Zeta function of a curve

1 Example

Consider the curve C with equation $X^{3} Y+Y^{3} Z+Z^{3} X=0$ defined over $k=\mathbf{F}_{2}$. Let N_{d} be the number of points with coordinates in $\mathbf{F}_{2^{d}}$.

We have $N_{1}=3$: there are three points defined over $\mathbf{F}_{2}=\{0,1\}$, namely $(0,0,1),(0,1,0)$ and $(1,0,0)$.

We have $N_{2}=5$: there are five points defined over $\mathbf{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, namely three over \mathbf{F}_{2} and the two points $\left(1, \omega, \omega^{2}\right),\left(1, \omega^{2}, \omega\right)$.

We have $N_{3}=24$: there are 24 points defined over $\mathbf{F}_{8}=\left\{0,1, \zeta, \ldots, \zeta^{6}\right\}$ where $\zeta^{7}=1$, namely three over \mathbf{F}_{2} and the 21 points $\left(1, \zeta^{i}, \zeta^{-2 i} \alpha\right)$ where $0 \leq i \leq 6$ and $\alpha^{3}+\alpha+1=0$.

Continuing, we find

d	1	2	3	4	5	6	\ldots	9
N_{d}	3	5	24	17	33	38	\ldots	528

and more generally: $N_{d}=2^{d}+1$ if $3 \nmid d$, and $N_{d}=2^{d}+1-a_{d}$ if $3 \mid d$, where the a_{i} are found from $a_{3}=-15, a_{6}=27, a_{3 k+6}+5 a_{3 k+3}+8 a_{3 k}=0(k \geq 1)$.

Put $Z(C, t)=\exp \left(\sum \frac{1}{i} N_{i} t^{i}\right)$. Then in this example

$$
Z(C, t)=\frac{1+5 t^{3}+8 t^{6}}{(1-t)(1-2 t)}
$$

a simple rational function that encodes the values of all N_{i}.
A simpler example is the projective line L. Over \mathbf{F}_{q} there are $N=q+1$ points. Now $Z(L, t)=\exp \left(\sum \frac{1}{i}\left(q^{i}+1\right) t^{i}\right)$. But $\sum \frac{1}{i} t^{i}=-\log (1-t)($ for $|t|<1)$, and $\sum \frac{1}{i} q^{i} t^{i}=-\log (1-q t)($ for $|q t|<1)$, so $Z(L, t)=1 /(1-t)(1-q t)$.

Comparing this with the previous we see that a zeta function $Z(C, t)=$ $\left(1+5 t^{3}+8 t^{6}\right) /(1-t)(1-2 t)$ corresponds to $N_{i}=q^{i}+1$ when $3 \nmid i$. The recurrence $a_{3 k+6}+5 a_{3 k+3}+8 a_{3 k}=0$ has solution $a_{3 k}=c_{1} \alpha^{k}+c_{2} \beta^{k}$ if α, β are the two solutions of $x^{2}+5 x+8=0$. From $a_{0}=6, a_{3}=-15$, we see $c_{1}=c_{2}=3$. Now $-3 \sum \frac{1}{3 i} \alpha^{i} t^{3 i}=\log \left(1-\alpha t^{3}\right)$ so $Z(C, t)=\left(1-\alpha t^{3}\right)\left(1-\beta t^{3}\right) /(1-t)(1-2 t)=$ $\left(1+5 t^{3}+8 t^{6}\right) /(1-t)(1-2 t)$. In other words, the given expression for $Z(C, t)$ is equivalent to the given values of N_{i}.

2 Zeta function

Let X be an absolutely irreducible algebraic curve defined over \mathbf{F}_{q} with N_{i} points over $\mathbf{F}_{q^{i}}$. The zeta function of X is defined as $Z(X, t):=\exp \left(\sum \frac{1}{i} N_{i} t^{i}\right)$.

Hasse (for $g=1$) and Weil (for the general case) showed that this function is a rational function of the form $P(t) /(1-t)(1-q t)$ where $P(t)$ is a polynomial
in t. The degree of $P(t)$ is $2 g$, where g is the genus of X. The polynomial $P(t)$ has the factorization $P(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)$ where $\left|\alpha_{i}\right|=\sqrt{q}$ for all i.

Taking logarithms we find

$$
N_{i}=1+q^{i}-\sum \alpha^{i}
$$

(where α^{-1} runs through the $2 g$ roots of $P(t)$). It follows that

$$
\left|N_{1}-(q+1)\right| \leq 2 g \sqrt{q}
$$

This Hasse-Weil bound was improved by Serre to

$$
\left|N_{1}-(q+1)\right| \leq g[2 \sqrt{q}] .
$$

(Proof: The α 's are algebraic integers and occur in complex conjugate pairs; if a runs through the g sums $\alpha+\bar{\alpha}$, then for both choices of the sign the product $\prod([2 \sqrt{q}]+1 \pm a)$ is a positive integer, hence at least 1 ; by the arithmeticgeometric mean inequality we have $\sum([2 \sqrt{q}]+1 \pm a) \geq g$.

Ihara's bound is better for $g>(q-\sqrt{q}) / 2$:

$$
N_{1} \leq q+1-\frac{1}{2} g+\sqrt{2\left(q+\frac{1}{8}\right) g^{2}+\left(q^{2}-q\right) g} .
$$

(Proof: We have $1+q-\sum \alpha=N_{1} \leq N_{2}=1+q^{2}-\sum \alpha^{2}$. The α 's occur in complex conjugate pairs with product q, and if a runs through the g sums $\alpha+\bar{\alpha}$ then $1+q-\sum a \leq 1+q^{2}+2 q g-\sum a^{2}$. Now use $g \sum a^{2} \geq\left(\sum a\right)^{2}$.

If $g=(q-\sqrt{q}) / 2$ then both Hasse-Weil and Ihara say $N_{1} \leq q \sqrt{q}+1$, and this upper bound is achieved (when q is a square) by the Hermitean curves $X^{r+1}+Y^{r+1}+Z^{r+1}=0$ where $q=r^{2}$ (and by no other curves).

