Counting symmetric nilpotent matrices

Andries E. Brouwer

Counting

Counting
 Small n

Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.

 The number of matrices of order n is $q^{n^{2}}$.
Counting

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.
The number of matrices of order n is $q^{n^{2}}$.
The number of symmetric matrices is $q^{n(n+1) / 2}$.

Counting

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.
The number of matrices of order n is $q^{n^{2}}$.
The number of symmetric matrices is $q^{n(n+1) / 2}$.
The number of nilpotent matrices is $q^{n(n-1)}$.

Counting

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.
The number of matrices of order n is $q^{n^{2}}$.
The number of symmetric matrices is $q^{n(n+1) / 2}$.
The number of nilpotent matrices is $q^{n(n-1)}$.
N is nilpotent when $N^{e}=0$ for some $e \geq 0$. e is called the exponent of N.

Counting

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.
The number of matrices of order n is $q^{n^{2}}$.
The number of symmetric matrices is $q^{n(n+1) / 2}$.
The number of nilpotent matrices is $q^{n(n-1)}$.
This is easy but nontrivial. Proofs by Hall (1955), Fine \& Herstein (1958), Gerstenhaber (1961), Crabb (2006), Gow \& Sheekey (2011), Blokhuis (2011).

Counting

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Look at matrices over \mathbb{F}_{q} so we can count.
The number of matrices of order n is $q^{n^{2}}$.
The number of symmetric matrices is $q^{n(n+1) / 2}$.
The number of nilpotent matrices is $q^{n(n-1)}$.
How many symmetric nilpotent matrices?

Small n

Counting

Small n

Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Count symmetric nilpotent matrices of order n $n=0: 1$ (exponent 0), namely ()

Small n

Counting

Small n

Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Count symmetric nilpotent matrices of order n
$n=0: 1$ (exponent 0), namely ()
$n=1$: 1 (exponent 1), namely (0)

Small n

Counting

Small n

Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Count symmetric nilpotent matrices of order n
$n=0: 1$ (exponent 0), namely ()
$n=1$: 1 (exponent 1), namely (0)
$n=2$:
Look at $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.
All eigenvalues are 0 , so trace is 0 , so $c=-a$.
Determinant is 0 , so $a^{2}+b^{2}=0$.
How many solutions?
q even: q
$q \equiv 1(\bmod 4): 1+2(q-1)=2 q-1$
$q \equiv 3(\bmod 4): 1$
Messy

Small n

Counting

Small n

Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Count symmetric nilpotent matrices of order n
$n=0: 1$ (exponent 0), namely ()
$n=1$: 1 (exponent 1), namely (0)
$n=2$:
q even: q
$q \equiv 1(\bmod 4): 1+2(q-1)=2 q-1$
$q \equiv 3(\bmod 4): 1$
$n=3: 1+\left(q^{2}-1\right)+\left(q^{3}-q\right)=q^{3}+q^{2}-q$

Exercise

Sometimes we find a polynomial in q.

Self-adjoint matrices

Counting
Small n
\section*{Self-adjoint matrices}
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

A matrix N defines a linear map $N: V \rightarrow V$ and it makes sense to talk about N^{e}. What does it mean that $N=N^{\top}$?

Self-adjoint matrices

Counting

Small n

Self-adjoint matrices

Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Let $g: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. N is called self-adjoint w.r.t. g when $g(x, N y)=g(N x, y)$ for all x, y.

Self-adjoint matrices

Counting
Small n

Self-adjoint matrices

Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting Counts by Y Counts by rank
Counts by exponent Proofs
The end

Let $g: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. N is called self-adjoint w.r.t. g when $g(x, N y)=g(N x, y)$ for all x, y.

Fix a basis. Then $g(x, y)=x^{\top} G y$ for a symmetric matrix G. Now N is self-adjoint when
$G N=N^{\top} G$, that is, when $G N=(G N)^{\top}$.

Self-adjoint matrices

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting Counts by Y Counts by rank
Counts by exponent Proofs
The end

Let $g: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. N is called self-adjoint w.r.t. g when $g(x, N y)=g(N x, y)$ for all x, y.

Fix a basis. Then $g(x, y)=x^{\top} G y$ for a symmetric matrix G. Now N is self-adjoint when
$G N=N^{\top} G$, that is, when $G N=(G N)^{\top}$.
The standard form is the one given by the identity matrix: $g(x, y)=x^{\top} y=\sum x_{i} y_{i}$.

Self-adjoint matrices

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Let $g: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. N is called self-adjoint w.r.t. g when $g(x, N y)=g(N x, y)$ for all x, y.

Fix a basis. Then $g(x, y)=x^{\top} G y$ for a symmetric matrix G. Now N is self-adjoint when
$G N=N^{\top} G$, that is, when $G N=(G N)^{\top}$.
The standard form is the one given by the identity matrix: $g(x, y)=x^{\top} y=\sum x_{i} y_{i}$.
$N=N^{\top}$ iff N is self-adjoint for the standard form.

Symmetric bilinear forms

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there?

Symmetric bilinear forms

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there? That depends on the parity of n.

Symmetric bilinear forms

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there? That depends on the parity of n.
When n is odd, all forms are equivalent to the standard form.

Symmetric bilinear forms

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there? That depends on the parity of n.
When n is odd, all forms are equivalent to the standard form.

When n is even, there are two nonequivalent types.

Symmetric bilinear forms

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there? That depends on the parity of n.
When n is odd, all forms are equivalent to the standard form.

When n is even, there are two nonequivalent types. (Assuming $n>0$.)

Symmetric bilinear forms

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms

The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

So, it seems we should be counting self-adjoint matrices w.r.t. a given nondegenerate symmetric bilinear form. How many nonequivalent forms are there? That depends on the parity of n.
When n is odd, all forms are equivalent to the standard form.

When n is even, there are two nonequivalent types.
q odd: the elliptic and hyperbolic forms.
q even: the standard and symplectic forms.

The standard form

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms. How can one distinguish them?

The standard form

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.

A form g is symplectic iff $g(x, x)=0$ for all x.

The standard form

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.

A form g is symplectic iff $g(x, x)=0$ for all x. That is, iff G has zero diagonal.

The standard form

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.

A form g is symplectic iff $g(x, x)=0$ for all x. That is, iff G has zero diagonal.
(For $n=0$ the standard form is symplectic.)

The standard form

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.

A form g is symplectic iff $g(x, x)=0$ for all x.
When n is even and q is odd, one has the elliptic and hyperbolic forms. The form is hyperbolic when $(-1)^{n / 2} \operatorname{det} G$ is a square.

The standard form

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.

A form g is symplectic iff $g(x, x)=0$ for all x.
When n is even and q is odd, one has the elliptic and hyperbolic forms. The form is hyperbolic when $(-1)^{n / 2} \operatorname{det} G$ is a square.
The standard form is hyperbolic if $(-1)^{n / 2}$ is a square, and elliptic otherwise.

The standard form

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.
A form g is symplectic iff $g(x, x)=0$ for all x.
When n is even and q is odd, one has the elliptic and hyperbolic forms. The form is hyperbolic when $(-1)^{n / 2} \operatorname{det} G$ is a square.
The standard form is hyperbolic if $(-1)^{n / 2}$ is a square, and elliptic otherwise. (For $n=0$ there is no elliptic form.)

The standard form

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

When n and q are even, one has the standard and symplectic forms.
A form g is symplectic iff $g(x, x)=0$ for all x.
When n is even and q is odd, one has the elliptic and hyperbolic forms. The form is hyperbolic when $(-1)^{n / 2} \operatorname{det} G$ is a square.
The standard form is hyperbolic if $(-1)^{n / 2}$ is a square, and elliptic otherwise. So it is hyperbolic, unless $n \equiv 2(\bmod 4)$ and $q \equiv 3(\bmod 4)$.

$n=2$ revisited

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

For $n=2$ we now find for the number of nilpotent self-adjoint matrices:

q even:
g standard: q
g symplectic: q^{2}

$n=2$ revisited

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

For $n=2$ we now find for the number of nilpotent self-adjoint matrices:
q even:
g standard: q
g symplectic: q^{2}
Look at $N=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$.
Here $G=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$, and $G N=(G N)^{\top}$ yields
$\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)=\left(\begin{array}{cc}c & a \\ d & b\end{array}\right)$, so that $a=d$.
The trace is 0 . Determinant is 0 , so $a^{2}=b c$.
Now b and c can be chosen freely.

$n=2$ revisited

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

For $n=2$ we now find for the number of nilpotent self-adjoint matrices:
q even:
g standard: q
g symplectic: q^{2}
$N=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right)$ has $a=d$ and $a^{2}=b c$.
(More generally, for backdiagonal G, the self-adjoint N are those that are symmetric w.r.t. the back diagonal.)

$n=2$ revisited

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form
$n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

For $n=2$ we now find for the number of nilpotent self-adjoint matrices:
q even:
g standard: q
g symplectic: q^{2}
q odd:
g elliptic: 1
g hyperbolic: $2 q-1$
Note that q is the average of 1 and $2 q-1$.

Symplectic space

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Consider a vector space V of dimension $n=2 m$ provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).) The Lie algebra $\mathfrak{s p}_{2 m}$ has $q^{2 m^{2}}$ nilpotent elements.

A matrix A belongs to $S p(2 m)$ when it preserves the form, i.e., when $g(A x, A y)=g(x, y)$ for all x, y. Write $A=I+\epsilon X$, where $\epsilon^{2}=0$, to see that this means $g(x, X y)+g(X x, y)=0$. For q even this says that X is self-adjoint.

Symplectic space

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Consider a vector space V of dimension $n=2 m$ provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).) The Lie algebra $\mathfrak{s p}_{2 m}$ has $q^{2 m^{2}}$ nilpotent elements.

Corollary If q is even, there are $q^{2 m^{2}}$ nilpotent matrices of order $2 m$ that are self-adjoint for a given nondegenerate symplectic form g.

This explains the q^{2} that we got for $n=2$.

Symplectic space

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Consider a vector space V of dimension $n=2 m$ provided with a nondegenerate symplectic form g.

Theorem (Steinberg (1968), Springer (1980).) The Lie algebra $\mathfrak{s p}_{2 m}$ has $q^{2 m^{2}}$ nilpotent elements.

Corollary If q is even, there are $q^{2 m^{2}}$ nilpotent matrices of order $2 m$ that are self-adjoint for a given nondegenerate symplectic form g.

Exercise: give a direct geometric proof.

Steinberg

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space

Steinberg

Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Steinberg (1968) shows for unipotent elements in algebraic groups, and Springer (1980) for nilpotent elements in the corresponding Lie algebras, that there are q^{N} of them, where $N=|\Phi|$ is the number of roots of the root system.

The proof uses the Steinberg character and modular representation theory.

Steinberg

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space

Steinberg

Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Steinberg (1968) shows for unipotent elements in algebraic groups, and Springer (1980) for nilpotent elements in the corresponding Lie algebras, that there are q^{N} of them, where $N=|\Phi|$ is the number of roots of the root system.

For A_{n-1}, that is, $G L(n)$, we have $|\Phi|=n(n-1)$, and we see again that there are $q^{n(n-1)}$ nilpotent matrices.

For C_{m}, that is, $S p(2 m)$, we have $|\Phi|=2 m^{2}$. If q is even, there are $q^{2 m^{2}}$ nilpotent back-symmetric matrices of order $2 m$.

Skew-symmetric nilpotent matrices

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2) Results Counts via Fitting Counts by Y
Counts by rank
Counts by exponent Proofs
The end
N is skew-symmetric when N has zero diagonal and $N=-N^{\top}$.

For D_{m}, that is, $O^{+}(2 m)$, we have $|\Phi|=2 m(m-1)$. There are $q^{2 m(m-1)}$ skew-symmetric nilpotent matrices of order $2 m$.

For B_{n}, that is, $O(2 m+1)$, we have $|\Phi|=2 m^{2}$. There are $q^{2 m^{2}}$ skew-symmetric matrices of order $2 m+1$.

Young diagrams

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N

Young diagrams

Young diagrams (2)
Results
Counts via Fitting Counts by Y
Counts by rank
Counts by exponent Proofs
The end

The Jordan normal form N of a nilpotent matrix of order n has zeros on the main diagonal, and zeros and ones on the diagonal just above it. This leads to a block partition of the matrix, and to a partition of n.
Partitions are represented by Young diagrams Y.
\(N=\left[$$
\begin{array}{lllllll}{\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\end{array}
$$\right.} \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline\end{array}\right] . \quad Y=\)| \square |
| :--- |
| \square |
| \square |

$e_{3} \mapsto e_{2} \mapsto e_{1} \mapsto 0, e_{5} \mapsto e_{4} \mapsto 0, e_{6} \mapsto 0, e_{7} \mapsto 0$.

Young diagrams

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

$e_{3} \mapsto e_{2} \mapsto e_{1} \mapsto 0, e_{5} \mapsto e_{4} \mapsto 0, e_{6} \mapsto 0, e_{7} \mapsto 0$.
The map N determines a unique Y. The number of rows is dim ker N. The number of columns is the exponent of N. There is a square in row i column j if $\operatorname{dim} \operatorname{ker} N \cap \operatorname{im} N^{j-1} \geq i$.

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Consider the Gram matrix $G=\left(g\left(u_{i}, u_{j}\right)\right)_{i j}$ of 'inner products' of basis vectors belonging to the Young diagram $Y=\square$, with the u_{i} identified with the squares of the diagram. If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=g\left(N^{a} u_{h}, u_{j}\right)=g\left(u_{h}, N^{a} u_{j}\right)=0$.

Young diagrams (2)

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form $n=2$ revisited Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.
$Y=\left[\begin{array}{llllllll}1577 \\ \frac{1}{2} & 6 \\ \frac{3}{4} \\ 4\end{array}\right]\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & . & \vdots & \ddots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right]$

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.

$$
Y=\begin{array}{|l|l|}
\hline \begin{array}{lll}
1 & 5 & 7 \\
2 & 6 \\
\hline & \\
\hline 4
\end{array} & {\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * & . \\
0 & 0 & . & . & . & . & . \\
0 & 0 & . & . & . & . & . \\
0 & 0 & . & . & . & . & . \\
0 & * & . & . & . & . & . \\
* & . & . & . & . & . & .
\end{array}\right]}
\end{array}
$$

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.

$$
Y=\begin{array}{|l|l|}
\hline \begin{array}{lll}
1 & 5 & 7 \\
\hline 2 & 6 \\
\hline 3 & \\
\hline 4
\end{array} \quad\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * & . \\
0 & 0 & . & . & 0 & . & . \\
0 & 0 & . & . & 0 & . & . \\
0 & 0 & 0 & 0 & * & . & . \\
0 & * & . & . & . & . & . \\
* & . & . & . & . & . & .
\end{array}\right], ~
\end{array}
$$

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.

$$
Y=\begin{array}{|l|l|}
\hline 1 & 5 \\
\hline & 7 \\
\hline 3 & 6 \\
\hline 4 & \\
4
\end{array} \quad\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * & . \\
0 & 0 & a & b & 0 & . & . \\
0 & 0 & b & c & 0 & . & . \\
0 & 0 & 0 & 0 & * & . & . \\
0 & * & . & . & . & . & . \\
* & . & . & . & . & . & .
\end{array}\right]
$$

Young diagrams (2)

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

If u_{i} has more squares to its right than u_{j} to its left, then $g\left(u_{i}, u_{j}\right)=0$.

$$
Y=\frac{\begin{array}{l}
155 \\
\frac{2}{2} 6 \\
\frac{3}{4} \\
4
\end{array}}{\substack{ \\
\hline \\
\hline}}
$$

$\left[\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 0 & d \\ 0 & 0 & 0 & 0 & 0 & e & \cdot \\ 0 & 0 & n_{a} & b & 0 & \cdot & \cdot \\ 0 & 0 & b & c & 0 & \cdot & \cdot \\ 0 & 0 & 0 & 0 & d & \cdot & \cdot \\ 0 & e & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline d & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right]$

Get a transversal of nonsingular symmetric subblocks: for each group R of r rows of length s, get an $r \times r$ subblock with rows indexed by $Y_{h i}$ and columns by $Y_{h, s+1-i}(h \in R)$ for each i, $1 \leq i \leq s$. Different i give the same block.

Young diagrams (2)

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Another example:

Get a transversal of nonsingular symmetric subblocks: for each group R of r rows of length s, get an $r \times r$ subblock with rows indexed by $Y_{h i}$ and columns by $Y_{h, s+1-i}(h \in R)$ for each i, $1 \leq i \leq s$. Different i give the same block.

Young diagrams (2)

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Another example:
$Y=\left[\begin{array}{llllllll}14[7] \\ \frac{1}{2} 5 \\ 3 / 6\end{array}\right]\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & d \\ 0 & 0 & 0 & 0 & a & b \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d & b & c\end{array}\right]$
Diagrams Y describe conjugacy classes of unipotent matrices. (Or, orbits of nilpotent matrices under conjugation.)

Young diagrams (2)

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Another example:

If the form is symplectic, then the Gram matrix has zero diagonal. This means that each odd part of the partition has even multiplicity.

Results

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)

Results

Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

The end

We want to count the number of self-adjoint nilpotent matrices in six cases: for odd q there are the elliptic, hyperbolic, and parabolic forms, for even q the symplectic and standard forms. Let us call these counts $e(2 m), h(2 m), p(2 m+1)$, $z(2 m), s(2 m), s(2 m+1)$.

Theorem All of $e(2 m), h(2 m), p(2 m+1)$, $z(2 m), s(2 m), s(2 m+1)$ are polynomials in q.

Results

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2) Results

Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

So far we learned one value: $z(2 m)=q^{2 m^{2}}$.
Theorem $p(2 m+1)=s(2 m+1)$.
Put $a(2 m)=(h(2 m)+e(2 m)) / 2$ and $d(2 m)=(h(2 m)-e(2 m)) / 2$.

Theorem $a(2 m)=s(2 m)$.
In both cases, the equality is one of polynomials.

Results

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2) Results
Counts via Fitting Counts by Y Counts by rank Counts by exponent Proofs
The end

Theorem $p(2 m+1)=q^{2 m} a(2 m)+q^{m} d(2 m)$.
Theorem $p(2 m+1)=\left(q^{2 m}-1\right) a(2 m)+z(2 m)$.
Theorem $a(2 m)=q^{2 m-1} p(2 m-1)$.
These settle all values recursively.

Counts via Fitting

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

Consider V, with nondegenerate symmetric bilinear form g. The number of self-adjoint M is $q^{n(n+1) / 2}$. The map $M: V \rightarrow V$ determines a unique Fitting decomposition $V=U \oplus W$ of V, where M is nilpotent on U and invertible on W.
If $u \in U, w \in W$, then $w=M^{i} w_{i}$ for a $w_{i} \in W$, and $g(u, w)=g\left(u, M^{i} w_{i}\right)=g\left(M^{i} u, w_{i}\right)=0$ for large i. So $V=U \perp W$, and $U=W^{\perp}, W=U^{\perp}$, so that U and W are nondegenerate, and determine each other.

Counts via Fitting

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Let $N(U)$ be the number of nilpotent self-adjoint maps on U (provided with the restriction of g to U), and let $S(W)$ be the number of invertible self-adjoint maps on W. We proved: $q^{n(n+1) / 2}=\sum_{U} N(U) S\left(U^{\perp}\right)$, where the sum is over all nondegenerate subspaces U of V.
By induction one finds $N(V)$.

Counts by Y

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

One finds explicit formulas for the number of nilpotent maps of given type that have a given Young diagram Y by counting pairs (N, g).
E.g., for $n=2 m+1, N_{s}(Y)=N(Y) g_{s}(Y) / g_{s}$
$N_{s}(Y)$: \# symmetric nilpotent maps of shape Y
$N(Y)$: total \# nilpotent maps of shape Y
g_{s} : total \# nondegenerate symmetric bilinear forms (on V, where $\operatorname{dim} V=n$)
$g_{s}(Y)$: \# such forms for which a given N of shape Y is self-adjoint.

Counts by Y

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

Each of $N(Y), g_{s}, g_{s}(Y)$ is easy to compute. (For $g_{s}(Y)$ one uses the transversal of nonsingular blocks.)

This means that all counts are known as a sum $\sum_{Y} N_{s}(Y)$ over Young diagrams. Good for checking small values. Good for proving theorems.

Counts by rank

Counting
Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent
Proofs
The end

We have precise conjectures, but few proofs. However, there are recurrences, so all that is missing is algebraic manipulation.

The recurrences allow one to compute all counts for much larger n than is possible with the sums over Y.

Counts by rank

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Let $p(2 m+1, r), h(2 m, r), e(2 m, r)$ count selfadjoint nilpotent matrices of rank r (for odd $q)$. Define $a(2 m, r), d(2 m, r)$ as before.

Conjectures

(i) $p(2 m+1,2 s+1)=\left(q^{2 m-2 s}-1\right) p(2 m+1,2 s)$.
(ii) $a(2 m, 2 s+1)=\left(q^{2 m-2 s-1}-1\right) a(2 m, 2 s)$.
(iii) $d(2 m, 2 s)=\left(q^{2 m-2 s}-1\right) d(2 m, 2 s-1)$.
(iv) $\left(q^{2 m-r}-1\right) p(2 m+1, r)=\left(q^{2 m}-1\right) a(2 m, r)$.
(v)

$$
\begin{gathered}
p(2 m+1,2 s)=q^{s(s+1)} \prod_{i=0}^{s-1}\left(q^{2 m-2 i}-1\right) \cdot \sum_{i=0}^{s} q^{(s-i)(2 m-2 s-1)}\left[\begin{array}{c}
m-s-1+i \\
i
\end{array}\right]_{q^{2}} \\
d(2 m, 2 s+1)=(q-1) q^{m+s(s+1)-1} \prod_{i=1}^{s}\left(q^{2 m-2 i}-1\right) \cdot \sum_{i=0}^{s} q^{(s-i)(2 m-2 s-3)}\left[\begin{array}{c}
m-s-1+i \\
i
\end{array}\right]_{q^{2}} .
\end{gathered}
$$

There are similar conjectures for even q.

Counts by rank

Counting

Small n
Self-adjoint matrices Symm. bilin. forms
The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent Proofs
The end

Recursions:

Proposition

(i) $\left(q^{2 m+1-r}-1\right) p(2 m+1, r)=$
$\left(q^{2 m}-1\right) p_{0}(2 m+1, r)+q^{2 m}(q-1) a(2 m, r)+q^{m}(q-1) d(2 m, r)$.
(ii) $\left(q^{2 m-r}-1\right) a(2 m, r)=$
$\left(q^{2 m-1}-1\right) a_{0}(2 m, r)+q^{m-1}(q-1) d_{0}(2 m, r)+q^{2 m-1}(q-1) p(2 m-1, r)$.
(iii) $\left(q^{2 m-r}-1\right) d(2 m, r)=$
$\left(q^{2 m-1}-1\right) d_{0}(2 m, r)+q^{m-1}(q-1) a_{0}(2 m, r)-q^{m-1}(q-1) p(2 m-1, r)$.

And for f any of p, h, e, a, d :
(iv)
$f_{0}(n, r)=q^{r} f(n-2, r)+(q-1) q^{r-1} f(n-2, r-1)+\left(q^{n-r}-1\right) q^{r-1} f(n-2, r-2)$.

Here $f(n, r)=f_{0}(n, r)=0$ for $r<0$ or $r>n$ or $r=n>0$. As start of the recursion only $h(0,0)=1$ is needed.

Counts by exponent

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank

Let now $N_{s}(n, e)$ be the number of N with exponent e.
There is information on the case with large e.
Proposition For odd n we have
$N_{s}(n+2, n+2)=q^{n}\left(q^{n+1}-1\right) N_{s}(n, n)$.
This is $N_{s}(Y), Y=\square \square \square \square \square \square$.
Proposition For n odd, $n>2 i$, the ratio $N_{s}(n, n-i) / N_{s}(n, n)$ is independent of n.

Proofs

Counting

Small n
Self-adjoint matrices
Symm. bilin. forms
The standard form
$n=2$ revisited
Symplectic space
Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

Proofs

The end

Theorem All counts are polynomials in q.
Proof The sums over Y are rational functions of q that are integral for all q. \square

Theorem $p(2 m+1)=s(2 m+1)$.
Proof Write both counts as sums over Y. The parity of q never plays a role. \square

Proofs

Counting
Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

Proofs

The end

Theorem $a(2 m)=s(2 m)$.
Proof Write as sums over Y and show termwise equality. Reduce to $g_{h}(Y)-g_{e}(Y)=q^{m} g_{z}(Y)$. Look at the block structure of a form g. Off-diagonal blocks contribute \pm a square to $\operatorname{det} G$ and do not influence whether the form will be hyperbolic, elliptic, or symplectic. Use multiplicativity of both $g_{h}-g_{e}$ and $q^{n / 2} g_{z}$ for taking orthogonal direct sums. \square

Proofs

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N
Young diagrams
Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

Proofs

The end

Proposition Let g be a standard symmetric bilinear form on V. Then

$$
\begin{aligned}
& \#\{N \mid N \text { self-adjoint, nilpotent }\}= \\
& \quad \#\{(N, x) \mid N \text { idem, } N x=0, g(x, x) \neq 0\}
\end{aligned}
$$

when $n=2 m+1, q$ even or odd, and when $n=2 m, q$ even.
Proof (for $n=2 m+1$): Write as sums over Y, and show that the terms can be grouped so as to get equality.

Proofs

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2)
Results
Counts via Fitting
Counts by Y
Counts by rank
Counts by exponent

Proofs

The end

The grouping is given by the map

that moves the bottom square from the rightmost odd column to form a new row of length one at the bottom. \square

Proof (for $n=2 m, q$ even): Use the Fitting decomposition. \square

Proofs

Counting

Small n
Self-adjoint matrices Symm. bilin. forms The standard form $n=2$ revisited Symplectic space Steinberg
Skew-symmetric N Young diagrams Young diagrams (2) Results Counts via Fitting Counts by Y
Counts by rank
Counts by exponent

Proofs

The end

Theorem $p(2 m+1)=q^{2 m} a(2 m)+q^{m} d(2 m)$.
Theorem $s(2 m+1)=\left(q^{2 m}-1\right) s(2 m)+z(2 m)$.
Theorem $s(2 m)=q^{2 m-1} s(2 m-1)$.
Proof The first says that $p(2 m+1)=$ $\frac{1}{2} q^{m}\left(q^{m}+1\right) h(2 m)+\frac{1}{2} q^{m}\left(q^{m}-1\right) e(2 m)$.
All follow from the proposition above. \square

The end

\author{

Counting

 Small n
 Self-adjoint matrices
 Symm. bilin. forms
 The standard form
 $n=2$ revisited
 Symplectic space
 Steinberg
 Skew-symmetric N
 Young diagrams
 Young diagrams (2)
 Results
 Counts via Fitting
 Counts by Y
 Counts by rank
 Counts by exponent
 Proofs
 The end}

