least $-n_{P}$ at P, and if $n_{P}=0$ the function f must be regular at P (that is, have no pole there), and if $n_{P}>0$ the function f is allowed to have an n_{P}-fold pole at P.

5 Canonical divisors

Let ω be a rational differential form. Then $W=(\omega)=\sum v_{P}(\omega) P$ is called a canonical divisor. Here $v_{P}(\omega)=$ \#zeros - \#poles of ω at P, where by definition $v_{P}(\omega)=v_{P}(f)$ if $\omega=f d t$ locally at P.

Any two canonical divisors differ by a principal divisor.

6 Genus

We have $g=l(W)=\operatorname{dim}_{k} L(W)$.
Indeed, $L(W)=\{f \mid(f)+(\omega) \geq 0\}=\{f \mid f \omega$ is a regular diff. form $\}$, so $l(W)=\operatorname{dim}_{k} L(W)=\operatorname{dim}_{k} \Omega[X]=g$.

7 Corollaries

We saw that when g is defined as $\operatorname{dim}_{k} \Omega[X]$ then $g=l(W)$. But when g is defined by the statement of Riemann-Roch, $l(D)-l(W-D)=\operatorname{deg}(D)+1-g$, then the same conclusion holds.

Corollary 7.1 $l(W)=g$.
Proof Pick $D=0$ and use $l(0)=1$.

Corollary 7.2 $\operatorname{deg}(W)=2 g-2$.
Proof Pick $D=W$.

Corollary 7.3 If $\operatorname{deg}(D)>2 g-2$ then $l(D)=\operatorname{deg}(D)+1-g$.
Proof If $\operatorname{deg}(D)<0$ then $l(D)=0$.

8 Algebraic Geometry Codes

Pick a divisor D, say with $2 g-1<\operatorname{deg} D<n$, and let P_{1}, \ldots, P_{n} be points outside the support of D.

Make a code

$$
C=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\}
$$

Theorem 8.1 The code C has word length n, dimension $k=l(D)=\operatorname{deg}(D)+$ $1-g$ and minimum distance $d \geq n-\operatorname{deg}(D)$.

Proof That C has word length n is clear. The statement about the dimension was a corollory above. If C has minimum distance d, then there is a function f such that $f \in L\left(D^{\prime}\right)$ where $D^{\prime}=D-\sum_{f\left(P_{i}\right)=0} P_{i}$, with $\operatorname{deg}\left(D^{\prime}\right)=\operatorname{deg}(D)-$ $(n-d) \geq 0$.

This means that if g is small we get reasonably good codes: the Singleton bound says $k+d \leq n+1$ and the codes constructed here have $k+d \geq n+1-g$.

