
Zeta function of a curve

1 Example

Consider the curve C with equation X3Y +Y 3Z+Z3X = 0 defined over k = F2.
Let Nd be the number of points with coordinates in F2d .

We have N1 = 3: there are three points defined over F2 = {0, 1}, namely
(0, 0, 1), (0, 1, 0) and (1, 0, 0).

We have N2 = 5: there are five points defined over F4 = {0, 1, ω, ω2}, namely
three over F2 and the two points (1, ω, ω2), (1, ω2, ω).

We have N3 = 24: there are 24 points defined over F8 = {0, 1, ζ, ..., ζ6}
where ζ7 = 1, namely three over F2 and the 21 points (1, ζi, ζ−2iα) where
0 ≤ i ≤ 6 and α3 + α + 1 = 0.

Continuing, we find
d 1 2 3 4 5 6 . . . 9

Nd 3 5 24 17 33 38 . . . 528
and more generally: Nd = 2d + 1 if 3 - d, and Nd = 2d + 1− ad if 3|d, where

the ai are found from a3 = −15, a6 = 27, a3k+6 + 5a3k+3 + 8a3k = 0 (k ≥ 1).

Put Z(C, t) = exp(
∑

1
i Nit

i). Then in this example

Z(C, t) =
1 + 5t3 + 8t6

(1− t)(1− 2t)
,

a simple rational function that encodes the values of all Ni.

A simpler example is the projective line L. Over Fq there are N = q + 1
points. Now Z(L, t) = exp(

∑
1
i (q

i+1)ti). But
∑

1
i t

i = − log(1−t) (for |t| < 1),
and

∑
1
i q

iti = − log(1− qt) (for |qt| < 1), so Z(L, t) = 1/(1− t)(1− qt).

Comparing this with the previous we see that a zeta function Z(C, t) =
(1 + 5t3 + 8t6)/(1 − t)(1 − 2t) corresponds to Ni = qi + 1 when 3 - i. The
recurrence a3k+6 + 5a3k+3 + 8a3k = 0 has solution a3k = c1α

k + c2β
k if α, β are

the two solutions of x2+5x+8 = 0. From a0 = 6, a3 = −15, we see c1 = c2 = 3.
Now −3

∑
1
3iα

it3i = log(1−αt3) so Z(C, t) = (1−αt3)(1−βt3)/(1−t)(1−2t) =
(1 + 5t3 + 8t6)/(1− t)(1− 2t). In other words, the given expression for Z(C, t)
is equivalent to the given values of Ni.

2 Zeta function

Let X be an absolutely irreducible algebraic curve defined over Fq with Ni

points over Fqi . The zeta function of X is defined as Z(X, t) := exp(
∑

1
i Nit

i).

Hasse (for g = 1) and Weil (for the general case) showed that this function
is a rational function of the form P (t)/(1− t)(1−qt) where P (t) is a polynomial
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in t. The degree of P (t) is 2g, where g is the genus of X. The polynomial P (t)
has the factorization P (t) =

∏2g
i=1(1− αit) where |αi| =

√
q for all i.

Taking logarithms we find

Ni = 1 + qi −
∑

αi

(where α−1 runs through the 2g roots of P (t)). It follows that

|N1 − (q + 1)| ≤ 2g
√

q.

This Hasse-Weil bound was improved by Serre to

|N1 − (q + 1)| ≤ g[2
√

q].

(Proof: The α’s are algebraic integers and occur in complex conjugate pairs; if
a runs through the g sums α + ᾱ, then for both choices of the sign the product∏

([2
√

q] + 1 ± a) is a positive integer, hence at least 1; by the arithmetic-
geometric mean inequality we have

∑
([2
√

q] + 1± a) ≥ g. 2)

Ihara’s bound is better for g > (q −√
q)/2 :

N1 ≤ q + 1− 1
2
g +

√
2(q +

1
8
)g2 + (q2 − q)g.

(Proof: We have 1 + q −
∑

α = N1 ≤ N2 = 1 + q2 −
∑

α2. The α’s occur in
complex conjugate pairs with product q, and if a runs through the g sums α+ ᾱ
then 1 + q −

∑
a ≤ 1 + q2 + 2qg −

∑
a2. Now use g

∑
a2 ≥ (

∑
a)2. 2)

If g = (q − √
q)/2 then both Hasse-Weil and Ihara say N1 ≤ q

√
q + 1, and

this upper bound is achieved (when q is a square) by the Hermitean curves
Xr+1 + Y r+1 + Zr+1 = 0 where q = r2 (and by no other curves).
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