Correction to Theorem 12.1.1

In [BCN], Theorem 12.1.1 the existence of a certain association scheme is claimed, and details are given for $n=3$. As Frédéric Vanhove (pers.comm., Sept. 2013) observed, things are slightly different for odd $n \geq 5$.

Let q be a power of 2 , and $n \geq 3$. Let V be an n-dimensional vector space over \mathbb{F}_{q} provided with a nondegenerate quadratic form Q. If n is odd, there will be a nucleus $N=V^{\perp}$.

We construct an association scheme with point set X, where X is the set of projective points not on the quadric Q and (for odd n) distinct from N. For $n=3$ and for even n, the relations will be $R_{0}, R_{1}, R_{2}, R_{3}$ where

$$
\begin{aligned}
& R_{0}=\{(x, x) \mid x \in X\}, \text { the identity relation; } \\
& R_{1}=\{(x, y) \mid x+y \text { is a hyperbolic line (secant) }\} \\
& R_{2}=\{(x, y) \mid x+y \text { is an elliptic line (exterior line) }\} \\
& R_{3}=\{(x, y) \mid x+y \text { is a tangent }\}
\end{aligned}
$$

For odd $n, n \geq 5$, it is necessary to distinguish $R_{3 a}$ and $R_{3 n}$, defined by

$$
\begin{aligned}
& R_{3 a}=\{(x, y) \mid x+y \text { is a tangent not on } N\} \\
& R_{3 n}=\{(x, y) \mid x+y \text { is a tangent on } N\} .
\end{aligned}
$$

For $q=2$ a hyperbolic line contains only one nonisotropic point, so that R_{1} is empty.

Theorem 12.1.1 (corrected)
(i) $\left(X,\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}\right)$ is an association scheme for even $n=2 m \geq 4$. It has eigenmatrix

$$
P=\left(\begin{array}{cccc}
1 & \frac{1}{2} q^{m-1}\left(q^{m-1}+\varepsilon\right)(q-2) & \frac{1}{2} q^{m}\left(q^{m-1}-\varepsilon\right) & q^{2 m-2}-1 \\
1 & \frac{1}{2} \varepsilon q^{m-2}(q+1)(q-2) & -\frac{1}{2} \varepsilon q^{m-1}(q-1) & \varepsilon q^{m-2}-1 \\
1 & 0 & \varepsilon q^{m-1} & -\varepsilon q^{m-1}-1 \\
1 & -\varepsilon q^{m-1} & 0 & \varepsilon q^{m-1}-1
\end{array}\right)
$$

and multiplicities $1, q^{2}\left(q^{n-2}-1\right) /\left(q^{2}-1\right), \frac{1}{2} q\left(q^{m-1}-\varepsilon\right)\left(q^{m}-\varepsilon\right) /(q+1)$, $\frac{1}{2}(q-2)\left(q^{m-1}+\varepsilon\right)\left(q^{m}-\varepsilon\right) /(q-1)$.
(ii) $\left(X,\left\{R_{0}, R_{1}, R_{2}, R_{3 a}, R_{3 n}\right\}\right)$ is an association scheme for odd $n=2 m+1 \geq 3$. It has eigenmatrix

$$
P=\left(\begin{array}{ccccc}
1 & \frac{1}{2} q^{2 m-1}(q-2) & \frac{1}{2} q^{2 m} & q\left(q^{2 m-2}-1\right) & q-2 \\
1 & \frac{1}{2} q^{m-1}(q-2) & \frac{1}{2} q^{m} & -\left(q^{m-1}+1\right)(q-1) & q-2 \\
1 & -\frac{1}{2} q^{m-1}(q-2) & -\frac{1}{2} q^{m} & \left(q^{m-1}-1\right)(q-1) & q-2 \\
1 & \frac{1}{2} q^{m} & -\frac{1}{2} q^{m} & 0 & -1 \\
1 & -\frac{1}{2} q^{m} & \frac{1}{2} q^{m} & 0 & -1
\end{array}\right)
$$

and multiplicities $1, \frac{1}{2} q\left(q^{m}+1\right)\left(q^{m-1}-1\right) /(q-1), \frac{1}{2} q\left(q^{m}-1\right)\left(q^{m-1}+1\right) /(q-1)$, $\frac{1}{2}(q-2)\left(q^{2 m}-1\right) /(q-1)$ (twice).

When $n=3$, the relation $R_{3 a}$ is empty, and the second eigenspace is absent.

