
Correction to Theorem 12.1.1

In [BCN], Theorem 12.1.1 the existence of a certain association scheme is
claimed, and details are given for n = 3. As Frédéric Vanhove (pers.comm.,
Sept. 2013) observed, things are slightly different for odd n ≥ 5.

Let q be a power of 2, and n ≥ 3. Let V be an n-dimensional vector space over
Fq provided with a nondegenerate quadratic form Q. If n is odd, there will be
a nucleus N = V ⊥.

We construct an association scheme with point set X, where X is the set of
projective points not on the quadric Q and (for odd n) distinct from N . For
n = 3 and for even n, the relations will be R0, R1, R2, R3 where

R0 = {(x, x) | x ∈ X}, the identity relation;

R1 = {(x, y) | x + y is a hyperbolic line (secant)};
R2 = {(x, y) | x + y is an elliptic line (exterior line)};
R3 = {(x, y) | x + y is a tangent}.

For odd n, n ≥ 5, it is necessary to distinguish R3a and R3n, defined by

R3a = {(x, y) | x + y is a tangent not on N};
R3n = {(x, y) | x + y is a tangent on N}.

For q = 2 a hyperbolic line contains only one nonisotropic point, so that R1 is
empty.

Theorem 12.1.1 (corrected)
(i) (X, {R0, R1, R2, R3}) is an association scheme for even n = 2m ≥ 4. It has
eigenmatrix
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(ii) (X, {R0, R1, R2, R3a, R3n}) is an association scheme for odd n = 2m+1 ≥ 3.
It has eigenmatrix
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and multiplicities 1, 1
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When n = 3, the relation R3a is empty, and the second eigenspace is absent.
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