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Counting symmetric nilpotent matrices

Andries E. Brouwer
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.

The number of symmetric matrices is qn(n+1)/2.
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.

The number of symmetric matrices is qn(n+1)/2.

The number of nilpotent matrices is qn(n−1).
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.

The number of symmetric matrices is qn(n+1)/2.

The number of nilpotent matrices is qn(n−1).

N is nilpotent when N e = 0 for some e ≥ 0.
e is called the exponent of N .
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.

The number of symmetric matrices is qn(n+1)/2.

The number of nilpotent matrices is qn(n−1).

This is easy but nontrivial. Proofs by Hall
(1955), Fine & Herstein (1958), Gerstenhaber
(1961), Crabb (2006), Gow & Sheekey (2011),
Blokhuis (2011).
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Look at matrices over Fq so we can count.

The number of matrices of order n is qn
2

.

The number of symmetric matrices is qn(n+1)/2.

The number of nilpotent matrices is qn(n−1).

How many symmetric nilpotent matrices?
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Count symmetric nilpotent matrices of order n
n = 0: 1 (exponent 0), namely ()
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Count symmetric nilpotent matrices of order n
n = 0: 1 (exponent 0), namely ()
n = 1: 1 (exponent 1), namely (0)
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Count symmetric nilpotent matrices of order n
n = 0: 1 (exponent 0), namely ()
n = 1: 1 (exponent 1), namely (0)
n = 2:
Look at ( a b

b c ).
All eigenvalues are 0, so trace is 0, so c = −a.
Determinant is 0, so a2 + b2 = 0.
How many solutions?
q even: q
q ≡ 1 (mod 4): 1 + 2(q − 1) = 2q − 1
q ≡ 3 (mod 4): 1

Messy
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Count symmetric nilpotent matrices of order n
n = 0: 1 (exponent 0), namely ()
n = 1: 1 (exponent 1), namely (0)
n = 2:
q even: q
q ≡ 1 (mod 4): 1 + 2(q − 1) = 2q − 1
q ≡ 3 (mod 4): 1

n = 3: 1 + (q2 − 1) + (q3 − q) = q3 + q2 − q

Exercise

Sometimes we find a polynomial in q.
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A matrix N defines a linear map N : V → V
and it makes sense to talk about N e.
What does it mean that N = N⊤?
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Let g : V × V → F be a nondegenerate
symmetric bilinear form. N is called self-adjoint

w.r.t. g when g(x,Ny) = g(Nx, y) for all x, y.
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Let g : V × V → F be a nondegenerate
symmetric bilinear form. N is called self-adjoint

w.r.t. g when g(x,Ny) = g(Nx, y) for all x, y.

Fix a basis. Then g(x, y) = x⊤Gy for a symmetric
matrix G. Now N is self-adjoint when
GN = N⊤G, that is, when GN = (GN)⊤.
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Let g : V × V → F be a nondegenerate
symmetric bilinear form. N is called self-adjoint

w.r.t. g when g(x,Ny) = g(Nx, y) for all x, y.

Fix a basis. Then g(x, y) = x⊤Gy for a symmetric
matrix G. Now N is self-adjoint when
GN = N⊤G, that is, when GN = (GN)⊤.

The standard form is the one given by the identity
matrix: g(x, y) = x⊤y =

∑
xiyi.
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Let g : V × V → F be a nondegenerate
symmetric bilinear form. N is called self-adjoint

w.r.t. g when g(x,Ny) = g(Nx, y) for all x, y.

Fix a basis. Then g(x, y) = x⊤Gy for a symmetric
matrix G. Now N is self-adjoint when
GN = N⊤G, that is, when GN = (GN)⊤.

The standard form is the one given by the identity
matrix: g(x, y) = x⊤y =

∑
xiyi.

N = N⊤ iff N is self-adjoint for the standard form.
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there?
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there? That depends on the parity of n.
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there? That depends on the parity of n.

When n is odd, all forms are equivalent to the
standard form.
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there? That depends on the parity of n.

When n is odd, all forms are equivalent to the
standard form.

When n is even, there are two nonequivalent
types.
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there? That depends on the parity of n.

When n is odd, all forms are equivalent to the
standard form.

When n is even, there are two nonequivalent
types. (Assuming n > 0.)
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So, it seems we should be counting self-adjoint
matrices w.r.t. a given nondegenerate symmetric
bilinear form. How many nonequivalent forms are
there? That depends on the parity of n.

When n is odd, all forms are equivalent to the
standard form.

When n is even, there are two nonequivalent types.

q odd: the elliptic and hyperbolic forms.
q even: the standard and symplectic forms.
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When n and q are even, one has the standard and
symplectic forms. How can one distinguish them?
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.
That is, iff G has zero diagonal.
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.
That is, iff G has zero diagonal.
(For n = 0 the standard form is symplectic.)
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.

When n is even and q is odd, one has the elliptic
and hyperbolic forms. The form is hyperbolic
when (−1)n/2 detG is a square.
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.

When n is even and q is odd, one has the elliptic
and hyperbolic forms. The form is hyperbolic
when (−1)n/2 detG is a square.

The standard form is hyperbolic if (−1)n/2 is a
square, and elliptic otherwise.
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.

When n is even and q is odd, one has the elliptic
and hyperbolic forms. The form is hyperbolic
when (−1)n/2 detG is a square.

The standard form is hyperbolic if (−1)n/2 is a
square, and elliptic otherwise. (For n = 0 there is
no elliptic form.)
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When n and q are even, one has the standard and
symplectic forms.

A form g is symplectic iff g(x, x) = 0 for all x.

When n is even and q is odd, one has the elliptic
and hyperbolic forms. The form is hyperbolic
when (−1)n/2 detG is a square.

The standard form is hyperbolic if (−1)n/2 is a
square, and elliptic otherwise. So it is hyperbolic,
unless n ≡ 2 (mod 4) and q ≡ 3 (mod 4).
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For n = 2 we now find for the number of nilpotent
self-adjoint matrices:
q even:
g standard: q
g symplectic: q2
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For n = 2 we now find for the number of nilpotent
self-adjoint matrices:
q even:
g standard: q
g symplectic: q2

Look at N = ( a b
c d ).

Here G = ( 0 1
1 0 ), and GN = (GN)⊤ yields

( c d
a b ) = ( c a

d b ), so that a = d.
The trace is 0. Determinant is 0, so a2 = bc.
Now b and c can be chosen freely.
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For n = 2 we now find for the number of nilpotent
self-adjoint matrices:
q even:
g standard: q
g symplectic: q2

N = ( a b
c d ) has a = d and a2 = bc.

(More generally, for backdiagonal G, the
self-adjoint N are those that are symmetric
w.r.t. the back diagonal.)
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For n = 2 we now find for the number of nilpotent
self-adjoint matrices:
q even:
g standard: q
g symplectic: q2

q odd:
g elliptic: 1
g hyperbolic: 2q − 1

Note that q is the average of 1 and 2q − 1.
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Consider a vector space V of dimension n = 2m
provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).)
The Lie algebra sp2m has q2m

2

nilpotent elements.

A matrix A belongs to Sp(2m) when it preserves
the form, i.e., when g(Ax,Ay) = g(x, y) for all
x, y. Write A = I + ǫX, where ǫ2 = 0, to see that
this means g(x,Xy) + g(Xx, y) = 0. For q even
this says that X is self-adjoint.
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Consider a vector space V of dimension n = 2m
provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).)
The Lie algebra sp2m has q2m

2

nilpotent elements.

Corollary If q is even, there are q2m
2

nilpotent

matrices of order 2m that are self-adjoint for a

given nondegenerate symplectic form g.

This explains the q2 that we got for n = 2.
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Consider a vector space V of dimension n = 2m
provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).)
The Lie algebra sp2m has q2m

2

nilpotent elements.

Corollary If q is even, there are q2m
2

nilpotent

matrices of order 2m that are self-adjoint for a

given nondegenerate symplectic form g.

Exercise: give a direct geometric proof.
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Steinberg (1968) shows for unipotent elements in
algebraic groups, and Springer (1980) for nilpotent
elements in the corresponding Lie algebras, that
there are qN of them, where N = |Φ| is the
number of roots of the root system.

The proof uses the Steinberg character and
modular representation theory.
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Steinberg (1968) shows for unipotent elements in
algebraic groups, and Springer (1980) for nilpotent
elements in the corresponding Lie algebras, that
there are qN of them, where N = |Φ| is the
number of roots of the root system.

For An−1, that is, GL(n), we have
|Φ| = n(n− 1), and we see again that there are
qn(n−1) nilpotent matrices.

For Cm, that is, Sp(2m), we have |Φ| = 2m2. If q
is even, there are q2m

2

nilpotent back-symmetric
matrices of order 2m.
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N is skew-symmetric when N has zero diagonal
and N = −N⊤.

For Dm, that is, O
+(2m), we have

|Φ| = 2m(m− 1). There are q2m(m−1)

skew-symmetric nilpotent matrices of order 2m.

For Bn, that is, O(2m+ 1), we have |Φ| = 2m2.
There are q2m

2

skew-symmetric matrices of order
2m+ 1.
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The Jordan normal form N of a nilpotent matrix
of order n has zeros on the main diagonal, and
zeros and ones on the diagonal just above it. This
leads to a block partition of the matrix, and to a
partition of n.

Partitions are represented by Young diagrams Y .

N =























0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0























. Y = .

e3 7→ e2 7→ e1 7→ 0, e5 7→ e4 7→ 0, e6 7→ 0, e7 7→ 0.
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Y = .

e3 7→ e2 7→ e1 7→ 0, e5 7→ e4 7→ 0, e6 7→ 0, e7 7→ 0.

The map N determines a unique Y . The number
of rows is dimkerN . The number of columns is
the exponent of N . There is a square in row i
column j if dimkerN ∩ imN j−1 ≥ i.
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Consider the Gram matrix G = (g(ui, uj))ij of
‘inner products’ of basis vectors belonging to the

Young diagram Y = , with the ui identified

with the squares of the diagram. If ui has more
squares to its right than uj to its left, then
g(ui, uj) = g(Nauh, uj) = g(uh, N

auj) = 0.
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If ui has more squares to its right than uj to its
left, then g(ui, uj) = 0.

Y =
1 5 7
2 6
3
4
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If ui has more squares to its right than uj to its
left, then g(ui, uj) = 0.

Y =
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Get a transversal of nonsingular symmetric
subblocks: for each group R of r rows of length s,
get an r × r subblock with rows indexed by Yhi

and columns by Yh,s+1−i (h ∈ R) for each i,
1 ≤ i ≤ s. Different i give the same block.
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Another example:

Y =
1 4 7
2 5
3 6
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Diagrams Y describe conjugacy classes of
unipotent matrices. (Or, orbits of nilpotent
matrices under conjugation.)
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If the form is symplectic, then the Gram matrix
has zero diagonal. This means that each odd part
of the partition has even multiplicity.
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We want to count the number of self-adjoint
nilpotent matrices in six cases: for odd q there are
the elliptic, hyperbolic, and parabolic forms, for
even q the symplectic and standard forms. Let us
call these counts e(2m), h(2m), p(2m+ 1),
z(2m), s(2m), s(2m+ 1).

Theorem All of e(2m), h(2m), p(2m+ 1),
z(2m), s(2m), s(2m+ 1) are polynomials in q.
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So far we learned one value: z(2m) = q2m
2

.

Theorem p(2m+ 1) = s(2m+ 1).

Put a(2m) = (h(2m) + e(2m))/2
and d(2m) = (h(2m)− e(2m))/2.

Theorem a(2m) = s(2m).

In both cases, the equality is one of polynomials.
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Theorem p(2m+ 1) = q2ma(2m) + qmd(2m).

Theorem p(2m+ 1) = (q2m − 1)a(2m) + z(2m).

Theorem a(2m) = q2m−1p(2m− 1).

These settle all values recursively.
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Consider V , with nondegenerate symmetric bilinear
form g. The number of self-adjoint M is qn(n+1)/2.

The map M : V → V determines a unique Fitting

decomposition V = U ⊕W of V , where M is
nilpotent on U and invertible on W .

If u ∈ U , w ∈ W , then w = M iwi for a wi ∈ W ,
and g(u, w) = g(u,M iwi) = g(M iu, wi) = 0 for
large i. So V = U ⊥ W , and U = W⊥, W = U⊥,
so that U and W are nondegenerate, and
determine each other.
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Let N(U) be the number of nilpotent self-adjoint
maps on U (provided with the restriction of g to
U), and let S(W ) be the number of invertible
self-adjoint maps on W . We proved:
qn(n+1)/2 =

∑
U N(U)S(U⊥), where the sum is

over all nondegenerate subspaces U of V .

By induction one finds N(V ).
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One finds explicit formulas for the number of
nilpotent maps of given type that have a given
Young diagram Y by counting pairs (N, g).

E.g., for n = 2m+ 1, Ns(Y ) = N(Y )gs(Y )/gs

Ns(Y ): # symmetric nilpotent maps of shape Y

N(Y ): total # nilpotent maps of shape Y

gs: total # nondegenerate symmetric bilinear
forms (on V , where dimV = n)

gs(Y ): # such forms for which a given N of
shape Y is self-adjoint.
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Each of N(Y ), gs, gs(Y ) is easy to compute.
(For gs(Y ) one uses the transversal of nonsingular
blocks.)

This means that all counts are known as a sum∑
Y Ns(Y ) over Young diagrams. Good for

checking small values. Good for proving theorems.
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We have precise conjectures, but few proofs.
However, there are recurrences, so all that is
missing is algebraic manipulation.

The recurrences allow one to compute all counts
for much larger n than is possible with the sums
over Y .
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Let p(2m+ 1, r), h(2m, r), e(2m, r) count
selfadjoint nilpotent matrices of rank r (for odd
q). Define a(2m, r), d(2m, r) as before.

Conjectures
(i) p(2m+ 1, 2s+ 1) = (q2m−2s

− 1)p(2m+ 1, 2s).
(ii) a(2m, 2s+ 1) = (q2m−2s−1

− 1)a(2m, 2s).
(iii) d(2m, 2s) = (q2m−2s

− 1)d(2m, 2s− 1).
(iv) (q2m−r

− 1)p(2m+ 1, r) = (q2m − 1)a(2m, r).
(v)

p(2m + 1, 2s) = q
s(s+1)

s−1
∏

i=0

(q
2m−2i

− 1) ·

s
∑

i=0

q
(s−i)(2m−2s−1)

[

m − s − 1 + i

i

]

q2
.

d(2m, 2s+1) = (q−1)q
m+s(s+1)−1

s
∏

i=1

(q
2m−2i

−1)·

s
∑

i=0

q
(s−i)(2m−2s−3)

[

m − s − 1 + i

i

]

q2
.

There are similar conjectures for even q.



Counts by rank

Counting

Small n

Self-adjoint matrices

Symm. bilin. forms

The standard form

n = 2 revisited

Symplectic space

Steinberg

Skew-symmetric N

Young diagrams

Young diagrams (2)

Results

Counts via Fitting

Counts by Y

Counts by rank

Counts by exponent

Proofs

The end

16 / 19

Recursions:

Proposition

(i) (q2m+1−r
− 1)p(2m+ 1, r) =

(q2m − 1)p0(2m+ 1, r) + q2m(q − 1)a(2m, r) + qm(q − 1)d(2m,r).

(ii) (q2m−r
− 1)a(2m, r) =

(q2m−1
− 1)a0(2m, r) + qm−1(q − 1)d0(2m, r) + q2m−1(q − 1)p(2m− 1, r).

(iii) (q2m−r
− 1)d(2m,r) =

(q2m−1
− 1)d0(2m, r) + qm−1(q − 1)a0(2m, r)− qm−1(q − 1)p(2m− 1, r).

And for f any of p, h, e, a, d:

(iv)
f0(n, r) = qrf(n−2, r)+(q−1)qr−1f(n−2, r−1)+(qn−r

−1)qr−1f(n−2, r−2).

Here f(n, r) = f0(n, r) = 0 for r < 0 or r > n or r = n > 0. As start of the
recursion only h(0, 0) = 1 is needed.



Counts by exponent

Counting

Small n

Self-adjoint matrices

Symm. bilin. forms

The standard form

n = 2 revisited

Symplectic space

Steinberg

Skew-symmetric N

Young diagrams

Young diagrams (2)

Results

Counts via Fitting

Counts by Y

Counts by rank

Counts by exponent

Proofs

The end

17 / 19

Let now Ns(n, e) be the number of N with
exponent e.
There is information on the case with large e.

Proposition For odd n we have

Ns(n+ 2, n+ 2) = qn(qn+1 − 1)Ns(n, n).

This is Ns(Y ), Y = .

Proposition For n odd, n > 2i, the ratio

Ns(n, n− i)/Ns(n, n) is independent of n.
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Theorem All counts are polynomials in q.

Proof The sums over Y are rational functions of q
that are integral for all q. �

Theorem p(2m+ 1) = s(2m+ 1).

Proof Write both counts as sums over Y . The
parity of q never plays a role. �
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Theorem a(2m) = s(2m).

Proof Write as sums over Y and show termwise
equality. Reduce to gh(Y )− ge(Y ) = qmgz(Y ).
Look at the block structure of a form g.
Off-diagonal blocks contribute ± a square to
detG and do not influence whether the form will
be hyperbolic, elliptic, or symplectic. Use
multiplicativity of both gh − ge and qn/2gz for
taking orthogonal direct sums. �
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Proposition Let g be a standard symmetric

bilinear form on V . Then

#{N | N self-adjoint, nilpotent} =
#{(N, x) | N idem, Nx = 0, g(x, x) 6= 0}

when n = 2m+ 1, q even or odd, and when

n = 2m, q even.

Proof (for n = 2m+ 1): Write as sums over Y ,
and show that the terms can be grouped so as to
get equality.
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The grouping is given by the map

∗
, ∗ ,

∗

→

∗

.

that moves the bottom square from the rightmost
odd column to form a new row of length one at
the bottom. �

Proof (for n = 2m, q even): Use the Fitting
decomposition. �
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Theorem p(2m+ 1) = q2ma(2m) + qmd(2m).

Theorem s(2m+ 1) = (q2m − 1)s(2m) + z(2m).

Theorem s(2m) = q2m−1s(2m− 1).

Proof The first says that p(2m+ 1) =
1
2q

m(qm + 1)h(2m) + 1
2q

m(qm − 1)e(2m).

All follow from the proposition above. �
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That was all.
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