Zeta function of a curve

1 Example

Consider the curve C with equation $X^3Y + Y^3Z + Z^3X = 0$ defined over $k = \mathbf{F}_2$. Let N_d be the number of points with coordinates in \mathbf{F}_{2^d} .

We have $N_1 = 3$: there are three points defined over $\mathbf{F}_2 = \{0, 1\}$, namely (0, 0, 1), (0, 1, 0) and (1, 0, 0).

We have $N_2 = 5$: there are five points defined over $\mathbf{F}_4 = \{0, 1, \omega, \omega^2\}$, namely three over \mathbf{F}_2 and the two points $(1, \omega, \omega^2)$, $(1, \omega^2, \omega)$.

We have $N_3 = 24$: there are 24 points defined over $\mathbf{F}_8 = \{0, 1, \zeta, ..., \zeta^6\}$ where $\zeta^7 = 1$, namely three over \mathbf{F}_2 and the 21 points $(1, \zeta^i, \zeta^{-2i}\alpha)$ where $0 \le i \le 6$ and $\alpha^3 + \alpha + 1 = 0$.

Continuing, we find

and more generally: $N_d = 2^d + 1$ if $3 \nmid d$, and $N_d = 2^d + 1 - a_d$ if $3 \mid d$, where the a_i are found from $a_3 = -15$, $a_6 = 27$, $a_{3k+6} + 5a_{3k+3} + 8a_{3k} = 0$ $(k \ge 1)$.

Put $Z(C,t) = \exp(\sum \frac{1}{i}N_it^i)$. Then in this example

$$Z(C,t) = \frac{1+5t^3+8t^6}{(1-t)(1-2t)}$$

a simple rational function that encodes the values of all N_i .

A simpler example is the projective line L. Over \mathbf{F}_q there are N = q + 1 points. Now $Z(L,t) = \exp(\sum \frac{1}{i}(q^i+1)t^i)$. But $\sum \frac{1}{i}t^i = -\log(1-t)$ (for |t| < 1), and $\sum \frac{1}{i}q^it^i = -\log(1-qt)$ (for |qt| < 1), so Z(L,t) = 1/(1-t)(1-qt).

Comparing this with the previous we see that a zeta function $Z(C,t) = (1 + 5t^3 + 8t^6)/(1 - t)(1 - 2t)$ corresponds to $N_i = q^i + 1$ when $3 \nmid i$. The recurrence $a_{3k+6} + 5a_{3k+3} + 8a_{3k} = 0$ has solution $a_{3k} = c_1\alpha^k + c_2\beta^k$ if α, β are the two solutions of $x^2 + 5x + 8 = 0$. From $a_0 = 6$, $a_3 = -15$, we see $c_1 = c_2 = 3$. Now $-3\sum \frac{1}{3i}\alpha^i t^{3i} = \log(1 - \alpha t^3)$ so $Z(C,t) = (1 - \alpha t^3)(1 - \beta t^3)/(1 - t)(1 - 2t) = (1 + 5t^3 + 8t^6)/(1 - t)(1 - 2t)$. In other words, the given expression for Z(C,t) is equivalent to the given values of N_i .

2 Zeta function

Let X be an absolutely irreducible algebraic curve defined over \mathbf{F}_q with N_i points over \mathbf{F}_{q^i} . The zeta function of X is defined as $Z(X,t) := \exp(\sum \frac{1}{i} N_i t^i)$.

Hasse (for g = 1) and Weil (for the general case) showed that this function is a rational function of the form P(t)/(1-t)(1-qt) where P(t) is a polynomial in t. The degree of P(t) is 2g, where g is the genus of X. The polynomial P(t) has the factorization $P(t) = \prod_{i=1}^{2g} (1 - \alpha_i t)$ where $|\alpha_i| = \sqrt{q}$ for all i.

Taking logarithms we find

$$N_i = 1 + q^i - \sum \alpha^i$$

(where α^{-1} runs through the 2g roots of P(t)). It follows that

$$|N_1 - (q+1)| \le 2g\sqrt{q}.$$

This Hasse-Weil bound was improved by Serre to

$$|N_1 - (q+1)| \le g[2\sqrt{q}].$$

(Proof: The α 's are algebraic integers and occur in complex conjugate pairs; if a runs through the g sums $\alpha + \bar{\alpha}$, then for both choices of the sign the product $\prod([2\sqrt{q}] + 1 \pm a)$ is a positive integer, hence at least 1; by the arithmetic-geometric mean inequality we have $\sum([2\sqrt{q}] + 1 \pm a) \ge g$. \Box)

Ihara's bound is better for $g > (q - \sqrt{q})/2$:

$$N_1 \le q + 1 - \frac{1}{2}g + \sqrt{2(q + \frac{1}{8})g^2 + (q^2 - q)g}.$$

(Proof: We have $1 + q - \sum \alpha = N_1 \leq N_2 = 1 + q^2 - \sum \alpha^2$. The α 's occur in complex conjugate pairs with product q, and if a runs through the g sums $\alpha + \bar{\alpha}$ then $1 + q - \sum a \leq 1 + q^2 + 2qg - \sum a^2$. Now use $g \sum a^2 \geq (\sum a)^2$. \Box)

If $g = (q - \sqrt{q})/2$ then both Hasse-Weil and Ihara say $N_1 \leq q\sqrt{q} + 1$, and this upper bound is achieved (when q is a square) by the Hermitean curves $X^{r+1} + Y^{r+1} + Z^{r+1} = 0$ where $q = r^2$ (and by no other curves).