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Introduction

In this thesis we study the rank over the finite field of p elements, or p-rank, of the adjacency matrices
of strongly regular graphs. Such matrices may be used as generator matrices for p-ary codes and in
this connection the determination of the p-rank is of particular importance, since it is the dimension
of the code.

For various incidence structures, the p-ranks of associated (0, 1) matrices have been investigated.
As an example of such investigations that are explicitly related to error correcting codes, we mention
the papers of Bagchi and Sastry [2] and Hamada [9], who deal with generalized polygons and block
designs, respectively. However, also other problems give rise to the study of the p-rank of incidence
matrices. For example, Linial and Rothschild [13] solve a set theoretical problem by determining
the p-rank of the incidence matrix of subsets (see also Wilson [21]). Furthermore, self-dual codes
associated with symmetric designs are investigated by Lander [12] in order to derive new results on
the parameters of such designs. Bagchi, Brouwer and Wilbrink [1] and Brouwer and Haemers [3]
give results on the p-rank of the adjacency matrices of some strongly regular graphs. As a matter of
fact, these are the only papers known to us which deal with our subject.

Let A denote the adjacency matrix of a strongly regular graph. We shall not restrict our investi-
gations to the p-rank of A, but study the p-rank of A + 71 for any integer 7. For most combinations
of p and 7, the p-rank of A + 71 is completely determined by the parameters of the graph. For the
remaining cases, it is really necessary to investigate the structure of the graph.

Linear algebra, coding theory and group theory play an important role in deriving results on the
p-rank of a strongly regular graph!. Chapter 1 gives a survey of the concepts used from these areas.
Besides that, it provides an introduction to the theory of strongly regular graphs.

The p-rank of an integral matrix is easily derived from its Smith normal form, which is the subject
of Chapter 2. We shall determine the Smith normal form of the adjacency matrices of two infinite
families of strongly regular graphs, namely, the lattice graphs and the triangular graphs.

In Chapter 3 the p-rank of strongly regular graphs with integral eigenvalues is considered. We
isolate the combinations of p and 7 for which the determination of the p-rank of A + 71 is nontrivial
and give a general upper bound for these cases. Furthermore, it is investigated how the p-ranks of
switching-equivalent graphs are related.

Chapter 4 deals with Paley graphs. For these graphs, the p-rank of A + 71 will be determined for
every p and 7.

In Chapter § it is shown how character theory can be used to obtain a set of possible values for
the p-rank of a graph. We also investigate for which graphs such a set is expected to be small.

In the last chapter we determine (bounds for) the p-rank of a consideérable number of graphs,
especially sporadic graphs. A table of the results concludes this chapter.

lBy the rank of a graph we mean the rank of its adjacency matrix.



Chapter 1

Preliminaries

In this thesis many concepts from different areas of mathematics are used. Although most of them are
elementary, we think it convenient for the reader to have a brief survey. Besides that, some notation is
introduced and a few results on matrices and strongly regular graphs are given. The results are stated
without proof, for which the reader is referred to the literature. As far as matrix theory is concemned,
proofs can be found in any textbook, for example Marcus and Minc [16]. For the theory of strongly
regular graphs we refer to the surveys of Cameron [5] and Seidel [19].

The first convention is that the letter p always denotes a prime. We assume that the reader is
familiar with the basic notions from the theory of finite fields. If not, it suffices to study the first
sections of Chapter 4 of MacWilliams and Sloane [15]. A finite field with ¢ elements is denoted by
F,.

1.1 Matrix theory

Let us first establish some notation. The set of all n x m matrices with entries in a field F is denoted
by F™*™ . We shall mainly deal with square matrices. Usually, the rows and columns of a matrix will
be indexed by elements of a given set. A vector z always denotes a row vector.

The n x n identity matrix is denoted by I,,. Furthermore, O,, denotes the n X n all-zero matrix and
J;, the all-one matrix of size n. The all-one and all-zero vector are written as 1,, and 0,,, respectively.
When no confusion can occur, the index n is omitted.

We write diag(ay, ag, . . ., ay) for a diagonal matrix of size n with diagonal elements ;, 1 < ¢ <
n. Diag(a]™, 03?,.. ) denotes the matrix

my mz

o

diag(&r, 01,85 05 - - )

Similarly, a block diagonal matrix consisting of n; blocks M), ny blocks M,, etc., is denoted by
diag(M{", M;2,..).

Denote by V the n-dimensional vectorspace over F. Let V; and V5 be linear subspaces of V. The
sum of V} and V; is denoted by V; + V2. If Vi NV, = {0}, then we write Vj @ V; for the direct sum
of the two subspaces.

Now let F be a field and let M be an element of F™*™ for some integer n. The matrix M is said

10 be nonsingular if det(M) # 0 and singular otherwise. The characteristic polynomial of M is the
polynomial p(z) = det(M — zI). The eigenvalues of M are the zeros of p(z). If A is an eigenvalue of
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M, then there exists a nonzero vector z such that zM = Az. The vector z is called an eigenvector of
M (belonging to A). By the algebraic multiplicity of A we mean its multiplicity as a root of p(z). The
geometric multiplicity is the dimension of the corresponding eigenspace V) := {z € V |zM = Az}
The spectrum of M is the set of eigenvalues including their algebraic multiplicities.

The geometric multiplicity of A is at most its algebraic multiplicity. If equality holds, then

> dim(Vy,) = n. (1.1)
A

This is equivalent to the assertion that V has a basis consisting of the eigenvectors of M. In this case,
we omit the adjective and speak about the multiplicity of the eigenvalue.

The matrix M is called diagonalizable if there exists a nonsingular matrix § € F™*" such that
§7'MS = A, where A is a diagonal matrix. M is diagonalizable if and only if (1.1) holds. If
M'e Frxn . MM' = M'M and both matrices are diagonalizable, then they can be diagonalized by
the same nonsingular matrix S.

Set (z1,...,2Zm) 1= {3 7%; @iz;|o; € F}, the vectorspace over F generated by z,...,2,,. We
write R (M) for the rowspace of M over F, that is, the vectorspace generated by the rows of M.
The F-rank of M is defined as the dimension of R p( M ). We use the notation 7. (M ). In the special
case that F' = I, we write (M) and R,(M ) to denote the rank and rowspace of M over Iy,
respectively,

The kernel of M over F, denoted by Np(M ), is defined as

Nr(M):={z|zM = 0}.

We have
dimRp(M)+dimNp(M) = n.

Clearly, if A is an eigenvalue of M, then V) = Np(M — A1),
M is said to be equivalent to M' if there exist two nonsingular elements F and @ of F*", such
that M = PM’Q. Notation:
M 1 Mz.

If r. = r,then M ~ diag(17,0""").
The following row operations are called elementary:
(i)  interchanging rows;
(ii)  adding a multiple of a row to another row;
@iii) multiplying a row by a nonzero element of F.
The elementary column operations are defined similarly. It is evident that if M ~ M’, then M can
be obtained from A’ by applying a sequence of elementary row and column operations.

The trace of M is the sum of its diagonal elements and is denoted by tr(M). One easily sees that
it satisfies the following property:

t(MM') = u(M'M), M,M'e F"™".

If Qis asetand Q' C Q, then the characteristic vector of Q' is the vector ¢ with coordinates
indexed by the elements of Q satisfying

W =

1 ifwel
0 otherwise.



Finally, a permutation matrix is a square matrix which has precisely one 1 in each column and
each row and zeros elsewhere.

1.2 Graph theory

1.2.1 General concepts

A (simple, undirected) graph T is a pair (V, E), where V is a finite nonempty set of elements called
vertices and E is a finite set of unordered pairs of distinct vertices of V' called edges. The number of
vertices of I is called the order of I and is denoted by v. If e = {z,y} is an edge of T', then z and
y are said to be adjacent and e is said to be incident to = and y. For each vertex z in a graph T, the
number of vertices adjacent to z is called the valency of z. A vertex of valency 0 is called an isolated
vertex. If all the vertices of T have the same valency, then I is said to be a regular graph.

A subgraph of a graph I''is a graph A = (V}, Ey)suchthat Vi C V and Ey C E. if V) is any
subset of vertices of T, then the subgraph induced by V) is the subgraph of I obtained by taking the
vertices in V] and joining those pairs of vertices of ¥} which are joined in I. An induced subgraph
of T is a subgraph induced by some subset V; of V.

The complement of T (denoted by I') is the graph with the same vertex set as T, but where two
vertices are adjacent iff they are not adjacent in T,

A graph consisting of v isolated vertices is called a coclique of size v. Its complement is a regular
graph of valency v — 1, which is called the complete graph or cligue of size v.

Two graphs I" and A are said to be isomorphic (written " & A) if there is a one-to-one correspon-
dence between their vertex sets which preserves the adjacency of vertices. An automorphism of T is
a one-to-one mapping ¢ of V' onto itself such that ¢(z) and ¢(y) are adjacent iff r and y are. The
automorphisms of I" form a group under composition, called the automorphism group of T'. It is said
to be transitive if it contains transformations mapping each vertex of I' to every other vertex.

A graph T can be described by its (0,1) adjacency matrix A of size v defined by numbering the
vertices and taking a;; = 1iff the vertices 7 and j are adjacent. By the eigenvalues of I', we mean the
eigenvalues of A, which are independent of the numbering of the vertices. Since A is a symmetric
matrix, its eigenvalues are real. Graphs with the same spectrum are called cospectral. Cospectral
graphs are not necessarily isomorphic. Denote by B the adjacency matrix of T, the complement of T,
then

I,+A+B=/J,.

When considering a graph T, its adjacency matrix will always be denoted by Ar, unless stated
otherwise. If no confusion can occur, we simply write A.

1.2.2 Strongly regular graphs

A graph is called strongly regular if there exist integers &, A and y such that:

1. the graph is regular with valency k;
2. the number of vertices adjacent to two adjacent vertices is A;
3. the number of vertices adjacent to two non-adjacent vertices is .

If T is a strongly regular graph (or srg for short) with parameters (v, k, A, y1), then its complement T
is also strongly regular with parameters

0,k M\E) = (v,o—k~1,v=2k+pu—-2,0-2k+ A).
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Usually, the valency of I" is denoted by I. Disconnected graphs and their complements will be ex-
cluded, i.e. weassume0 < p < k <v -1,

Let A be the adjacency matrix of I". For the rest of this section, A is regarded as an element of
R¥*?, The matrix A satisfies

Al = kJ,
A = KI+MM+p(J-1-A). (1.2)

We see that the all-one vector is an eigenvector of A with eigenvalue k. The adjacency matrix A has
two other eigenvalues r and s (r > s), which are the solutions of z2 + (¢ — A)z + (¢ — k) = 0. Their
multiplicities f and g satisfy

f+g = t"‘l,
k+ fr+gs 0.

i

Clearly, f and g can be expressed in terms of v, &k, A and u. From the integrality of f and g, a strong
necessary condition on the parameters of a srg is obtained. If f = ¢ (the so-called half-case), we
have v = 4p + 1,k = 2, A = p — 1 and the graph has the same parameters as its complement.
Otherwise, the eigenvalues r and s are integers.

For later use, we mention the following relations between k, A, mu, r and s:

A—~p=r+s, pu=k+rs (1.3)
These relations immediately follow from the equality 2> + (g ~ M)z + (1 — k) = (z — r)(z — 3).

Let .A be the linear span of {I, A, B} over R, where B denotes the adjacency matrix of T. The
vectorspace A is closed with respect to ordinary matrix multiplication and is called the adjacency
algebra or Bose-Mesner algebra of T'. Since the matrices in A are symmetric and commute with each
other, they can be simultaneously diagonalized. Therefore, A admits a (unique) basis of minimal
idempotents { Ey, Ey, E,} satisfying

2
Y E = J

=0
EE, = 6,E; (14)

where ¢,; denotes the Kronecker delta. The following tables list them as linear combinations of the
basis {I, A, B} and vice versa:

] I A B

vEg|1 1 1 I

vEy | f f§ -fF A

vEy|g 93 -gF B

From the right hand table and (1.4), we obtain that AE; = rE; and AE; = sE;. The columns

of the E; span the eigenspaces of all the matrices of .4. Thus the rank of E; equals the dimension
of the itheigenspace. It followsthat r(Ey) = fand r(E2) = g, where 7( M ) denotes the JR-rank of M.

1 1
r s
—_r -1 —s5-1

By E E,
1
k
l



The last concept discussed here is switching. Let T' = (V, E) be a (not necessarily strongly
regular) graph and let V; be a nonempty proper subset of V. Set V2 := V' \ V1. We construct a new
graph I'" = (V, E’) in the following way:

if v, v, € W, then {v1,v,} € E'iff {vl,v;} € E;
if v3,v, € V3, then {w,v,} € E'iff {3, %} € E;
if vy € Vi, € V3, then {v, 12} € E'iff {n), 02} ¢ E.

I" and I are said to be switching-equivalent. V; is called the switching-set.
It can be proven that if T is strongly regular, its parameters satisfy

v4d4rs+2r+28=0

and I" is regular, then I is again a srg, either with different parameters, or with the same parameters
but nonisomorphicto T', or isomorphicto T, If V} = {y|z ~ y} for an arbitrary vertex z of T, then
I is the disjoint union of z and a srg with k = 2.

1.3 Codes

We shall recall only a few basic concepts from coding theory here.

By a p-ary linear code C of length n and dimension k, we mean a k-dimensional subspace of the
n-dimensional vectorspace over JF',, provided with its standard basis. The elements of C are called
codewords. A third parameter of the code is the minimum distance d, defined as

d:=min{d(g;, )l g, €C, g # o},

where the Hamming distance d(z, y) between two n-tuples z and y denotes the number of coordinates
on which z and y differ. If C has minimum distance d, then C is a [ 1-error correcting code.
If {c;,..., ck} is a basis for C, then the matrix

Me =

is called a generator matrix for C.
The dual C* of C is defined as

t:={z € F}|(c,z) =0forall c € C},

where (-, -) denotes the ordinary inner product. The dimension of C* is n — k. The code C is said to
be self-orthogonal if C C C*. Incase C = C*, the code is called self-dual.

1.4 Groups

In this section a few elementary concepts from group theory are recalled. For more details we refer
to Suzuki [20]. N

We assume the reader to be familiar with the concept of a group. Let G be a finite group with
identity e. The number of elements of G is called the order of the group and denoted by |G|. If g is
an element of G, then the order of g is defined as the smallest integer » for which g™ = e.
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The set {g~'g19|g € G} is called the conjugacy class of g;. A subgroup H of G is called
normal if HY := {g7'hg|h € H} = H for every g € G. f H is a normal subgroup of G, then
the factor group G/ H is defined as the group of cosets gH := {gh|h € H} with multiplication
(1 H)(g2H) := (192)H. The index of H in G is the order of G/ H.

Let G and G’ be two groups. A function f : G — G’ is called a homomorphism from G into G’
if it satisfies

fla)f(g2) = f(9192) forall g1, g2 € G.

If f induces a one-to-one correspondence and is surjective, then f is said to be an isomorphism. In
that case, we say that G and G’ are isomorphic and write G >~ G'.

If G acts on a set X, then the action of G is written on the right. Thus, if z € X and g € G, then
the image of z under g is denoted by xg. The orbit of z is defined as

{zglgeG}.

If X is itself an orbit, then G is called transitive.

A ring R is an additive abelian group (ie. 2+ y = y + z for all z, y € R), together with a
multiplication satisfying (zy)z = 2(yz), z{y+z) = 2y+zz, (x+y)z = rz+yz and which contains
an identity element e such that ze = ez = z. Furthermore, let F be a field and V' a vectorspace over
F which is also a ring. If {cu)v = ¢(uv) = u(cv)forall c € F and u, v € V, then V is called an
F-algebra.

10



Chapter 2

The Smith normal form

Throughout this section, M denotes an n X n matrix with integral entries and R-rank r. The Smith
normal form of M is a diagonal matrix obtained from M by a sequence of elementary row and
column operations over Z, from which the p-rank of M is easily derived for all primes p. We first
give definitions and prove some general results. In the second section, the Smith normal form of the
adjacency matrices of triangular graphs and lattice graphs is calculated.

2.1 Definitions and results

For more details on the theory discussed here we refer to Newman [17].

Definitions M is called unimodular if |det(M )] = 1. Two integral matrices M and N are said
to be unimodularly equivalent (denoted by M ~ N) if there exist unimodular matrices P and ¢J such
that M = PNQ.

Theorem 2.1 M is unimodularly equivalent to a diagonal matrix S = diag(si, ..., 5,0, ...,0),where
risthe R-rank of M and s;|3;41,1 <i<r-1.

PROCF. If M is the all-zero matrix, then there is nothing to prove. Hence, we assume that M contains
a nonzero element, that can be brought to the (1,1) position by suitable row and column interchanges.
Applying the Euclidean algorithm, this element may be replaced by the greatest common divisor of
the elements of the first row and column. Now all these elements, except the (1,1) element, can be
made zero. Denote this new matrix by M. Clearly, M ~ M. Suppose that M contains an element
7;; that is not divisible by m;;. Adding the ith row to the first row and proceeding as described
before, we finally reach a state where the element in the (1,1) position divides every element of the
matrix, and all the other elements of the first row and column are zero.

The entire procedure is now repeated with the submatrix obtained by deleting the first row and
column of M. Since unimodularly equivalent matrices have the same rank, we eventually obtain a
diagonal matrix with the required properties. u

Theorem 2.2 The diagonal entries of the matrix S which is described by Theorem 2.1, are uniquely
determined, up to sign.

For the proof of this theorem we introduce the concept of the determinantal divisorsof M, d;(M),1 <
¢ < n. They are defined as the greatest common divisor of all determinants of ¢ x 1 submatrices of
M.
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PROOF OF THE THEOREM. From the fact that unimodularly equivalent matrices have the same deter-
minantal divisors (see [17] for a proof), it follows that

dg(M)znsj, 1<i<r.

i=1
Thus sy = dy(M) and s; = di(M)/d;.1(M), 2 < i < r. Since the determinantal divisors are
determined up to sign, the statement is proved. =

S is called the Smith normal form (SNF) of M. We shall use the notation S(M ). The s; are
known as the invariant factors of M.

The p-rank of M is easily derived from S(M). Let S(M} = diag(s1,...,$,,0,...,0). Then
ro{ M) = rp(S(M)) = r*, where r* satisfies p s, and p| s,+41. Clearly, we have r,(M) < 7, the
rank of M over the real field.

Example 2.1 Let us determine the SNF of J,, — I,,, the adjacency matrix of the complete graph
of size n,

011 0 1 1 1
1 01 1 -1 0
Jo-I,=1110 1l~] ! -1 0 | ~ diag(1™!,n-1).
111 ..-0 1 6 0 ... -1
Thus
_Ja-1 ifp[(n~1)
rp(Jn = In) = { n otherwise.

More generally, S(J,, + 71,,) = diag(1,7"~2, 7(1 + n)), T € Z.

If for M a unimodularly equivalent diagonal matrix is known, then S( M) is easily determined.
Let S(M )=diag(sy,...,5:,0,...,0)and let p;, p2, . . ., pi be the complete set of primes which occur
as divisors of the s;. Thus for appropriate nonnegative integers e;; we have

€12 | elk

©
8] = P1an Pr s

\27]

S = p] pzrz .. .p;rk‘
Since s;|si41, 1 1 < 7 — 1, the ¢;; satisfy

O0Le;<e;<...<ej, 1575k

.

The set of prime powers pj",l <1< r1 < j <k, including repetitions, is called the set of
elementary divisors. Given this set, the invariant factors can easily be reconstructed because of the
ordering condition. If



then s, = p{'p7 ---pi*. Deleting these primes from the set of elementary divisors, we determine
sr—1 in the same way, and so on. This leads to the following theorem:

Theorem 2.3 If M ~ A = diag(A1,...,A,0,...,0), then the set of prime power factors of the
Aiy 1 <1 < r,is equal to the set of elementary divisors of S(M).

PROOE. We first note that from Theorem 2.2 it follows that S(M) = S(A). Let p be any prime that
divides some A;,1 < i < 7. Order the \; according to ascending powers of p:

'\51 = pelluls (p,p1)=l,

Aiy - Pty (pypr) =1,
sothat 0 € e; < ... < ¢,. Then d;, the i-th determinantal divisor of A, satisfies
di =p"" "y, (pp)=1.
Thus, if s; denotes the i-th invariant factor of S(A), and hence of S(M), then

sy =di,
si =difdicy =po4, (p.t)=1,2<:<

Thus p® is an elementary divisor, 1 < ¢ < r. Applying the same argument for all primes p which
divide some );, we obtain the result. O

2.2 Applications of the Smith normal form

The adjacency matrices of lattice graphs and triangular graphs have a very simple structure. This
enables us to compute their SNF by hand.

The lattice graph Ly(n) has as vertices the ordered pairs (z,y) € {1,...,n}?, where two
vertices are adjacent iff they have a common coordinate. Lj(n) has parameters (v, k, A, u) =
(n?,2(n — 1),n - 2,2). For n # 4, Ly(n) is unique, i.c. every graph with the same parameters is
isomorphicto Ly(n). For n = 4, there is exactly one nonisomorphic cospectral graph, the Shrikhande
graph (see Cameron [5] for a description).

Proposition 2.4 The SNF of the lattice graph L(n) is equal to
diag(127-2,200-2 {2(n - 2)}2"=3 2(n - 1)(n - 2)).
PROOF. Let A, be the adjacency matrix of Ly(n) with columns and rows indexed in the following
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order: (1,1),(1,2),...,(1,n),(2,1),...,(n,n). Then

(Jo~I. I I, I,
In Jn - In In Iﬂ
An = In In Jn - In In
\ In In In Jn - In
[ On —(n=2)J, 2I,-J, 2, — Jy
I, On Ox On
" Og 2};1 - Jﬂ Jn — 2113, On
\ On 21,1 - Jn On Jn e 2IR
~ dlag(-’m (Jn - ZIn)n-zaz(n - 2)(Jn - In))
~  diag(127=2,2(n=27 (5~ 2)}27=3 2(n - 1)(n = 2)) =: An.
Since 5(A,) = Ap, the result follows. O

For sake of completeness, we mention that §(Ag) = S(Aq) = diag(1%,2%,4%,12), where As
denotes the adjacency matrix of the Shrikhande graph.

The triangular graph T(n) has as vertices the 2-element subsets of {1,2,...,n}. Two vertices
are adjacent iff they are not disjoint as subsets. The parameters of T'(n) are (v, k, A, 1) = ( %n(n -
1),2(n — 2),n - 2,4). T(n) is unique except for n = 8. In that case, there are three nonisomorphic
graphs, the Chang graphs. These will be discussed in the next chapter.

Proposition 2.5 The SNF of the triangular graph T(n) is equal to
diag(17-2,2:(n-2(5-3) 2(n — 4)}*-2 (n-2)(n—4)) if2|n
diag(17~1,2:(n=0(=49) (5(n _ 4)}7=2 2(n = 2)(n ~4)) otherwise.

PROOF. Let A, be the adjacency matrix of T'(n), corresponding to the following labelling of the rows
and columns: {1,2},{1,3},...,{1,n},{2,3},...,{n — 1, n}. Furthermore, let a; denote the all-a
matrix of size ¢ X 7, a € Z. Then we have

( " 0 03~ | 07
Ja-t = Iny IM 1, 1 i
"2 I3 I 1
" 0= o
1;‘—2 In~2 Jnuz'ln-Z Ind 15 1
n-3
I 1
An = nob -3
; 0f
0372 1772 Iy | 107 Loy | Jees=Iass 1 1
5 1
Ons 1f D Ons 1§ h [ 056 17 b h-h| 1
0,_, 11 0. 11 0l 11 11 0
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(_n-2 |0, (n—4), 2,3 22 2
2‘?-) 21;-4
(n-a37 | 0 (n -4 e 0 | 0
n-4)1"%| 0,z n=4)Jnz -
AJ = Da-s Ah-h) | 0
0?-1 I; On-z 0::‘; . 0;‘-1 0?‘.2

2 o 0 20Dy
0 0 B 20 D

2lyn-2)in-)

27 Onz | 275 0f 2(h—1)
\ 2 0, ) /

~ diag(Tn-2, 213 (,_2)(n-3) A2):

where
(n—2)(n-4) l {(n"'4)2}34-2 (n~2)(n~4) \ {(n_4)2 1
* - - ~ - n—2
BT ey | (0 O ({Mn~4HY*I%n-4MJ—I%4)

(n=2)(n-4) [ {-2n =)}, | _ . N
" ( -7 2(n -1 S ) ~ diag({2(n — 4)"7, (n = 2)(n - 4)).

Thus A4, ~ diag(1"~2,2:(=2(n=3) 5y _4)}n=2 (n ~2)(n —4)) =: A,. Applying Theorem 2.3,
we obtain

An if2|n

S(An) = S(An) = { diag(17-1,28(v-1=4) (3(n — 4)}7-2,2(n — 2)(n — 4)) otherwise.

O

We recall the fact that if r,(M) = r, then M can be reduced over F, to a diagonal matrix
diag(17,0™""), the so-called canonical form. In general, there will only be a few primes p for which
(M) < n, since r,(M) = n unless p is a divisor of det(M ). Hence in practice it will not be far
more efficient to compute the SNF of M than to determine the canonical form for those primes p that
divide det(M).

In the subsequent chapters we shall try to determine the p-rank of several (classes of) strongly
regular graphs, without making use of the methods mentioned above. For some primes the rank can
be calculated in a rather easy way; for other primes we can only derive bounds. In the proofs the next
lemma will be frequently used.

Lemma 2.6 Let M be a nonsingular matrix and suppose p* || det(M). Then r,(M) > n — k. (By
P* || a, a € Z, we mean that p* | a, but p*! fa.)

PROOF. Since det(S(M)) = det(M) # 0, the diagonal elements s; of S( M) are unequal to zero for
1 < 7 < n. Furthermore, because s;| s;41, 1 < 7 < n — 1, at most & of the invariant factors are
divisible by p. O
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Chapter 3

On the p-rank of strongly regular graphs
with integral eigenvalues

Let I' be a srg of order v with integral eigenvalues k, r and s. In this chapter it is proven that the
p-rank of A is completely determined by the parameters of I when p does not divide both r and s.
For the remaining primes p, an upper bound for r,(A) is derived. A similar result is obtained for the
p-rank of A + 7], 7 € Z. Furthermore, we examine how the p-ranks of switching-equivalent graphs
are related.

3.1 Preliminaries

In this section a few elementary but useful lemmas from matrix theory are recalled. We omit the
proofs, which can be found in any textbook on matrix theory (e.g. Marcus and Minc [16]).

Let M, M, and M, be n X n matrices with entries in some field F.
Lemma 3.1 If M = M, + M;, then
| 7h(My) = 14 (M2) | < 7o (M) < 7p(M1) + 7(M).
In particular, |7 (M) ~ r.(J, - M)| < 1.
Lemma 3.2 If M = MM, then
re(My) + rp(Mz) = n < vp(M) < min(rp(Mr), 75(M2)) -

This lemma will mainly be used in one of the following forms:
(@) f MMy = Oy, then v (M) + 1. (M2) < m;
® UMM, = Jp, thenr (M) +r . (My) <n+ 1.

Lemma 3.3 Let Ay,..., ., A € F, \; # Aj for i # j, be the complete set of eigenvalues of M.
Then the following are equivalent:

2. Tk dim(Np(M - \)) = n.
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3.2 General theorems

Throughout this section, let A be the adjacency matrix of a srg I" with parameters (v, k, A, ) and
integral eigenvalues k, r, s with multiplicities 1, f and g, respectively. Denote the rank of A over R
by r(A4).

Theorem 3.4 Define ap := k(mod p), ¢ := r (mod p), ez := s(mod p). Then the following holds:
(i)  if precisely one of ag, a1, 03 is equal to zero, say o; with multiplicity m;,
then rp(A) = v — my;
(ia) fap=0,01=0anday #0,thenr,(A) =g,
(iib) ifap=0,a #0and az = 0,thenr,(A) = f;
(i) ifoy =0anday =0, then r,(A) < min(f,g)+ 1.

PROOFE. The characteristic polynomial of A over F, is (z — ap)(z — a1)/(z — 02). Since the
dimension of the kernel of A is at most the multiplicity of the eigenvalue O as a root of the characteristic
polynomial of A, a lower bound for r,(A) is

r(4) 2 e + &1 f + 29, (3.1)

where ¢; = 0 or 1, depending on whether o; is equal to zero or not. This bound also follows
immediately from Lemma 2.6.

Define m := max({1 — &), (1 — &1} f, (1 — e2)g). Suppose m > 0. Let a be the eigenvalue of A
over IR corresponding to m (thus o € {k,r, s}). Then an upper bound for r,(4) is

rp(A)=rp(A—al)<r(A-al)=v-m. (3.2)

Combining (3.1) and (3.2) proves (i) and (iii).
Now assume p |k, p|rand p [s. By (1.2),

A(A-s)=(k-w I+ (A—p—-38)A+uld.
From Section 1.2 we recall the following relations between the parameters:
p=k+rsand A-p=r+s.
Thus, under the assumptions made,
A(A ~ sI) = O (mod p).
Combining (3.1) and Lemma 3.2 yields
v=g+(f+1)<rp(A)+rp(A~]) < v

Thus 7,(A) = g as claimed. Assertion (iib) is proven in a similar way. O

Hence, the only primes p for which the determination of r,(A) is nontrivial, are the primes that
divide both r and s.

The question arises whether the upper bound in case (iii) is good or not. From the results in
Chapter 6, we might conclude that the bound is often fairly good. However, most of the graphs that
are examined, have small f or g (< 25), so we can not say anything in general.

Remark Sometimes a slightly better upper bound can be obtained in case (iii) as follows. Without
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loss of generality, suppose f < g. Then according to the above theorem, r,(A4) < f + 1. Consider
the minimal idempotent E satisfying 7(Ey) = f. Let ¢; be the smallest integer such that ¢; E is an
integral matrix, say

aky=col+cepnA+epB, ¢ € Z.

Suppose that p | c1o, 7| c12and p Je11. Then r,(4) = rp(c1 E1) € r(a Er) = f.

The next theorem is a generalization of Theorem 34 for A + 71, r € Z. Its spectum is
(k+ 7)Y, (r + 7)/, (s + 7)9, where the multiplicities are written as exponents.

Theorem 3.5 Define ag := (k + 7)(modp), ey := (r + 7) (modp), @2 := (s + 7)(modp). Then
the following holds:
€)) if precisely one of ag, a3, oy is equal to zero, say o; with multiplicity m;,
thenrp(A+7I)=v—my;
(i) fap=0,01=0andaz #0,thenr,(A+71I)=g+ ¢ wheree =0ifp|pandl
otherwise,
(iib) fap=0,a1 #0and oy =0,thenr,(A+7I)=f+ ¢, wheree =0ifp|pandl
otherwise;
(i) ifoy=0and oy =0,thenr,(A+ 7I) <min(f,g)+ 1.

PROOF. We shall only prove (iia).
(A+7I){A-8]) = (k—p—7s)I+(A—p+717-38)A+pJ

—s(r+ )+ (r+71)A+pJ
wJ (mod p).

M

From (i} it follows that r,(A — sI) = f -+ 1 under the assumptions of (iia). Replacing Aby A + 77
in (3.1) yields, together with Lemma 3.2,

g < rp(A+7I) < g+ p(ud)
Lemma 3.3 asserts that r,(A + 71) = g if and only if
(A+ 7Y (A - sI)= O(modp).
Hence the conclusion holds. Q

Thus, when studying the p-rank of A + 77 for a given srg I with integral eigenvalues k, r and
s, we may restrict ourselves to the values of p and 7 for which both » + 7 and s + 7 are divisible by
p. There is no known general strategy to determine (bounds for) the p-rank of A 4 7]. In the next
section we give a few small lemmas which might be useful, especially if f or g is small. In that case,
it is often easy to obtain a good lower bound from an induced subgraph, as is shown in Examples 3.1
and 3.2.
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3.3 Bounds from subgraphs and examples

Let " be a srg, not necessarily with integral eigenvalues, and let 7 € Z. Suppose I' contains an
induced subgraph I" of order v’. Let A’ be the adjacency matrix of I”. Then we obviously have
ro(A + 71,) 2 rp(A" + T1,4). In particular, the following holds:

Lemma 3.6 If T contains a clique of size n and T # 1 (mod p), then

n-1 ifplntr—1)
(At TI) 2 { n otherwise.

PROOF. If T contains a clique of size n, then J,, + (7 — 1)I,, is a submatrix of A + 71,. In Example
2.1 it was derived that S(J,, + (7 = 1)I,) = diag(1, (r - 1)*2,(7 — 1){n + 7 — 1)), from which the
result follows. ~ O

If T contains a coclique of size n, then = is a lower bound for r,(4 + 77} if 7 is not divisible by
p. On the other hand, Theorem 3.5 provides an upper bound for the size of a coclique in a srg with
integral eigenvalues.

Proposition 3.7 The size of a coclique in a strongly regular graph with integral eigenvalues is at
mostmin{f,g)+ 1.

PROOE. Let C be acoclique in a srg T'and set n := |C|. Let p; and p; be two (not necessarily distinct)
primes satisfying p;|(r + 1) and p2|(s — 1) (such primes exist since both r and s are different from
zero). Then, under the assumption that the eigenvalues of I are all integers, we obtain from Theorem
35

n<ru(A+I)<g+1,

nS<rp(A-I)< f+1.

Hence, the statement holds. 0

In this way, we have almost proven the Cvetkovié bound for strongly regular graphs with integral
eigenvalues. This bound asserts that the size of a coclique C in a graph I' can not exceed the number
of nonnegative (nonpositive) eigenvalues of I (see Cvetkovié, Doob and Sachs [7]). For a srg this
yields |C| < min(f + 1, g).

Our problem is related to another graph theoretic problem, namely the determination of the
chromatic number of T". This number, usually denoted by x(T'), is defined as the minimal number of
colors needed for a coloring of the vertices of I' in which adjacent vertices have different colors.

If x(T') = x, then there is one coclique of size at least [v/x] contained in I'. Hence an upper
bound for x(T") provides a lower bound for r,(A + 71) when p {7, and vice versa. However, general
upper bounds for x(I') do not give useful lower bounds for r,(A4 + 77).

When we study the p-rank of a given graph, both r,(A + 7I) and r,(J — A — 7T) will be
considered. The relation between the two ranks is expressed by

dim(Ry(A+ D+ (1) = dim(Ry(J - A—7I)+ (1)). (3.3)

In view of this, the following lemma tums out to be often useful.
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Lemma 3.8 Ifp fv,p|k, thenrpo(J — A) = r,(A) + 1.

PROOF. We have 1(J — A) = (v - k)1 # O(mod p),thus 1 € R,(J ~ A). Consider A as a generator
matrix of a p-ary linear code C. Because (r,1) = k = 0 (mod p) holds for every row r of A, the dual
code C* contains 1. As (1,1) = v # 0(modp), the all-one vector is not contained in R,(A). The
conclusion now follows from (3.3). O

A last lemma, before we discuss some examples:
Lemma 3.9 The 2-rank of the adjacency matrix of any graph is even.
For a proof of this lemma, we refer to the Appendix (AS5).

Example 3.1 The Clebsch graph can be described in the following way: take as vertices all subsets
of {1,...,5} of even cardinality; two vertices are adjacent whenever their symmetric difference
has cardinality 4. This yields a srg with parameters (v, k, A, ) = (16,5,0,2). Its spectrum is
51,119 (—3)°. From the discussion at the end of the previous section it follows that we only have to
determine the 2-rankof A+ fand B:=J - A - I.

By Theorem 3.5, we find r2(A 4+ I) < 6. Now consider the subgraph on the five vertices of
cardinality 4 and the vertex {1,2}. Let A’ be the corresponding submatrix of A. Then

T
A4+ Ig = (é%) , where z = (00011).

Since 7(A + I1g) 2 72( A’ + Ig) = 6, we conclude that r2(A + T) = 6.
Furthermore, |r2(A+1)-r3(B)| < 1(Lemma3.1) and r2( B) iseven (Lemma3.9),s0 r2( B) = 6.

Example 3.2 The Gewirtz graph has parameters (v, k, A, u) = (56,10,0,2) and is unique. Its
spectrum is 10',23%, (—4)20, A construction of this graph is given in Chapter 6. Since r — s = 6, the
only interesting cases are r2(A) and r3(A + I). In this example, we shall only determine r2(A). In
Chapter 6, the other case is dealt with.

From the parameters of the graph we deduce that A contains a 20 x 20 submatrix A’ of the
following form:

0 1 1|0

vl 0ol
Tl )y 05 (0o B
0 13| I | Og

Clearly, m(A) > 18.
Assume w.l.o.g. that

A | Ay
4= ( Az | An ) '

Every row in [A2;]A2;] has a zero in the first two columns, a one in exactly two of the columns
3,4,...,11 and a one in exactly two of the columns 12,13,...,20. Suppose r2(A) = 18. Letr be
a row of [A21|A2;2]. Then r can be expressed as the sum (modulo 2) of four of the rows 3,4, ...,20.
Since k& = 10, one of these four rows must have at least three ones in common with 7. This contradicts
i = 2. Hence, 18 < m2(A) < 21. Since rp( A) is even, it follows that rp(4) = 20.

In Chapter 6 it will be proven that 1 can be written as the sum of an even number of rows of A.
This implies that ] is an element of both Rz(A) and Ra(J — A), hence r2(J — A) = r(A) = 20.
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3.4 Switching-equivalent graphs

In Section 2 it was shown that the p-rank of a srg with integral eigenvalues is completely determined
by its spectrum when p does not divide both r and s. Hence cospectral graphs have the same p-rank
for primes p satisfying this condition. However, this not necessarily holds when p|r and p|s. For
example, we shall see that the triangular graph T'(8) and the Chang graphs have different 2-ranks
(Example 3.3). Clearly, isomorphic graphs have the same rank over any field ¥, since labelling the
rows and columns of a matrix in a different way does not change the rank.

Switching-equivalent graphs need not be isomorphic or even cospectral, but when the p-rank of
one graph is known, there are only a few possible values for the p-rank of the other graph(s).

Lemma 3.10 If Ty and T, are switching-equivalent, then |r,(A;) — rp(A2)| < 2.

PROOF. Assume that the rows and columns of A; and A, are labelled in the same way. Set
B; := J — A; ~ I'for i = 1,2. From the definition of switching as given in Chapter 1, it is readily
seen that

By — Ay = D(By — A1)D,

where D is a diagonal matrix with d;; = —1 if the ith row and column of 4, are indexed by an
element of the switching-set and 1 otherwise. This is equivalent to
J~24; = D(J -24,)D. (3.4)

For p > 2, the above-mentioned relation yields
rp(J = 242) = r,(J —24;1),

from which the result is easily derived by Lemma 3.1.

If p = 2, relation (3.4) gives a trivial result, but in this case we can give a more explicit relation
between R2( A1) and R3(A2). Denote by ¢ the characteristic vector of the switching-set with respect
to the labelling of the columns of 4y and A;. Then

Ra(A1) + (Lig) = Ra(A2) + (L.g). (3.5)

Hence, the assertion is also proven for p = 2. o

Of course, this lemma also holds when A; and A; are substituted by A; + 71 and Az + 7/ for
Te Z.

Lemma 3.11 Let T be a srg on v vertices that is switching-equivalent to the disjoint union of a vertex
and a srg T” on v — 1 vertices. Denote the eigenvalues of T by k, r and s.

@ If2|rand2|s,then r2(Ar) = r2(Ap) + ¢, where ¢ = 2 if 1 € Ra(Ar) and 0 otherwise.
®If2|(r+1)and2|(s+ 1), then|ry(Ar + 1) — r2(Apr + I,1)| £ 1.

PROOF. Wl.o.g. assume that the first row of Ar, denoted by r, is the characteristic vector of the
switching-set V;. Write A instead of Ar and denote by A* the matrix obtained from A by switching
with respect to V1, that is, A* = diag(0, Ar+). Now (3.5) takes the following form:

Ra(A+ 71+ (Lr) =Re(A" +7)+ (L.1), 7=0,1.

(@) Since 7 € Ra(A)and 1 ¢ Rz(A* + (r)), we have dim(Rz(A) + (1)) = dim(R2(A*) + (r)) + 1.
Because both r;(A) and ro( A ) = r2( A*) are even (Lemma 3.9), the following holds:
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¢ if 1 € Ry(A), then r(A) = ro(Arv) + 2 (and 7 ¢ R2(A%));
o if 1 ¢ Ry(A),then r3(A) = r2(Ar) (and r € R2(A4*)).
(b) Denote by B and B’ the adjacency matrices of I" and I, respectively. If p divides both r 4 1 and
s + 1, then (a) applies to r2(B) and r2(B’). In Section 1.2, we mentioned the fact that both v and the
valency of I are even. Hence, by Lemma 3.8, (A’ + I,—1) = r2(B'} + 1.

If 1 € Ro(B), then r2(A + I,) = rp(B) — &), where 6y = 0if 1 € Ry(A + 1,) and 1 otherwise.
From this we get

ra(A+ LY+ 6 = ro(B) D ra(B) +2 = r(A' + L_y) + 1. (3.6)

If the all-one vector is not contained in R2(B), a similar argument is used to derive that

ro(A+ 1) - b = ro(B) @ rpy(B') = ma(A' + I,_y), (3.7)
where 6 = 1if 1 € R2(A + 1,,) and O otherwise. Combining (3.6) and (3.7) yields the result. O

To illustrate the foregoing, we calculate the 2-rank of the Schlifli graph and the Chang graphs,
which can all be obtained from 7'(8) by switching.

Example 3.3 The triangular graph 7°(8) has been discussed in Chapter 2. Its vertex set is the
set of unordered pairs of {1,...,8} and two pairs are adjacent whenever they are not disjoint. T'(8)
has parameters (v, k, A, 1) = (28,12,6,4), spectrum 121,47, (~2)? and its 2-rank is 6 (Proposition
2.5).

The Schlifli graph T's is obtained from T'(8) by isolating one vertex through switching and then
removing it. Its parameters are (v, k, A, ) = (27,16, 10,8). The spectrum of I's is 27*,48, (-2)%,
It can be shown that the Schlifli graph is unique, i.e. every graph with the same parameters is
isomorphic to it. Let As denote the adjacency matrix of I's. Consider the adjacency matrix Ag as
shown in the previous chapter and take the first row as the characteristic vector of the switching set
(i.e. switching is performed with respect to the the set { {1,z},{2,7}|3 < z < 8} and the vertex
{1,2} is isolated). Then the first six rows of As can be written as:

13 1f

03
-1

05

Je — I | Ig Js - Is

ol )

We see that I5 is a submatrix of As. Hence r2(As) > 6 and equality holds because of Lemma 3.11
and the fact that r,(Ag) = 6.

The Chang graphs C;,1 < i < 3, are obtained from 7'(8) by switching with respect to

(Cl) {{1,2}, {3':4}7 {5’6}9{778}};
(C2) {{1,2},{2,3},{3,4},{4,5}.{5,6},{6,7},{7,8},{1,8}}
(03) {{172}> {2,3}> {133}» {455}3 {5’6}7 {6,7}, {738}3 {438}}
The Chang graphs all have the same parameters as 7(8). There are no other graphs with these
parameters,
Itis easy to give forevery 7, 1 < ¢ < 3, a submatrix .423: of A¢, of 2-rank 8. The submatrices are
formed by the rows and columns labelled by {{1,2},...,{1,8},{z,y}}, where {z,y} = {3,5} for
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C) and {z,y} = {2,4} for C; and Cs.

1 1 1
! ' Js—Is v ‘ 1 1
Ac, = Jo-lsly | Ag= | | 4e = Js—I o] |’

where v; = (101000), v, = (01000) and v; = (10000). Hence 8 < r2(Ac,) < r2(4s) +2 = 8 for
1 <4 £ 3, where the right hand inequality follows from Lemma 3.10. Of course, the upper bound is
also obtained from Theorem 3.4.

Let ¢; denote the characteristic vector of the switching-set of 7(8) and C;. From Lemma 3.11 it
follows that 1 ¢ Ra(Asg). Substituting this in (3.5) yields, together with the obtained results,

8 > dim(Rz(4s) + (¢;)) + 1 = dim(Ra(Ag,) + (¢, 1)) > 8,

which is only possible if (¢;,1) C R2(A¢,) and ¢; ¢ R2(As). Examining Aff;l, we see that
255{2,4,6,7,3}1,{1,;} + 7353 = 1(mod2) must hold. Since 1 can be written as the sum of an even
number of rows of Ac,, this vector is also contained in Ra(J2s — Ac, ). Hence r(Jag — A¢,) =
r2{Ac,) = 8. The same arguments can be used to derive that rp(J2g — Ac, ) = r2(Jos — Ac,) = 8.

Lemma 3.8 yields that 75(J27 — Ag) = 7. Finally, since I7 is a submatrix of Jo3 — Ag and
|r2(J2g — Ag) — r2(As)| < 1, we conclude that ro(Jag — Ag) = 7.
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Chapter 4

On the p-rank of Paley graphs

Paley graphs are strongly regular graphs with half-case parameters. Hence, their eigenvalues are not
necessarily integral. In this chapter we study the p-rank of Ap + o1, where Ap denotes the adjacency
matrix of a Paley graph and 0 € Z. In fact, 7,(Ap + o) will be completely determined for all
values of p and 0. However, we first discuss a method that enables us to calculate the p-rank of a
circulant in an easy way. This method is based upon results from algebraic coding theory, especially
from the theory of cyclic codes.

4.1 Circulants

Definition A matrix of the form

ap a -+ Qp-y
n-1 G0 -+ Ap-2
ay a --- ap

is called a circulant.

In this section it is shown how the p-rank of a circulant can be determined by regarding it as a
generator matrix of a cyclic code.

Definition A linear code C is called cyclic if for every codeword (co,ci,...,cn-1) the word
(cn-1,€0,.-.,¢n—2)isalsoinC.

The theory of cyclic codes is based upon the identification of codewords with a set of polynomials.
Let F be any finite field F,. Denote by F{z] the set of polynomials in z with coefficients from F.
The ring R, := F[z]/(z™ — 1) consists of the residue classes of F[z] modulo 2™ — 1. As a system
of representatives we take the set of polynomials of F[z] of degree less than n. Now the codeword
(€05€1,. .., €q_1) is associated with the polynomial ¢(z) = Y74 ¢;z* in R,. Then a cyclic shift
corresponds to multiplying ¢(z) by z in R,,.

Definitions A principal ideal T of R, is a linear subspace of R, consisting of all multiples of a
fixed polynomial g(z ). We call g(z) a generator polynomial of . This is denoted by Z = {(g(z)).
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7 can be considered as a cyclic code of length n. The next theorem proves that every cyclic code
is a principal ideal.

Theorem 4.1 ([15,p.190]) Let C be a cyclic code of length n.
(a) There is a unique monic polynomial g(z) of minimal degree inC.
() g(z)is a generator polynomial of C.
(©) g(z)isafactorof z™ ~ 1.
(d) Any c(z) € C can be written uniquely as c(z) = f(z)g(z)in Fz], where f(z) € Fz]
has degree less than n — r, r = deg(g(z)). The dimensionof Cisn — .

PROOE. (a) Suppose g1(z),g2(z) € € are monic and of minimal degree. Because C is linear,

g1(z) — g2(z) is in C. But g;1(z) ~ g2(z) has lower degree than g,(z) and g2(z), a contradiction,

unless g1(z) = ga(z).

(b) Suppose ¢(z) € C. Write ¢(z) = ¢(z)g(z) + r(z) in R,, where deg(r(x)) < r. Linearity yields

that 7{z) € C, so r(z) = 0. Therefore, ¢(z) € (g(z)).

(c) Write z" — 1 = h(z)g(z) + r(z) in F[z], where deg(r(z)) < r. This implies that r(z) =

—-h(z)g(z) € Cin R,, a contradiction unless 7(z) = 0.

(d) From (b), it follows that any ¢(z) € C, deg(c(z)) < n, can be written as ¢(z)g(x)in R,. Thus
c(z) g(z)g(z) + e(z)(z™ — 1) in Fla],

(a{z) + e(x)h(z))g{z)  in Flz],

f(z)g(=) in Flz],

o

it

where deg( f(z)) < n — r — 1. Thus the code consists of multiples of g{ ) by polynomials of degree
< n —r -1, evaluated in F[z]. There are n — r linearly independent multiples of g(z ), namely
g(z),2g(z),...,2" "~ 1g(2). Thus the code has dimension n — 7. ]

Let A be a circulant of size n with entries in F. Then A4 can be considered as a generator matrix of
a cyclic code C over F. If (ap,ai,...,an-1)isarowof A and a(z) := ;;"0’ a;z', then C = (a(z)).
Write ged(z, y) for the greatest common divisor of z and y. According to Theorem 4.1, there is a
polynomial g{« ) which is a factor of gcd(2™ — 1, a(z)) such that C = (g(z)}. We claim that g(z) is
actually equal to ged(z™ — 1, a(z)).

Lemma 4.2 ([15,p.199)]) Let g(z) be a factor of z™ — 1 and let C be the code generated by g(z). Let
p(r) € R, be such that gcd(z™ — 1,p(2)) = 1. Then p(z)g(z) is also a generator polynomial for C.

PROOF. It is evident that (p(z)g(z)) C (¢(z)) holds. If h(z) = (2™ — 1)/g(z), then gcd(h(z), p(z))
= 1. Hence, there exist polynomials u{z) and v(z) such that

= u(z)p(z) + v(z)h(z) in Fz],
9(z) = w(z)p(z)g(z)+v(z)(z" - 1) in Flz],
= u(z)p(z)g(z) in R,.
Thus {g(z)) C (p(z)g(z)). We conclude that = (g(z)) = (p(z)g(z)). o

Continuing with the above notation, 7 .( A) is now easily determined from the foregoing.

Corollary 4.3 The F-rank of A equals n — deg(g(z)), where g(z) = ged(a(z), 2™ - 1).
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Example 4.1 Let A, be the adjacency matrix of the n-gon:

010 01
101 ..-00
100 ---10

Thus A, is a circulant. Take a(z) = 1 + z2.
Over F5 we have

2 e
n _ ] z¢+1 ifniseven
ged(a(z), = +l)—{ z+1 ifnisodd.

Thus r2(Azm) = 2(m — 1) and r2(A2m41) = 2m.
Over Fp, p > 2, we have

z2+1 if n=0(mod4)
n_ =
ged(a(z), z D { 1 otherwise.

Hence r,(Arn) = n — 2 if n =0 (mod 4) and r,(A4,) = n otherwise.

4.2 Paley graphs

The Paley graphs are an infinite class of strongly regular graphs that satisfy f = g, hence their
eigenvalues are not necessarily integral. They are defined in the following way. Take F' = F,, where
g = 1(mod 4). The Paley graph P(q) has vertex set F, with two different vertices z and y joined if
and only if = — y is a nonzero square in F. Since —1 is a square in F, the adjacency is well defined.
P(q) is strongly regular with parameters

- -1-
1+\/‘7a3= \[q’fzgzk,

1 1
= k=— - = = - — =
v =g, 2(q 1), A+1=p 4(q 1), r > 2

Clearly, P(gq) has the same parameters as its complement P(g).

Lemma 4.4 P(q) and P(q) are isomorphic.

PROOF. Write P and P instead of P(q) and P(q). It is evident that two vertices z and y of P are
adjacent iff = ~ y is not a square. Now let a be a nonsquare in F’ and define the function ¢ : F' +—— F
as ¢(z) := az, z € F. Let ¢( P) be the graph with vertex set ¢(F') = F where two vertices z and y
are adjacent whenever ¢~!(z) ~ ¢~!(y). Since az — ay is not a square iff = — y is a nonzero square,
it follows that ¢(P) = P. Hence P = P. ]

We denote the adjacency matrix of P(q) by A(g). Combining Lemma 3.1 and Lemma 4.4 yields
Lemma 4.5 For every prime p, |t,(A(q)) — rp(A(g) + I)| £ 1.

Let us first consider the case where q is a prime (congruent to 1 (mod 4)). Then F = {0,1,...,¢~
1}. If we number the rows and columns of A(q) from 0 to ¢ — 1, then A(q) is a circulant (suppose
ary = 1, then z — y is a square, thus (z + 1) — (y + 1) is a square, hence a(z41)modv,(y+1)modv = 1)
Thus the p-rank of A(g¢) can be determined for any prime p by means of Corollary 4.3.
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However, let us examine first for which primes p the determination of 7,( A(g)) might be nontriv-
ial. Since det(A(g)) = 3(g - 1)(3(¢g = 1))(¢~1/2 £ 0, Lemma 2.6 can be applied, which yields
(l) ifp f(g—1), thenrp(A(g)) = @
(i) if4 | (g—1), then r(A(q)) =g~ 1.
Hence, the calculation of r,( A(g)) by application of Corollary 4.3 can be restricted to those primes p
that divide £31. The next table shows the values of r,( A(g)) for ¢ < 100 and p | 451):

g| p [ r(AlG) ]l 9| p | ro(Alg))
131 3 6 53| 13 26
17 | 2 8 61| 3.5 30
29| 7 14 73| 23 36
37| 3 18 89 | 2,11 44
4125 20 97 | 23 48

The values of r,( A(g)) in the table suggest that r,(A(g)) = %(q - 1) for p| 351 It will be proven
that this holds indeed.

In the introduction of this chapter we claimed that for all values of p and o € Z the p-rank of
A(g) + oI could be completely determined. The next theorem shows that for most combinations of
p and o this can be attained by applying simple arguments from linear algebra. The remaining cases
are dealt with in Theorem 4.9.

Theorem 4.6 Let ¢ be a prime power, ¢ = 1(mod4). Denote by A the adjacency matrix of the Paley
graph P(q). Then the following holds:
(@) if a® — o + p is not divisible by p, then

_Ja-1 ifpl(k+oa)
(A +ol) —{ q otherwise;

() ifg=1(modp) thenr,(A)=kandry(A+I)=k+1;
(¢} ifgqisasquare modulop,q# 1(modp), thenr,(A+al)=r,{A+0])= %(q +1),
where o1, 03 € I, satisfy oy + 02 = 1{modp) and 0103 = —p (mod p);

PROOE. Let 0 € Z. The matrix A + o has eigenvalues k + 0, o + Y3~ and o — Y3 ang

determinant (k 4+ 0)(0? — 0 — 1)(9Y/2, Assume that det( A + o) # 0. Otherwise, replace A + o
by A+ (0 + p)l.

Clearly, if det(A + o) is not divisible by p, then r,(A + 0I) = ¢. Furthermore, if p| (k + o)
and p f(0* — 0 — p), thenr,(A + o) = ¢ — 1. Thisis obviousif p|| (k + o). If p? | (k + o), then
consider the matrix A + (o + p)I. Since p||(k+ o+ p)and p [((p+ 0)* = (p+ 0) — p), we get
rpo(A+ol)=r,(A+ (0 4+ p)I) = g — 1. Hence, assertion (a) is proven.

Now we tumn to the case where 02 — ¢ — = 0 (mod p). Let us first determine the o € JF, that
satisfy 0% — 0 — p = 0 (mod p).

If p = 2, then there is no solution for o if u is odd. If p is even, then both 0 and 1 satisfy the
equation.

If p > 2, then we must solve

o*-oc-y = O(modp),
(20 - 1)? 44 + 1 = g(mod p). @n

flt
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We distinguish three cases:
(1) if ¢ is not a square modulo p, then (4.1) has no solutions;
(2) if ¢ = 0(mod p), the only solutionis o = §(p + 1) (mod p);
(3) if g is a nonzero square modulo p, then (4.1) has two different solutions
01,02 € I, satisfying 01 + 07 = 1 (modp) and o102 = —pu (mod p).

The statements (b} and (c) deal with the case of two different solutions ¢ and o2 for (4.1). From

(A+ o)A+ 0]) = A2+ (o1 + 02)A+ oyoad
= (u+ 0'10‘2)I+ (or+o02-1)A+pud
= pJ (modp),
and Lemma 3.2, it follows that
rp(A+ o)+ rp(A + a2d) < g + rp(pd). (4.2)

Suppose p| p. Then oy = 0(mod p), o, = 1 (mod p) and
g=rp(I)<rp(A+ )+ 1,(-A4) < g (4.3)

From p| u it follows that p| v, but p f(k + 1). Thus by Lemma 3.8, we find 1 € R,(4 + I) and
1 ¢ R,(A). Together with Lemma 4.5 this yields

ro(A+I)=r,(J—A-I)+1=1y(A)+ 1.
Substituting this in (4.3) gives r,(A) = %(q —ljandr,(A+ 1) = %(q + 1}, which proves (b).

Now suppose p [ u, while ¢ is still a nonzero square (mod p). Then we have

‘ (4.2)
g=rp(I}Srp(A+oail)+1p(-A-021) < g+1.

The left hand inequality holds, because (1 — 02)% = ¢ # 0 (mod p).

The proof of (c) is completed by showing that rp(A + 0;1) > (¢ + 1) for ¢ = 1,2, Let
g = p*(modp), p € F,. Suppose p|(k + o) for 0 = 01,07 and recall that o satisfies (4.1). Then
k+ o= 4(¢-1)+ 3(1 4 p) = 0(modp), which implies p* + p = 0(modp). In that case,
¢ = 0(mod p) or ¢ = 1 (mod p), a contradiction. Thus p f(k + o).

Wlo.g. we assume that det(A + of) # O for ¢ = 01,02, Now Lemma 2.6 yields that if
pll (02 =0 —p)then rp(A+0l) 2 J(g+1). fP2l(0® — o — ). thenp || (p+ 0P ~ (p+0) - p),
since 20—1 = xp(modp)and p # 0 (mod p). Hence again, we getr,( A+ol) = rp(A+(p+0)]) >
1
3lg+1). O

From the proof of this theorem it follows that there is one case left, namely, when there is exactly
one solution for (4.1). Then p and ¢ satisfy ¢ = O0(modp)and o = %(p + 1) (mod p). Applying the
same arguments as in the proof of the above theorem does not yield good bounds. From

i

1
ZMf”+p+2ﬂ+pA+pJ
wJ (mod p),

(A+ %(p+ DIy

1]

we obtain the upper bound
1 1
rp(A + i‘(P‘f‘ NI < 5(94’ 1).
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Furthermore, det(A + E£11) = 1pi+)(pe=1 4 1)(3(p - p*~1)@~D/2. Hence only fore = 1a
nontrivial lower bound is yielded by Lemma 2.6. :

We computed 7,(A(p°) + 9-'2*11 ) for several small values of p and e. The values obtained in
this way suggested that r,( A(p®) + 1’-*2'—11 )= (2-}1)'3. This has been proven by Brouwer (personal
communication). The result is obtained by applying the following theorem to the matrix 2A(p°)+1-J.

Theorem 4.7 Let F be a field and let A and B be two subsets of F. Set m := |A| and n := |B|. Let
M be an m X n matrix with the rows labelled by the elements of A and the columns by the elements
of B. Define the entries of M by

M,y = p(aﬂ b)’

where p(z,y) := Y to Y 5=o ¢ijz'y’ for d and e satisying d < m and e < n. Define the subspace
S € Flyl by

§:=() ey’ |0<i < d).

=0
Then (M) = dim(S).

PROOF. Set V := F5, thatis, V is the vectorspace consisting of all maps from B into F. Define an
evaluationmap E : Fy] — V by

E(f(y))(b):= f(b), forallbe B.

In fact, E f is the restriction of f to B (notation: f|z). Define R := R (M ). We claim that § = R,
from which the result follows. In order to prove this, we show that

(1) E|sisinjective;

(2) E(S)=R,
Indeed, combining (1) and (2) yields 5 = E(S) = R as claimed.

We first show that the kemel of E|s contains the all-zero vector only. Let f € 5. Suppose
f(b) = Oforevery b € B. Then f has n zeros. However, f is a polynomial of degree at most e. Since
we assumed that n > e, this implies that f(b) can not be zero for every b € B unless the coefficients
of f all equal zero. This proves (1).

Furthermore, let 7, be a row of M. The yth entry is p(a,y) = ¥_; @' T, ¢;;4’, which is a linear
combination of elements of §. Thus R C E(S).

We are left with the proof of E(S) € R, which is equivalent to R+ C E(S)*. Letr € R*.
Denote its coordinate r, by r(b). Then r satisfies forevery a € A

Z r(b)p(a,b) = 0.
beB

Thus o
Z r(b)c;;a't’ =0
) iszb
for a in A. Regard the left hand expression as a polynomial in a, then

d
in Z r(b)eyb = 0

=0 5b

for z € A. Since d < m, this polynomial can not have m zeros unless 3, r(b)c;;b = 0 for every
i, 0 < i < e. But, in that case, r is contained in E(S)+. Hence R+ C E(S5)*, which completes the
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proof of the theorem. o

We shall apply this theorem to the matrix @ defined in the following way. Take F' = Iy, where ¢
is the power of an odd prime p, say ¢ = p®. We introduce here the Legendre symbol x that is defined
forz € Fy by

1 if z is 2 nonzero square in F';
x(z):= 0 ifz=0
—~1 otherwise.

Clearly, x(z) = z(9=1)/2, Let Q be the ¢ X ¢ matrix with rows and columns indexed by the elements
of Iy and entries Q, := x(y — z). Then

(9-1)/2 -1
er - (y - 1:)(‘;—1)/2 - Z (_1)1 ( 9'2_ ) I:’y(-—i+(q—1)/2).

i=0 t

@ is called a Jacobsthal matrix. It clearly satisfies the conditions of Theorem 4.7. In this case, the set
S takes the following form:

s=<(i?)x"|05is§(q—1)>.

We obviously have

@im($) = I{i| ( T ) #0(modp), 0 < i < 3(g- D}

In order to compute this number, we need the following well-known result from number theory.

Theorem 4.8 (Lucas) Let the p-ary expansions of l and k be | = 3. L;p' and k = 3, k:p’, where

0<Il;,k;<p—1.Then
l l;
(k ) -_—':H( k; ) (mod p).

For a proof of this theorem we refer to Van Lint [14, p.47].

Recalling that ¢ = p®, one easily verifies that

lo-1= 3 bp-1p
20~ 1= 2 50— Dp"

-1
Furthermore, write i = 3°°2§ i,p. For every i, there are Z} choices such that ( }13_ ) # 0. Thus,
J

g-—1
by Theorem 4.8, there are (2}!)° possible values for i such that ( T ) # 0. By Theorem 4.7,

74(@) = dim(S), hence e
n@=(23)"

30



Obviously, if ¢ = 1(mod4) and A denotes the adjacency matrix of the Paley graph P(q), then
Q@ =2A+1I-J. From

Q*=ql-J=-J(modp) and (24 + I)* = gl + (¢ - 1)J = —J (modp),

we obtain that both R,(24 + I) and R,(24 + I — J) contain the all-one vector, hence r,(A +21) =
rp(Q). Since the entries of Q are elements of both F, and Fy, we have r,(Q) = 7,(Q). Together
with the obvious fact that r,(A + 1’;}11 ) = rp(2A + I), this proves the following theorem.

Theorem 4.9 Let A be the adjacency matrix of the Paley graph P(q). If g = p°, thenrp( A+ E31 1) =
(B4 )e.

Hence for every Paley graph P(¢) with adjacency matrix A and for every combination of p and
o € Z,the p-rank of A + o1 is given by Theorem 4.6 or Theorem 4.9.
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Chapter 5

Bounds from character theory

Character theory provides a powerful tool for proving theorems on finite groups. By applying results
from this theory to an automorphism group of a sr¢ T", a set of possible values for the p-rank of A can
be obtained. Of course, such a set will only be of help if it is small.

The aim of the first two sections is to introduce definitions and results from representation and
character theory. We do not give many details and usually omit proofs; for an extensive treatment
we refer to Isaacs [11]. The application of character theory to our problem is discussed in Section 3.
Finally, a class of graphs is presented for which it is expected that a small set of possible values for
mp(A) can be derived.

5.1 Group representations and modules

Throughout this chapter, G’ will denote a finite group with identity e. Furthermore, let F be a field.
We denote by G L(n, F) the group of all nonsingular elements of F™*".

Definition An F'-representation of G of degree n is a homomorphism ® : G — GL(n, F).

Example 5.1 Let G act on a finite set Q. The permutation representation Il of G over F is de-
fined in the following way: label the rows and columns of T1{g), ¢ € G, by the elements of £ and

set
_ )1 fug=uwr
(M{(g))uryun = { 0 otherwise.

Thus IT maps each g € G to the appropriate permutation matrix. If we take Q = G, then IT is called
the regular F-representation of G.

Denote by F[G] the set of all formal sums 3~ ,c¢ a,9, a; € F. If addition is performed compo-
nentwise and multiplication is defined as

(Y 009y agn@)i= 3. Y (anen)(@102).

NneEG n€eG 516G 026G

then F[G] can be considered as a ring with identity e. It is easy 1o see that F[G] can also be con-
sidered as a vectorspace over F of dimension |G|. Since (cx)y = ¢(2y) = z(cy)forall c € F and
a2,y € F[G), F[G]is an F-algebra.
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Definition Let V be a finite dimensional vectorspace over F. Suppose forevery v € V and z € F[G]
that a unique vz € V is defined. Assume forall z,y € F[G], v,w € V and ¢ € F that

@ (v+w)z=uyvz+ wz;

® vzt+y)=pz+vy;

©) (vz)y = p(zy)

@ (ew)z = evz) = vlca);

® ve=uw.
Then V is called an F[G]-module.

There is a one-to-one correspondence between F-representations of G of degree n and F[G|-
modules of dimension n. Let ¢ be a representation of degree n and denote by V' the n-dimensional
vectorspace over F. Then

(> a,9):= Y a,(v®(g)) eV
g€G 9€G
holds for every 3~ ¢ ag9 € F[G). It is easily verified that V is an F[G]-module.

Conversely, if V is an F[G]-module, choose an F-basis v;,,,...,2, for V. Let ®(g) be the
element of F™*" satisfying

n g
O(g) = :
Yy Y

Then @ is an F-representation of G. Note that the representation depends on the basis.

Usually we shall explain ideas from the representation point of view. However, the foregoing
implies that results for representations can be easily expressed in terms of modules (and vice versa).
In the rest of this section we write ‘modules’ instead of ‘ F[G]-modules’ and ‘representations’ instead
of * F-representations’.

Two representations @ and W are said to be similar if there exists a nonsingular matrix P such
that, forevery g € G,

PO(g)P~! = ¥(g).

If @ and ¥ correspond to modules V' and W, respectively, then the representations are similar iff V
and W are isomorphic, i.e. there exists an invertible linear transformation 6 : V +— W satisfying
f(vz) = §(v)z forall v € V and = € F[G].

Let V be amodule. A submodule U of V is alinear subspace of V that satisfies ur € U for every
u € Uand z € F[G). V iscalled reducible if V has a nontrivial submodule (that is, other than {0} or
V). Otherwise, we say that V is irreducible. V is completely reducible if it can be written as a direct
sum of irreducible submodules.

Theorem 5.1 ([11,p.4]) Let G be a finite group and F a field whose characteristic does not divide
|G|. Then every F|G]-module is completely reducible.

This theorem is generally known as Maschke’s Theorem.
It is evident that there exists a composition series for a module V', that is, a series of submodules
of the form

V=WoViowno...o0V=0
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such that for each : the factor module V;_, /V; is anonzero irreducible module. An irreducible module
U is called an irreducible constituent of V of multiplicity m if U = V;_, /V; for precisely m values of
1. The Jordan-Hélder Theorem ([20, p.43]) asserts that the set of composition factors of V does not
depend on the choice of composition series. '

These concepts can be translated into the language of representations as follows. Let U be a
proper nonzero submodule of a module V. Choose a basis by for U and extend it to a basis for V. By
a suitable numbering of the basis vectors, the representation @ associated with V' takes the following

form:
_ [ 22(9) | ©9)
(D(g)—( 5 Id>1(g))’ g€G. (5.1)

Here @, is the representation corresponding to U with respect to by and ®; is a representation
corresponding to V/U. As far as (ir)reduciblility is concemed, the same terminology is used for
representations as for the associated modules.

If there exists a submodule W C V in the above situation so that V = U @ W, then, for an
appropriate choice of basis of V, ® = diag(®, ,d>;), where <I>'2 is the representation corresponding
to W. Hence, if ® is a completely reducible representation, then @ is similar to a representation in
block diagonal form, where each block is an irreducible representation.

We see that the irreducible representations play an important réle in representation theory. As a
matter of fact, they can be considered as the building blocks for all representations. It can be proven
(see [11,p.147]) that there exist only finitely many irreducible F-representations up to similarity.

Finally, let <13 be an F-representation of G and let F be a field containing F. Then @ can also be
considered as a F-representation. It is entirely possible that @ isirreducible over F,, but reducible as an
F-representation. If @ is irreducible for every field F D F, then @ is said to be absolutely irreducible.

Definition The field F is called a splitting field for G if every irreducible F-representation of G
is absolutely irreducible.

5.2 Character theory

5.2.1 Generalities

For most applications of representations, it is not necessary .to distinguish between similar repre-
sentations. Therefore, it would be useful to have a function defined on the set of representations
that distinguishes between nonsimilar irreducible representations, but has the same value for similar
representations. A character is such a function.

Definition Let @ be an F-representation of G. Then the F-character ¢ of G afforded by ® is
the function given by ¢(g) = tr(®(g)), g € G.

If V is an F[G]-module corresponding to the F-representation ® of G and @ affords ¢, then we
also say that V affords ¢. Let us first show that characters do indeed satisfy the required properties.

Proposition 5.2 Let @ and ¥ be F-representations that afford the characters ¢ and v, respectively.
If ® and V¥ are similar, then ¢ = .
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PROOF. If ® and ¥ are similar representations, then P~®{g) P = ¥(g) for some nonsingular matrix
P. This shows that ¥(g) = tr(¥(g)) = t(P~!®(g)P) = trf(®(g)) = ¢(g) for every ¢ € G. Hence
@ = 9. O

Theorem 5.3 ([11,p.155]) Let F be any field. Then the characters afforded by nonsimilar irreducible
F-representations of G are nonzero, distinct and linearly independent.

Let us give some examples. In fact, these are the only characters that we shall deal with.

Example 5.2 The F-character afforded by the trivial representation ®(g) = 1, for every g € G,
is denoted by 1¢ and is called the principal F-character. Obviously, 1g(g) = 1forall g € G.

Example 5.3 Consider the permutation representation Il defined in Example 5.1. If IT is consid-
ered as a representation over a field of characteristic 0, then the permutation character 7 afforded by
ITis

m(g)={w e Qlug=w}|, g€G.
If Q = G, then the regular character p satisfies

_J 1G] ifg=ce
p (g)-{ 0 otherwise.

In the following proposition, some elementary properties of characters are proven:

Proposition 5.4 Let @ be an F-representation that affords the character ¢. Denote by V' the F|G)-
module corresponding to ®.
(a) The set of characters is closed under addition.
(b) If U is a proper nonzero submodule of V, then V affords the character ¢y + ¢,, where
¢1 and ¢, denote the character afforded by U and V[ U, respectively.
(c) Characters are constant on the conjugate classes of the group.

PROOF. (a) Define forg € G
= .. [ ®Plg)| O
-'(g) - ( O ‘P'(g) ) *

Obviously, Z is also an F-representation of G and affords the character £ = ¢ + 1.

(b) This follows from (5.1).

(©) ¢(h~'gh) = u(®(h~"gh)) = (@(h~")D(g)®(h)) = tr(D(h~")D(h)P(g)) = tr(D(9)) = ¥(g)
forall g,h € G. 0O

By the exponent of G we mean the least positive integer d such that g® =eforall g € G.
Naturally, d | |G]|.

Lemma 5.5 Let ® be an F-representation of G of degree n affording the character ¢ andlet g € G.
Let d denote the exponent of G. Suppose that the polynomial z¢ — 1 splits into linear factors over F.
Then ®(g) is similar to a diagonal matrix diag(e;, . . . , €, ), where the ¢; satisfy e = 1,1 < i < n.

PROOF. For each g € G we have ®(g)? = ®(¢g?) = I,. Thus the eigenvalues ¢; of ®(g) satisfy
¢ = 1. By assumption, the ¢; are elements of F, hence ®(g) is diagonalizable over F.. This proves
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the lemma. ]

Thus, if F satisfies the condition of the above lemma, then ¢(g) is the sum of the eigenvalues of
®(g), counting multiplicities. We also deduce from this lemma that an algebraically closed field is a
splitting field for every group.

5.2.2 Ordinary characters

This section deals with characters over €, the so-called ordinary characters.

Lemma 5.6 ([11,p.16]) The number of similarity classes of irreducible representations equals the
number of conjugacy classes of G.

Theorem 5.3 yields that this latter number is also the number of distinct characters afforded by
irreducible representations. (In this section ‘character’ always means ‘C-character’ and the same
holds for ‘representation’.) These characters are called irreducible and the set of all irreducible
C-characters of G is denoted by Irr(G).

Since € has characteristic 0, it follows from Maschke’s Theorem that every C-representation @ is
completely reducible. Thus for the character ¢ afforded by @, we have ¢ = 3°, c1.r(G) 7iXi» Where
n; denotes the multiplicity of the irreducible representation that affords x; as constituent of @. The
xi with n; > 0 are called the irreducible constituents of ¢.

For later use we introduce the following concept:

Definition Let ¢ and ¥ be C-characters of G. Then
1 —_—
(¢, ¥]:= €l > dl9)¥(9)
g€G

is called the inner product of ¢ and .
We state without proof ([11,p.21]) that
[xi» x5] = 655 Xi» X5 € IM(G),
where 6;; denotes the Kronecker delta. Hence, if ¢ = 3, ¢ 1,.r(g) i Xi i a character of G, then

[6, 8] = > nl. (5.2)

The degree of an ordinary character is defined as the degree of the corresponding representation.
Since ®(e) = I, 4(e) for every representation @, we can also say that the degree of a character ¢ is
equal to ¢(e).

Definition An algebraic integer is a complex number which is a root of a monic polynomial with
integer coefficients,

The set of all algebraic integers forms a ring that we shall denote by R*. For an ordinary char-
acter ¢, we have ¢(g) € R* for all g € G. This holds because of Lemma 5.5 and the fact that €' is
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algebraically closed.

For a particular group G, the irreducible characters are usually presented in a character table as
shown below. The rows are indexed by the irreducible characters; the columns correspond to the
conjugacy classes of G. A class is denoted by the order of its elements. Classes of elements of the
same order are distinguished by subscripts.

In [6], the so-called Arlas, the character tables of many finite groups are given.

Example 5.4(a) The character table of As, the altemnating group of degree 5, has the following
form:

Class: 1 2 3 5 5
X1 : 1 1 1 1 1
x2: 4 0 1 -1 -1
x3: 5 1 -1 0 O
X4 - 3 -1 0 g o
xs: 3 -1 0 o3 o

where a1 = 3—%@, ay = —l—”%fé

§.2.3 Modular characters

The theory of modular characters is concemed with the connections between ordinary representations
and representations over a field of characteristic p. We shall need only a few results from this theory.
For proofs and more details the reader is referred to Chapter 15 of [11].

Throughout this section we fix a prime p. The (p-)modular characters are defined in a particular
field F~ that is constructed in the following way. Choose a maximal ideal 7 2 pR* of R™ and
set F* := R*/I. Let @ : R* ~—— F™ be defined as 8(r) := rZ, » € R*. Furthermore, let
U:={eeC|e" = 1forsomen € Z withp [n}. Clearly, i C R™.

The field F* has the following properties:

(a) F™ has characteristic p;
(b) F~ is algebraically closed;
(c) 8:Uvr— F*\ {0}isanisomorphism of multiplicative groups.

Definition If p divides the order of ¢ € G, then g is called p-singular. Otherwise, ¢ is said to be
p-regular.

Let @ be an F™*-representation of G of degree n. Denote by § the set of p-regular elements of G.
We define a function 7 : § — R" in the following way. Let ¢ denote the F*-character afforded by @
and let ¢ € S. From Property (b) and Lemma 5.5 it follows that ¢(g) = Y I, €, where the ¢; € F*
denote the eigenvalues of ®(g), counting multiplicities. Property (c) says that foreach 2, 1 < i < n,
there exists a unique u; € I such that #(u;) = ¢;. Define n(g) := >y vi.

Definition The function 7 is called the modular character or Brauer character of G afforded by
o '

Strictly speaking, it is not correct to definc 7 as the modular character afforded by @, since the
maximal ideal 7 is not uniquely determined. To avoid this problem, we always assume that a particular
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maximal ideal 7 has been fixed.

We notice that the modular characters are only defined on the p-regular elements of G. It can be
proven that this is sufficient to reconstruct the full F*-character afforded by ®.

Similar F*-representations afford equal modular characters and modular characters are constant
on conjugacy classes. Both statements follow from the fact that similar representations have the same
eigenvalues.

Let®y,..., P, be asctof representatives for the similarity classes of irreducible F*-representations
of G and let 7; be the modular character afforded by ®;. The 7; are called the irreducible modular
characters and we write IM(G) = {m, ..., 7m}.

Theorem 5.7 |IM(G)| equals the number of conjugacy classes of p-regular elements of G. Further-
more, the irreducible modular characters are nonzero, distinct and linearly independent.

Modular characters connect Ir(G) and the representations of characteristic p as is shown in the
next theorem,

Theorem 5.8 Let ¢ be an ordinary character of G and let ¢ denote the restriction of ¢ to S, the set
of p-regular elements of G. Then ¢ is a modular character of G.

Thus ¢ = 2 nieIM(G) MiTi» for some nonnegative integers n; which are not all zero. The next
theorem shows that the construction of p-modular character tables for G can be restricted to those
primes p that are a divisor of |G|.

Theorem 5.9 Suppose p [|G|. Then IM(G) = Irr(G).

The Modular Atlas ([18]) provides for many finite groups G the tables of irreducible p-modular
characters. As an example, the tables of p-modular characters of As for p = 2, 3, § are presented.
We establish the notation that the irreducible p-modular characters are denoted by x%.

Example 54(b) G = As

p=2: c: 1 3 5 5 p=3: cl: 1 2 5§ 52
X 1 1 1 1 >~ 1 1 1 1
3: 2 -1 B B xa3: 3 -1 =B -3
30 2 -1 B B ¥: 3 -1 -p -p
XG: 4 1 -1 -1 x3: 4 0 -1 -1
p=25: Cl: 1 3
x: 1 1
x3: 3 - 0
x3: S -1

where §) = =143 g, = =1-V5

In the following section we shall need the next lemma:

Lemma 5.10 Let @ be an F*-representation which affords the modular character 1. Then n(e) =
deg(®).

PROOF. Recall that @(e) = I, (@). Since U and F* are isomorphic, we must have 6(1) = 1. Hence,
the conclusion holds. o

Inspired by this lemma, we define the degree of a modular character 7 afforded by the F*-
representation @ in the same way as the degree of an ordinary character, i.e. deg(7n) := deg(P).
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5.3 Application to strongly regular graphs

Let us now explain how representation and character theory can be used to obtain more informationon
the p-rank of the adjacency matrix A of a srg I'. For notational convenience, we shall only consider
r,( A), but all results can be easily translated into results for the p-rank of A + 01,0 € Z.

Let F be a field. Take for G an automorphism group of I'. Then G acts as a permutation group
on the vertex set V of T'. Denote by @ the permutation representation of G acting on V regarded as
an F-representation. Consider also A as a matrix with entries in F.

Proposition 5.11 ®r(g) commutes with A for every g € G.
PROOF. This follows from

(cp (9)APF(g))i; = (Adig,ig = (A)i;
and the fact that ®L(g) = ®5!(g). o

This proposition yields
Rr(A) = Rr(Pr(9)A) = Rr(ADF(g))

forevery g € G. Hence R p(A) can be considered as a submodule of the F[G]-module corresponding
to dp.

Let us first deal with the case F' = €. Denote by R(A) the rowspace of A over € and by r(A4) the
€-rank of A. For the C-representation of G acting on V' we simply write ®. Finally, ®( A) denotes
the C-representation corresponding to the submodule R(A4).

Let ¢ and ¢( A) denote the characters afforded by @ and ®( A), respectively. Because r(4) =
v = deg(¢), we have ¢ = ¢(A). In € the minimal idempotents E;, 0 < ¢ < 2, can be expressed as
linear combinations of /, A and J. So from the above remark it follows that R( E;) is a submodule
of R(A), 0 <1< 2. Infact,

R(A) = R(Ey) @ R(E1) ® R(Ez),

hence ® can be written as
D= diag(¢03 q)l s d)z)v

where @; := ®(E;). Denote by ¢, the character afforded by ®; and recall that vEp = J. Then
¢ =16+ ¢1 + ¢2, with deg(¢1) = f and deg(¢2) = g (5.3)

We now tum to fields of characteristic p. Let us first introduce some notation. Since p is not
fixed, we write F and IM,(G) instead of F* and IM(G). Furthermore, @}, denotes the permutation
representation of G considered as an F;-representation and ®;( A) the representation associated with
the submodule R;(A), the rowspace of 4 over F;;. The notation R ;( A) should not be confused with
’RP(A) which as usual denotes the rowspace of A over F,. Fmally, if ¢ is an ordinary character,
then @” denotes the restriction of ¢ to the p-regular elements of G. Theorem 5.8 asserts that qé?’ is a
p-modular character.

A first observation is that the p-rank of A equals its rank over F,;. Together with Lemma 5.10,
this yields

rp(A) = dim R (A) = deg(¢P(4)), (54)
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where ¢”(A) denotes the p-modular character afforded by ®,(A). Now what can we say about
(A

Let ¢7 denotes the p-modular character afforded by ®}. Since ¢(g) is equal to the number of
vertices fixed under the action of g, it follows from the next lemma that the character ¢ can be
computed in a rather easy way.

Lemma 5.12 Ler 7 and ¢7 be as defined above. Then ¢° = ¢P.

PROOF. Let g be a p-regular element of G. By definition, #*(g) = #(¢) = tr(®(9)) = X% «,
where the ¢; denote the eigenvalues of ®(g), counting multiplicities. Furthermore, let 8 be as defined
in Section 5.2.3. Then ¢?(g) = 3"V, 8~!(n:), where the 7; denote the (F,-)eigenvalues of ®y(g).
But @;(g) = ®(g) for every element g of G, s0 ¢; = 6~1(n;) for all 4, which proves the statement. O

Since R;(A) is a submodule of the module associated with @;, we can write ¢” as
¢ = ¢P(4)+ ¢}

for some p-modular character ¢}. Hence a set of possible values for the p-rank of A is

{ D naxP(e)|0< ny < 4, 1 i < IMUG)]},
XV €IMp(G)

where #i; denotes the multiplicity of x* as constituent of ¢7. For the case that we are interested in,
namely when p divides r and s, this set can be reduced to

{ 3 nixP(e)|0< ni < A4, 1 <4 < [IM(G)], Y mix?(e) < min(f,g) + 1},
xPeIM,(G)

where the upper bound of Theorem 3.4 is used.

From now on it is assumed that p | r and p|s. Under this assumption, a set smaller then the one
above can be obtained by considering the minimal idempotents E;, 0 < ¢ < 2.
Define L; := {z|z € R(E;)N Z"} and LT := {z (modp)|z € L;},0< 1 <2

Proposition 5.13 L7 is a vectorspace over F',, of dimension r( E;).

PROOF. Set p := r(E;). Let {z;,...,2,} be a Z-basis of L;. Then {z; (modp)|1 < i < p}isa
basis for L?. If z := Y°7_, a;z; € pZ", then %g € L;, thus %5 = $°¢_, Biz; for some f; € Z. This

=1

implies that p | o; for all s. From this it follows that dim(L?) = p. a

Let EY be a basis for L?. Consider L} = (1), L} and L} as p-ary linear codes. We recall from
Chapter 1 that the minimal idempotents satisfy

E.E; = 6;E; and ET = E,.

Thus (z;,22) = 0(mod p) forevery z; € L} and z; € L3. Thisimplies L} C (L})* and 1 € (L})*.
Since dim(L})* = v — dim(L}) = g + 1 and g < dim(L} + (1)) < g + 1, it follows that

dim((Z})* /(L5 + (1)) < 1, (5.5)
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with equality iff 1 € L}. From AE; = rE; and the assumption that r = 0 (mod p), we get

Rp(4) C (L) (5.6)
Combining (5.5) and (5.6) yields
dim(R,(A)/(Ry(A) N L5)) < 1. (5.7)
By similar arguments we obtain
dim(R,(A)/(R(A)n L})) < 1. (5.8)

So far everything has been considered over JF',, instead of F. Itis obvious that the above relations

still hold when R ,(A), L} and L} are substituted by R}(A), R;(Ef) and R;( E}), respectively. The

R;(EF),0<i<2are also submodules of the modulc corrcspondmg to ®;. Clearly, ¢”(E7) = 1g,
where 1¢ is considered as a p-modular character. Write ¢*(ET) and q&P(E{ )as

PED) =Y mad and F(ED) =Y mxl.
xFeIMp(G) xPEIMy(G)

From (5.7) and (5.8) with R}(A), R} (ET) and R;(E}) instead of R,(A), L] and L%, respectively,
and the above expressions, we obtain that ¢*(A) is an element of the set

{&x5+ D vixl 16 €{0,1}, xB(e) = 1,0 < 4 < min(y14,72:), 1 < i < [IMp| }, (5.9)
xPeIMp(G)

This leads to the following theorem:

Theorem 5.14 Let T be a srg with eigenvalues k, v and s and let G be a group of automorphisms
of T. Denote by ¢ the ordinary character afforded by the permutation representation of G acting on
I". Let the p-modular character x? be an irreducible constituent of ép(Eg} with multiplicity n;; for
1 = 1,2. Thus

P(Ey) = Yo nux? and F(E) =) muxi,

x?P € IMp(G) xF €IMy(G)
If pdivides r and s, then

ro(A) € {6+ Y nixP(e)|6 € {0,1},0 < n; < min(ny;,nz:),1 <4 < [IMy| }.
xP e IMp(G)

PROOF. Let L%, i = 1,2, be as defined before. Let B; be a Z-basis for R(E;) such that BY :=
{z (modp)|z € B;}isabasis for L? (cf. Proposition 5.13). Then ¢”( A)is an element of the set (5 9)
with E? substituted by B?. Becausc ro(A) = deg(¢”(A)), it suffices to show that $*(E;) = ¢?(BF)
fori=1,2.

Denote the C-representation of G on the basis B; by ¥ and the F,-representation of G on B by
;. Let ¢ denote the character afforded by ¥ and let 1” denote the p-modular character afforded by
¥}. By definition, (E;) = ¢* and @P(BY) = ¢*. Since ¥(g) = ¥;(g) for all p-regular elements
of G, we obtain from Lemma 5.12 that

WP = P,
Hence ¢7(E;) = ¢”(B?) for i = 1,2, which proves the theorem, o
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Remark The set of possible values for r,(A) as given in the above theorem always contains 1
and, in many cases, also 2. However, we shall never mention these possibilities, since for the graphs
to be discussed, it will always be easy to find a submatrix of A of p-rank 3.

In general we want to determine both 7,(A) and r,(J — A). In that case, the following lemma is
often useful.

Lemma 5.15 Let ¢7(A) be the character afforded by the permutation representation ®,(A) of G
actingonT. If 1 € Ry(A), then the principal character 1 (regarded as a p-modular character) is
a constituent of P(A).

PROOF. Obviously, since (1) is a submodule of R;(A). o

Let us illustrate the foregoing with a small example. A more interesting example will be discussed
at the end of the next section.

Example 5.5 The full automorphism group of the triangular graph 7'(5) (cf. Section 2.2) is Ss,
the symmetric group of degree S. Thus the alternating group As is also a group of automorphisms of
the graph. Since the spectrum of 7(5) is 6!, 14, (-2)°, the only interesting case is r3(A — I). Denote
by ¢ the permutation character associated with the action of As on the vertices of T'(5).

We first determine the irreducible constituents of ¢ by means of the table in Example 5.4(a). Since
¢(e) = 10, ¢((12)(34)) = 2, 4((123)) = 1 and $((12345)) = 0, we find that ¢ = x1 + X2 + X3
By (5.3), #(E1) = x2 and ¢( E3) = x3.

From the tables in Example 5.4(b) we find that £3 = x3, £3 = x3 and £3 = x} + x3. Hence, by
Theorem 5.14, ¢*(A — I) = x3 or ¢*(A — I) = x3 + x3. The rows of A — I add up to —1 (modulo
3), thus 1 € R3(A — I). Now it follows from Lemma 5.15 that X? is an irreducible constituent of
BA-I). Thusr(A-1)=1+ deg(x3) = 5. Taking A as in Proposition 2.5, a subgraph of
A — I of 3-rank 5 is readily found. Furthermore, r3(4 — I) < 5 by Theorem 3.5. Hence indeed,
r3(A —I) = 5. Finally, since —=J(J — A+ I) = J (mod 3), we also find that r3(J — A+ I) = 5.

5.4 Rank 3 graphs

Continuing with the notation of the previous section, it seems reasonable to assume that the set (5.9)
will be large if ® has many irreducible constituents. Let G act transitively on a finite set Q. If G,
the subgroup of G fixing w € €, has p orbits on £, then G is said to be a rank p group. Denote by
7 the permutation character of G as defined in Example 5.3. Write m as @ = }°, ¢1,r(G) MiXi» Where
n; denotes the multiplicity of x; as a constituent of . In[11,p.68] it is proven that [r, 7] = p, where
[, | denotes the inner product as defined in Section 2. From (5.2) we obtain that Y n? = p. Hence
7 has at most p irreducible constituents. Thus if G is a group of automorphisms acting transitively
on the vertex set of I' and has low rank, then probably G gives rise to a small set of possible values
for the p-rank of A. We now introduce a class of graphs for which such an automorphism group exists.

Let G and Q be as defined above. If G is a rank 3 group of even order, then a s7g I' can be
constructed from G in the following way. Take Q as the vertex set of I'. Denote the three orbits of
G, ,w € Qby{w}, T, and A,. Let two vertices w; and w; be adjacent whenever w; € T',. The
adjacency is well defined, because from the assumption that |G| is even, it follows that wy € T, iff
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w2 € T',. Clearly, G is a transitive group of automorphisms of the graph. For obvious reasons, T" is
called a rank 3 graph.

Denote by @ the permutation representation of G with respect to . Write ¢ for the character
afforded by ®. From the above discussion it follows that ¢ has precisely three irreducible constituents,
say ¢ = x1 + x2 + x3, Xi € Im(G). Now according to (5.3), we have x; = 1g, deg(x2) = f and
deg(x3) = g. Hence for a rank 3 graph we expect the set (5.9) to be small when G is the group that
defines the graph. '

We conclude this chapter with an example in which we study the p-rank of three rank 3 graphs.
We shall only give the groups from which these graphs are derived. By applying Theorem 5.14 1o
these groups, small sets of possible values for the p-rank are obtained. In some cases the actual value
of the p-rank can be easily determined from this set; in other cases we need more information about
the structure of the graph. The character tables of the groups involved can be found in the Atlas and
the Modular Atlas. The degree of an irreducible character is written as a subscript. Characters of the
same degree are distuinguished by letters.

Example 5.6 Let T be a rank 3 graph derived from the group G and let z be a vertex of T". It
may happen that G; has a rank 3 representation on the set I';, which denotes the set of vertices
adjacent to z. This process may occur several times and yield a so-called rank 3 tower.

In this example we shall investigate the p-rank of the first three elements of the Suzuki tower.

| v k X p r s f g G
o] 36 14 4 6 2 -4 21 14 G2
Iy 100 36 14 12 6 -4 36 63 HJ
T:| 416 100 36 20 20 -4 65 350 Ga(4)
Iy | 1782 416 100 96 20 -16 780 1001 Su:z

The groups involved in this tower are the Chevalley groups G3(2) and G2(4), the sporadic Hall-Janko
group and the sporadic Suzuki group. For more details on the rank 3 representations we refer to
Hubaut {10].

The permutation representation of G2(2 ) acting on I'y affords the ordinary character x1 + x14+ x21-
From the Modular Atlas we obtain

=2 Bi=x8+x%+x

and
fa=xd+x3.+ 3+, Bi=24+x.+%+ 3
Theorem 5.14 yields that 14 < r(A;),r(J — A1) <€ 15. Since r{A4;) is even (Lemma
3.9) and r(J — Ay) satisfies ro(J — A)) < r(6] - 34, + J) = r(E;) = 14, we conclude that
r2(A1) = r2(J - A1) = 14,
For the 3-rank of A; + I(—J) we can only deduce that 7 < r3(A; + I{~J)) £ 9. However, this
is a considerable improvement on the upper bound 15, which is obtained from Theorem 3.5.

For the Hall-Janko graph T, the interesting cases are r2( Az ) and rs( Az — I'). Withrespectto HJ
we have ¢(E1) = x3¢ and ¢(E3) = xs3, which satisfy

Be = 36, K =33+ 20 + 204 + 2%
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and
Be=xi+ x5+, & =xi +X3 +Xa1-

From Theorem 5.14 and the fact that r(A;) is even, it immediately follows that r2(42) = 36.
Furthermore, we have r3(J - A43) = 36+¢, where eequals O or 1 depending on whether 1 € Rz(J - A43)
or not.

Looking only at the characters, we obtain that 21 < rs(A; — I(—J)) £ 23. This result can be
slightly improved in the following way. It is easily verified that

3(A; — I)* = J (mod5) and 3(I — A2)(J — A2 + I) = J (mod$5).

Hence xj is a constituent of ¢°(A4; — I(—J)) by Lemma 5.15. Thus 22 < (4, - I) =
ra(J — A3 + 1) <23

As for I'; we restrict ourselves to 73( A3 ). The irreducible characters xg5 and x3so of G2(4) satisfy

Res =23 + Xhaa + Xap + XB6» Kds0 = 63 + 4xE, +4x% + Xaa + X +2x36 + Xios-

First of all, we notice that r2( A1) > r2(Az) = 36. The strict inequality can be seen in the following
way. Since ¢?(Az) = x3¢ (where xJ is a character of HJ), Lemma 5.15 implies that 1 is not
contained in R2(A3). The induced subgraph on a vertex of I's and its neighbours has adjacency

matrix
01
¥4 )

Now it is evident that 7(43) = r3(A3) would imply that 1 € Ra(Az). From R(E;) = R(161 +
443 — J) it follows that x? as constituent of XZ5 corresponds to (1). This leads to the conclusion
that 73(A3) € {50,64} if Ra(As3) does not contain the all-one vector and r2(A3) € {38,52,66}
otherwise. Furthermore, r2(J — A3) € {37,38,50,51,52,64,65,66}.



Chapter 6

Results

In this chapter we shall determine (bounds for) the p-rank of a considerable number of strongly regular
graphs. In most cases the theory of the previous chapters is not sufficient to determine the p-rank
completely, hence we also have to examine the structure of the graph. A table of the results is given
at the end of this chapter. All graphs discussed here are described in Brouwer and Van Lint [4] or
Hubaut [10].

In general, the notation is the same as used in the previous chapters. The subscripts of the
irreducible characters indicate their degree. The character tables of the groups involved can all
be found in the Atlas or the Modular Atlas. Furthermore, ‘subgraph’ will always mean ‘induced
subgraph’,

The graphs that we consider are often constructed from other combinatorial objects. The reader
who is not familiar with (some of) these concepts is referred to the Appendix. Besides definitions,
results that are used in order to determine the p-rank are mentioned there. We refer to the Appendix
by (An), where n indicates the section.

In this chapter we mainly deal with so-called sporadic graphs. These graphs are related to the
sporadic groups by means of their group of automorphisms. Usually, the sporadic group acts as a rank
3 group on the vertex set of the corresponding graph. As for the greater part of the groups mentioned
here we refer to the literature for a description, e.g. Suzuki [20].

6.1 The Higman-Sims family

The Steiner systems S(4,7,23) and 5(3,6,22) (A1) give rise to many sporadic graphs. The three
graphs of the Higman-Sims family are derived from 5(3,6,22). Each of them is a unique rank 3
graph.

The Higman-Sims graph T, has parameters (v, k, A, 1) = (100,22,0,6) and is obtained by
the following construction. Take as vertex set the 22 points and 77 blocks of S(3,6,22) and the
symbol oco. Join oo to all the points, join a point to the 21 blocks containing it and let two blocks
be adjacent whenever they are disjoint. The subgraph on the 77 blocks is a srg with parameters
(v,k, A, 1) = (77,16,0,4)and is denoted by T",,. Let zg be a point of 5(3,6,22). The subgraph of T',,
on the blocks not containing x¢ is again strongly regular with parameters (v, k, A, u) = (56,10,0,2).
This graph is the Gewirtz graph which has already been discussed in Example 3.2. We shall denote
itby I' .

Label the first row of 4, by oo, the next 22 rows by the points and the last 56 rows by the blocks
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not containing zo. Then A, has the following form:

014{1...110...0
A, = _1_1 022 Ny s whcreA.,,:(
T T A

O | N )

A (6.1)

Let us start with the Gewirtz graph. Its spectrum is 10',2%5, (—4)%. Hence the only interesting
cases are 12(A;) and r3(A, + I). In Example 3.2 we derived that r2(A.) = 20. Furthermore, we
claimed that 1 could be written as the sum of an even number of rows of A, which implied that
r2(J — A;) = 20. This will be proven now.

I'; is a rank 3 graph derived from PSL(3,4). The corresponding permutation representation
affords the ordinary character x1 + X20 + x35. The 2-modular characters £3; and 5&%5 satisfy

ﬁo*zﬁ‘*‘)(ga'*xgm )?%S:X%+X§Q+X§b+xga+x%b'

Since r2(A,) = 20, we have ¢*(4,) = 2x% + x3, + x3;. The constituent x? of x3s corresponds
to the submodule (1), because 24E; = 161 + 44, ~ J, thus 1 € L}. From this we conclude that
1 € Ra(A,). Number the points of §(3,6,22) from 1 to 22 and assume that the vertices of T’ do
not contain 22. The rows of A, labelled by the following blocks form a basis of R2(A ).

(125121819* (24591113 (37 8 91013)* (5611121621)
(14 6 81213)* (256 81015)* (45 7 81821)* (57101117 19)*
(1567 914) (Q78111214% (46 9101721)* (58 9121720)
(1711131618)*  (345101214)* (47 91216 19) (6710 12 18 20)*
(1910111215 (346 71115) (4810111620)* (68 9111819)

The sum of the rows indexed by the *-marked blocks equals 1 (modulo 2). This is easily veri-
fied from the submatrix of A corresponding to these blocks. Hence, 1 can indeed be written as the
sum of an even number of rows of A4 .

Let us now examine the 3-rank of A, + J. From the Modular Atlas we obtain

A3 3 ~3 3 3
B0=24+ X s = X3+ x5 + xdo-

So r3(J ~ A, — I) > 19. We claim that equality holds. The Gewirtz graph is a subgraph of a srg
T" on 112 vertices (the first subconstituent of the McLaughlin graph) that will be discussed in the next
section. It will be shown that r3(J — A — I') < 19. This proves our claim. From Lemma 3.8 we
find r3(Ag + I)=r(J - A; - 1)+ 1=20.

We mention here that Brouwer and Haemers [3] have obtained the same results by different
methods.

I,, has spectrum 16,25 (—6)%!, so we only have to determine 72(A4,,). Obviously, 20 =
m(Ag) € 2(Ay,) < 7(221 - 114, + 2J) = r(E;) = 21 holds. By Lemma 3.9, r2(A,,) is even,
hence r2(A,,) = 20. From Lemma 3.8 it follows that r2(J — 4,,) = 21.

The spectrum of the Higman-Sims graph is 22!,277, (—8)%2. Therefore, we consider r5(4,, ) and
?'S(Am + 31).

Examining the matrix A4, in (6.1), we observe that a row of A, indexed by a point can not
be expressed as the sum of rows labelled by blocks. From this, it follows that 20 = r(4,,) <
r2(A,,) £ 23. Because m(A,, ) has to be even, we conclude that 72(A,,) = 22. In order to
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determine r2(J — A, ), we consider the matrix J — A, in more detail. As in (6.1), let the first row
be labelled by co. Furthermore, assume that the second row is indexed by z¢ and that the last 56 rows
are indexed by the blocks not containing z¢. Thus the submatrix of J — A, on the last 56 rows and
columns is J — A;. Since rp(J — A;) = 20, we can choose 20 rows of J — A that are linearly
independent over F. Denote these rows by b;, 1 < i < 20, and let g; be the corresponding row
of J — A, thus g; = (11; z;; b;). Denote the first row of J — A,,; by go. Then gy = (10; zo; 1).
Obviously, dim((a; |0 < i < 20)) = 21. Suppose that the second row can be expressed as a linear
combination of the g;. Then for the first two coordinates the following must hold:

20(10) + TR, A(11) = (01) (mod2)
and for the last 56 coordinates
Ml+32 Ab = 1 (mod2).
Thus

YO A = 1 (mod2),
Ridb = 0 (mod2).

]

Since the b; form a basis for R2(J — A,), it follows from the second equation that A; = 0 for
1 < ¢ <20, which contradicts the first equation. Hence, r2(J — A, ) 2> 22. Together with the upper
bound r2(J — A, ) £ (101 - 54, + J) = r(Ep) = 22, this yields r(J — A, ) = 22.

For rs( Ay, + 31)wehave 22 = r5(A,, + 31,,) < r5s{ Ay, + 31,4,) < 23. The strict inequality is
obtained by the same argument as used for the inequality r2( A, ) < (A, ). Thusrs( A, +37) = 23.
Furthermore, from (21 — A, )(J — A, — 31) = J (mod5), it follows that rs( A, + 31) < r5(J —
A, =3I). Together with the upper bound derived in Theorem 3.5, this yields rs(J — A, —371) = 23.

6.2 The McLaughlin graph and its subconstituents

The McLaughlin graph I',, is the unique graph with parameters (v, k, A, u) = (275,112,30,56). It
can be constructed in the following way. Denote the set of points of the Steiner system 5(4,7,23)
by X and the set of blocks by B. Let B; be the set of blocks containing a fixed point 2 and define
B, := B\ By. Take as vertex set of T',, the set X \ {20} U B. Join a block B) € Bj to all points that
are nonincident to it; join a block of B; to the points incident to it. Let two blocks of B;, i = 1,2,
be adjacent when they have a single point in common. Finally, a block B; € B is joined to a block
B, € B, whenever they intersect in three points. T',, is a rank 3 graph with the sporadic McLaughlin
group as group of automorphisms.

The spectrum of T, is 112},2252,(~28)?2, 50 the interesting cases are r5(4,,), 73(4,, + I) and
r5(A,, + 31). Let ¢ be the character afforded by the permutation representation of the McLaughlin
group actingon I',,, then

é = x1 4+ x22 + Xx252-

Because £3, = x3; and the 2-rank of A,, is even (Lemma 3.9), it immediately follows that
r2(4,,) = 22. Furthermore r3(J — A,,) = 23 by Lemma 3.8.

Clearly, the subgraph of I',, induced on the 22 points is a coclique. Thus r3(A,, + I) > 22.
We claim that in fact equality holds. Denote by P, the set of points adjacent to the block B. Thus
|Pgl =16if B € Byand |P,| = |B| = 7 otherwise. Let B; and B; be two different blocks of B; for
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¢ = 1, 2. From the above-mentioned construction of I, we deduce that

if By ~ By, then |By N B|| = 1 and {20} € By N By, hence |P, N P;| = 10;
if By o By, then |By N B;| = 3 and {20} € B, N B}, hence |P; N P)| = 12;
if By ~ By, then |B; N By| = 3 and {20} & By N By, hence [Py NP2 = 4;
if By o By, then |By N B;| = 1 and {20} ¢ By N By, hence [Py NP3 = 6;
if B, ~ B,, then |B, N By| = 1 and {zo} ¢ B, N B, hence [P2NP,| = 1;
if By # B,, then | B, N By| = 3 and {zo} ¢ B2 N By, hence |P, NPy = 3.

Now it is easily verified that for every block B the row r satisfies

T, = Z 7, (mod3).
PEPR
Henceindeed r3(A,,+1) = 22. AgainLemma 3.8 yieldsthatr3(J—A4,,—I) = r3(A,+1)—-1=21.
By the subconstituents of a graph we mean the induced subgraphs on the vertex sets {z |z ~ y}
and {z |z % y} for an arbitrary vertex y. The subconstituents of the McLaughlin graph are both
strongly regular. We shall denote them by T, and I',,, and their parameters are (112, 30, 2, 10) and
(162, 56, 10, 24), respectively. Thus

1...1/0...0
7] 4, | ¥ |. (6.2)
0| NT | Ag

Ay =

Now rs(A,,+31)is easily determined. The second subconstituent I',, has spectrum 56!, 2140, (—16)2!.
Hence, 22 < rs(A,, 4+ 31) < 23. Considering the matrix A,, 4+ 3/ with A,, as in (6.2), we no-
tice that the first row can not be written as the sum of some of the last 162 rows because of the
first coordinate. Hence rs(A,, + 3I) = 23. From (21 - A, }(J — A,, — 3I) = J(mod5), it
follows that rs(A,, + 31) < rs(J — A,, — 3I). Together with the usual upper bound, this yields
rs(J — A,, — 3I) = 23. Let us now tumn to the subconstituents of T",,.

We start with T',,,. Since its spectrum is 30',2%, (~10)?!, we shall consider r2(4,,,) and
r3{A,, + I). However, let us first give a direct description of I',;,. Choose two points z and y from
the point set of 5(4,7,23). Take as vertices the 112 blocks that contain exactly one of these points.
Join two blocks containing the same point when this is the only point they have in common. Join a
block containing z to a block containing y iff they intersect in three points. This produces directly the
srg (112, 30, 2, 10). Notice that the subgraph on the blocks containing z (y) is the Gewirtz graph.

We first consider 72(A4,,,). The graph I, is the point graph of the generalized quadrangle
GQ(3,9) (A2). Bagchi, Brouwer and Wilbrink [1] have proven that the 2-rank of the adjacency
matrix of the point graph of GQ(g, ¢?) for odd g equals ¢* — ¢> + ¢ + 1. Hence rp(4,,,) = 22.

We prove that r2(J — A,,,) = 22 by showing that ] can be written as an even number of rows of
A,,,- In GQ(3,9) every line is incident with four points. Take a line [ = {z}, 22,23, 24}. Wlo.g.
assume that the first four rows of A,,, are indexed by the points z;, 1 < i < 4. Then from the
parameters of the graph, it follows that these rows can be written as

0111 1y

1011 1y

1101 15
1110 15
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This obviously proves the statement.

The last result can also be obtained in a different way, using the fact that r2(A4,,) = r2(A4,).
Without loss of generality assume that the first 22 rows of A, form a basis for Ra(4,,). Set
a; = (1; ;5 n;) for 1 < i < 22, where b; denotes the ith row of A,, and g; is the corresponding row
of A,,, with the latter as in (6.2). Because the g, are a basis for R2(A4,, ), there exist A;, 1 < 1 < 22,
such that

TZ Mg = (6;1L0) (mod2).

Thus 3 A; = 0(mod2) and 3~ A;b; = 1(mod2), which is equivalent to the assertion that 1 can be
written as an even number of rows of 4,,,.

Letusnow look at r3(J — A,,, —I') and r3( A,,, +I). Itisclear from Lemma3.8 that r3(A4,,+1) =
r3(J — A, — I) + 1. For the Gewirtz graph I'; we derived before that r3(J — A, — I) > 19, s0

19 < r3(J = Ay, — 1) < r3(J — A, — I) =21. (6.3)

112

Set p := r3(J — A,,, — I'). Without loss of generality, assume that the first prowsof J — 4,, — I
are linearly independent. Denote by r; the ith row of J — A4, — I, with A,, as in (6.2). Let
S5 C Ra(J — A,, — I) be defined as

S:=(r]2<i<p+1).

Thendim(5) = p. One easily sees that the first row of J — A, — I isnotcontained in 5, because other-
wise the first prows of J — A4, , — I would not be linearly independent. A row indexed by ablock cannot
be contained in.§ + (r; ), because of the first coordinate. Thus r3(J —~ A, —~ 1) 2 r3(J - A4,,, - I)+2.
Combining this with (6.3), we conclude that r3(J — A4,,, — I} = 19. This also proves that
r3(J - A; -1)=19.

The graph T, , can be constructed from the projective plane PG(2,4) (A3) in the following way.
Let the vertex set consist of the 21 points, the 21 lines and one class of 120 Fano subplanes. Join a
point 10 a line when they are not incident; join a point to a Fano plane when they are incident; join
a line to a Fano plane when they have two points in common and join two Fano planes when they
intersect in one point.

On| M| MV, points
Ag=1| N{ |02 | N3 | lines (6.4)
Nj | Ny | A’ ] Fanoplanes

This graph is a rank 3 graph derived from PSUy(3). Since T',, has spectrum 56!,2140 (—16)?!, the
interesting cases are r2( A, ) and r3(A,,, + I).

We first consider 72(A,,). Goethals and Seidel [8] have shown that the vertex set of T,
can be split into two halves such that the induced subgraphs on these halves both form a strongly
regular graph on 81 vertices with spectrum 20',2%0, (—7)%0, Denote this graph by I',. Then
20 = m(A,) < m(Ag) £ 21. Because 72(A,,) is even by Lemma 3.9, we conclude that
r2(4,,) = 20.

In order to determine the 2-rank of J — A,,,, write the matrix as

_ _ J81 - A81 i N
J162 Aléz - ( N1 l J& — Asx .

There are 61 ones in every column of J; — A, and 45 ones in each column of N. Hence the sum of
the rows of [J,, — A, | N]equals 1 (modulo 2). In order to find out whether 1 is contained in R2( 4, )
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or not, we look at the permutation character ¢ = x) + X21 + X140 yielded by the action of PSU4(3)
on the vertices of T',,,. From r,(A4,,,) = 20 and

X1 =32 + X%, %140 = X5 + X3a00

it follows that ¢*(A,;, ) = x3,. We see that ¢?( A, ) has no constituent of degree 1, thus, by Lemma
5.15, the all-one vector is not contained in R2( A4, ). Hence r2(J — 4,,) = 21.

For the 3-rank of A, + I'and J — A,, — I, we look at (6.4). Itis evident that r3(A,, + ) > 21.
In PG(2,4) every line is incident to 5 points and every Fano subplane is incident to 7 points. Thus
Ny has 16 ones in every column, while N, has 7 ones per column. So

21 21
2 ri=1(mod3) and } (1-1;)=-1(mod3),

1=1 izl

where r; denotes the ithrow of A, + I. This proves that r3(A,, + I) = r3(J — A, — ).

Let ! be aline and f a Fano subplane. Denote by P, the set of points not incident to [ and by Py
the set of points incident to f (thus |P;| = 16 and | P¢| = 7). From the construction of I, it follows
that

if I#£U, then |PNP| = 12;
if I~f, then |PNPsl = 4
if IAf, then |PNP;l = 6
if f~f, then |[PsNnPp| = 1;
if f%f', then leﬂPj'] = 3.

From this it follows that any row of A,, + I can be written as a linear combination of the first 21
rows. Hence 73(A4,, + I) =nr3(J — A, — I} = 21

6.3 Graphs related to the McLaughlin graph by switching
Let T}, be the graph obtained by adjoining an isolated vertex to the McLaughlin graph. This graph

can be switched into several interesting graphs one of which is strongly regular. The adjacency matrix
A}, of I} satisfies

n(Ay) = n(J-A4,)-1 = 22
(A, +1) = m(J-4, -1)+1 = 22
(AL -21) = 24.

Define a graph I';, on the 23 points and 253 blocks of 5(4,7,23) by joining a point to the
blocks containing it and joining two blocks whenever they intersect in one point. From the explicit
construction of ', as given in the previous section, it is immediately seen that isolating a point from
I';,, by switching produces I";, . Note that T, is not strongly regular. However, the subgraph induced
on the blocks is a srg with parameters (v, k, A, u) = (253,112,36,60). This graph is denoted by I',,
and will be discussed in the next section.

Write the adjacency matrix of T, as

AL, = ( Oz | N ) (6.5)

We shall investigate 72( A}, ) and r3( Az, + 1).

276
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The submatrix N has 7 ones in each column and 77 ones in every row. Thus

276 276
> r;=1(mod2) and ) (1-1;)=1(mod2),
=1

= =1

where r; denotes the ith row of A7, . Hence rp( A}, ) = r2(J — A}, ). From Lemma 3.11 it follows
that r2( A7) = r2(A,,) +2 = 24. Thus p(A},) = r2(J — 45,) = 24,

Funhcrmore, we prove that r3( A}, + I) = r3(J — A}, — I) = 23. Clearly, r3(A;, +I) 2 23,
since I3 is a submatrix of A7 + 1. Let z denote a point, B a block and X the point set of S(4,7,23).
Write 7. (r ;) for the row of A}, + I indexed by z (B). From the fact that two blocks of 5(4,7,23)
intersect in 1 or 3 points, it follows that

> r,=r1, (mod3).

z€B

So r3(A>_ + I) = 23. The proof is completed by observing that

276

> r.=1(mod3) and 3 (1-r,)=-1(mod3),

z€X zeX

The graphs T";, and T}, canbe switched into a sr¢T,,, with parameters (v, k, A, u) = (276, 140,58, 84).
This graph was first constructed by Goethals and Seidel [8]. Its spectrum is 140", 2252 (-28)%. Hence
the interesting cases are r2( A, ), 73(Ay + I') and 75( A, — 21).

Let us start with 73( A, ). In [8] the first six rows of A, are given by

(Je=1Is| Do | Dy |...| Dy ), (6.6)

where D; := [did; ...d;],0 < i <9,isa6 x 27 matrix and [dod; . . . dg] denotes the incidence matrix
of the 2-(6,3,2) design (A1). Thus there are 3 ones in every column d;, 0 < 7 < 9. Hence

6
> ri=1(mod2) and Y (1-r;)=1(mod2),

=1 i=1

where r; denotes the ith row of (6.6). Thus r2(A,,,) = r2(J — Ay ) and r2( Ay ) = 12(A,, ) +2 =24
by Lemma 3.10.
For the 3-rank of A, + I and J — A,,, — I, Lemma 3.10 yields

22
21

24,
23.

r3(AL,+1)-2 < m(An+I) £ rn(AL, +I1)+2
r(J—An —1)=2 < r3(J = Ap—1) < r3(J =A%, —1)+2

IAIA

For r5( A, — 2I') we find the following bounds:
22 =15(A}, —2I) -2 < r5(Ap, —21) < 24,

where Theorem 3.5 provides the upper bound. The same bounds apply to rs(J — A,,, + 27), since
rs(J — Ay + 21) = r5( A, — 27). This can be seen by consideration of

(Jo+2I6 | Do| Dy|...| Ds ), (6.7)
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with the D; as in (6.6). Denote the ith row of (6.7) by r;, then

3
i =3(mod5) and Y (1-r;) =3 (mod5).
1 =1

3

Thus rs( Ay, — 2I) = rs(J — A, +21).

6

The above graphs are switching-equivalent to a graph that consists of 11 mutually nonadjacent
triangles and 243 further vertices each of which is adjacent to exactly one vertex of each triangle
(see [8] for more details). The subgraph on the 243 vertices is strongly regular with parameters
(v,k, A, ) = (243,110,37,60). This graph is called the Delsarte graph; we denote it by I',. Its
spectrum is 110',222%, (~25)?2, hence we only have to consider r3(A,, + I). In [8] it is proven that
I';, contains a subgraph on 162 vertices that can be switched into T, the second subconstituent of
the McLaughlin graph. Hence 19 = r3(A,, + I) -2 < r3(A, + I) < 23, where the lower bound is
obtained by applying Lemma 3.10 and the upper bound is the bound derived in Theorem 3.5. Since
r3(J — A — I) = r3(A, + I), the same bounds apply to r3(J — A, + I).

6.4 Other graphs derived from S(4,7,23)

Most graphs discussed in this chapter are derived from the Steiner system S(4,7,23). This also holds
for the three srgs that are studied in this section. Their parameters are

T @ (v.k,Ap)
rl’!{s : ('U,k,)\,ﬂ}
rzeo : (ﬁ,k,),#)

(253,112, 36,60);
(176,70,18,34);
(120,42, 8,18).

o

We have seen I',,; already as a subgraph of the graph I',, which was discussed in the previous
section. It is constructed by taking as vertices the blocks of 5(4,7,23) and joining the blocks
intersecting in one point. Clearly, the subgraph on the blocks containing a fixed point is the graph
I, of the Higman-Sims family. The graph T, has spectrum 112},2%30, (-26)??, thus we shall
investigate ra( A, ) and r7( A, — 217).

T, is arank 3 graph derived from M,3. The associated permutation character is x1 + x22 + X230
From the Modular Atlas we obtain

A2 A 2 2
B2 = xhe + X%ww X%so = X%la + X31p + Xdaa + Xhas + X2
and
7 7 a1 7 7
X22 = X2 X230 = X22 + X208-

Since (A, ) > r2(A,) = 20 and (A, ) is even, we find r( A, ) = 22 by application of
Theorem 5.14. Furthermore, Lemma 3.8 yields that r2(J — A, ) = m2(A,;) + 1 = 23
We also obtain from Theorem 5.14 that 22 < r(A — 27) < 23. Since

3J(Ay -21I) = J (mod7),
=2J(J-A,+2I) = J (mod7),

it follows from Lemma 5.15 that x] is an irreducible constituent both of ¢"(A,, ~ 27) and of
&'(J = Ay, +21). We conclude that r7( Ay, — 21) = r7(J — Ay, +21) = 23.
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I, is the subgraph of T,; on the blocks not containing a fixed point. Every other element of the
point set of S(4,7,23) is contained in 56 of the 176 blocks. The subgraph on the blocks containing
a second fixed point is the Gewiriz graph. Deleting these blocks produces a graph on 120 vertices
which is again strongly regular. This graphis T',,,.

The spectrum of I',, is 70',2'34, (—18)?!. Therefore we shall consider r2( A, ) and rs( A, —21).
The Mathieu group M3, acts as a rank 3 group on the vertex set of I',,,. The corresponding permutation
character is x1 + X21 + X1s54. For x21 and x)s4 the following holds:

1 =34 + xoa + Bors Lsa =253 + xoa + XG0 + x50 + 15
and
B =51 Kisa = X1 + Xins- (6.8)

Using the facts that the Gewirtz graph T, is a subgraph of T',; and that r2(4;) = 20, we find
T2(A;) = 20 0r r2( A, ) = 22, depending on whether the all-one vector is contained in Ra(A4,,) or
not. For the 2-rank of J — A,,, we obtain that 20 < ry(J — A,,,) < 22.

We now prove that rs(A,,, — 21) = rs(J — A, + 21) = 22. Applying Theorem 5.14 1o (6.8)
yields 21 < (A, — 21(—J)) £ 22. The rows of A,,, — 27 add up to 3 (modulo 5) and the same
holds for the rows of J — A,,, + 21. Hence the assertion is true by Lemma 5.15.

The last graph discussed in this section has spectrum 42!,2%, (~12)%, hence the interesting cases
are rp( A, ) and m(A,,, — 2I). PSL(3,4)is a group of automorphisms for I',,;. The permutation
representation of its action on the vertices of the graph affords the character ¢ = x1 + x20 + X35 + Xs4-
For ¢(E1) = x35 + Xea and ¢( Ez) = x20 we have

FE) = X3+ Xha + X + XBa + X3 + Xoa:  $(E2) =24 + XBa + X5 (6.9)
and
S'(Er) = Xio+ X35 + xis>» &' (E2) = x] + Xlo-
For the 7-rank of A,, — 2/ and J — A, + 21, we immediately obtain from

3J(A,, -2I) = J (mod7),
=2J(J- A, +21) = J (mod7),

and the constituents of ¢’ ( E; ) and ¢’ E;) that r7( Ay, — 21) = r9(J — Ay + 21) = 20.

Theorem 5.14 yields that r2(A,,,) € {10, 18,20}. Number the points of 5(4,7,23) from 1 to 23.
Take as vertex set of I',, the set B’ which is defined as the collection of blocks containing neither 1
nor 2. Assume that {1,2,3,4,5,6,7} is a block of $(4,7,23). Then every 3-subset of {3,4,5,6,7}
is contained in exactly four blocks of B’. The blocks containing 3 and one of the 2-subsets of {4,5,6}
form a coclique of size 12; the same holds for the blocks containing 3, 7 and one of {4,5,6}. Let
A’ be the 24 x 24 submiatrix of A,,, corresponding to the 24 blocks described above. By a suitable
labelling of the rows and columns, we get

' O |N v
A = (Wal.—) (6.10)

{347} {357} {367}
{345} N
{346} N,
{356} N3

The matrix N has the following form:

(6.11)
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Every N;, 1 <1 < 3,is a4 x 4 matrix with two ones in each row and column. Thus r;(N;) > 2.
Hence from (6.10) and (6.11) it follows that r2(A4,,,) > r2(A4’) 2 12. This leads to the conclusion
that m(Ap,,) = 20if 1 € Ra(A,,) and 18 otherwise. For the 2-rank of J — A,,, we find 18 <
ra(J = Ay) < 20.

6.5 The Cameron graph

The Cameron graph T, has parameters (v, k, A, 1) = (231, 30,9,3) and is constructed from 5(3,6,22)
in the following way: take as vertices the unordered pairs from the point set of the Steiner system
and let two pairs be adjacent when they are disjoint and their union is contained in a block. Since its
spectrum is 30',9%%, (—3)175, we shall examine r3( A, ) and 72( A, + I).

Clearly, M>; is a group of automorphisms of I'.. For the character ¢ afforded by the permutation
representation of Mj; acting on T, we find

¢ = x1+ x21 + Xxs55 + X154.

Thus ¢(E1) = xs5 and ¢(E,) = x21 + X154.
Let us first deal with 73( A ). Then

$(E1)=x3s and ¢*(E2) = xi + X31 + Xdoa + Xaos + X35

Thus 55 < r3(J ~ A.) < r(211 + TA. = J) = r{E)) = 55. Furthermore, r3(A.) = 55 or 56,
depending on whether 1 is contained in R3(A_ ) or not.
The 2-rank of A 4 I is not as easily determined as the 3-rank of A, since

GHE1) = X3 4 300 + Xoos + X% and F(E2) = 3x% + 2330, + 2305 + X34 + X3

Taking into account that r2(J — A, — I) < r(211 +TA. — J) = r(Ey) = 55and rp(J ~ A, - I)
is even (Lemma 3.9), we obtain that rp(J — A, — I) € {10,20,34,44,54}. By Lemma 3.8,
(A .+ =rn(J-A.-1)+1.

The set of possible values for r3( A + I') can be reduced by examining the structure of the graph
in more detail. Number the points of $(3,6,22) from 1 to 22. The vertices {1,:},2 < i < 22, form
a coclique, hence (A, + 1) > 21. Without loss of generality assume that {1,2,3,4,5,6} is a block
of §(3,6,22). We claim that

T3y # Tiay T Ipsy + sy (mod2).

From this it follows that Ry( A + I) is not generated by the rows 7, ;3, 2 < ¢ < 22. A counting
argument shows that there are 20 pairs {z,y} with z,y € {7,...,22} such that {1,4,z,y} is
contained in a block and {2,3, z, y} not. Assume that {7, 8} is such a pair. From the fact that two
blocks of §(3,6,22) intersect in 0 or 2 points, it follows that neither {1,5,7,8} nor {1,6,7,8} is
contained in a block. Now 1, 3) has a zero at the coordinate corresponding to {7,8}, whereas the
sum of the three rows mentioned above has a one at the same coordinate. Hence r2(A. + I) > 21.
We conclude that r( A, + I) € {35,45,55}.

6.6 The Hoffmann-Singleton graph and related graphs

In Brouwer and Van Lint [4] it is shown that the vertex set of the Higman-Sims graph can be split
into two halves such that the each of the induced subgraphs is a srg with parameters (v, k, A, p) =
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(50,7,0,1). This graph is called the Hoffmann-Singleton graph and is denoted by I',, .. The group
PSUs(5%) acts as rank 3 group on the vertex set of T',,. The action yields the permutation character
X1 + x21 + Xx28.

T, has spectrum 7',228 (~3)2!. Thus only rs(A,, — 2I) is of interest. The irreducible
5-modular constituents of %3, and {34 are

B =23+ X9 8= X1+ X + Xio-
Thus 19 < rs(A,,_ — 2J) < 21. The lower bound can be improved since

(Ay, —2I = J (modS),
QI-A,)J- A, +2I) = J (modS).

So Rs(A,, — 21) and Rs(J — A, + 2T) both contain the all-one vector. Thus, by Lemma 5.15,
20<rs(A,, —2)=rs5(J - Ay, +2I) <21

The action of PSU3(5%) onthe edges of T, gives rise to a srg ', with parameters (v, k, A, ) =
(175,72,20,36). This graph is also produced by isolating a vertex of the graph I';,; discussed in
Section 4, and deleting it. Its spectrum is 72',21%%, (- 18)%!. Therefore, we shall consider 73( 4, )
and rs( A, — 27).

The 2-rank of A, is easily determined. We derived before that r2( A, ) = 20 + ¢, where € = 2
if 1 € Ry(A,,) and O otherwise. Now it immediately follows from Lemma 3.11 that r2(A4,,,) = 20.
Furthermore, r2(J — A,;;) = 21 by Lemma 3.8.

The group PS1/3(5%) is an automorphism group of I',;. The associated permutation character ¢
equals ¢ = x1 + x21 + Xx28 + x125. Hence ¢( E}) = x28 + x125. #(E2) = x21 and

FE) =3+ + X9+ Xas. @ (E2) =2x3 + Xio-
Thus by Theorem 5.14, 19 < rs(A,,, — 2I(~J)) < 21. Since

(Arzs - 21)2
(21 - Am)(J - Ans + 21)

J (mod5),
J (mod5),

o

it follows from Lemma 5.15 that 20 < rs( A, — 21) = rs(J — A, +2I) < 21.

T',,, can also be switched into a srg with parameters (v, k, A, u) = (176,90, 38,54 ) and spectrum
90,2153, (~18)%. We denote this graph by I':, .

Applying Lemma 3.11, we find that 72( A}, ) = 22 if 1 € R( A}, ) and 20 otherwise. Then we
also know that 20 < r3(J — A5, ) < 22.

Since k = 90, the sum of the rows of A", — 27 equals 3 (modulo 5) and the same holds for the -
sum of the rows of J — A7+ 2I. By Theorem 3.5 and Lemma 3.10,

17

20 = r5(Ape — 21) - 2 < r5(A%, = 21) = rs(J = A%, +21) < 23.

6.7 Graphs derived from the Golay codes
The Golay codes (A4) give rise to several srgs (see [4]). In this section we shall study three of them.

The Berlekamp-Van Lint-Seidel graph T, . has parameters (v, k, A, u) = (243,22,1,2) and is
constructed in the following way. Take as vertices the 3 = 243 cosets of the [11,6] temary Golay
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code and join two vertices when the corresponding cosets have representatives differing by a vector
of weight one. Its spectrum is 22!,4132 (-5)'10, hence the only interesting case is r3(Ap, s — I).
The Mathieu group My, is a group of automorphisms of I',, ;. The permutation representation of its
action on the graph affords the character 6x; + 6x10 + 3x44 + Xx45. Furthermore,

¢(Ey) 3x1 +4x10 + xas + Xx45,
& E2) = 2x1+ 2x10 + 2X44-

The 3-modular characters ¢°(E;) and ¢*( E;) satisfy
F(E) =3x] +xda + 3G +5x00 + X3 + X5, F(E2) = 2x3 + 2)3a + 206 + 430 + 2)30-
Now Theorem 5.14 yields the following set of possible values for r3(A,, s — I):

{1 +5(c2 + @3) + 1004 + 2405 |0 < 01 < 3,0 < az,03,05 < 1,0 < ag <4}
We shall reduce this set to
{43 +5(az + a3) + 2405|0 < a3,03,a5 < 1}. (6.12)

We first show that oy = 3. Take as representatives of the cosets the vectors of weight < 2. Let
1%(—1)%0° denote a vector having a one at a, a minus one at b and a zero at ¢ coordinates. Then by a
suitable labelling of the rows and columns, A, ; — I can be written as

-1 .1. 1 011
| -m| In N N 11010
1 I | -Iy M N3 (-1t
N{ A +1Iss | Ny Ns 120°
NIT NT TA+Ls| N (-1)%°
NI NI N N A"+ I ) V(-0

It is easily seen that Ny has 2 ones in every column and that N, and N3 have both 1 one per column.
Thus r3(A g, s — I) contains the following linearly independent vectors:

= (=1; 153 1115 Osss Osss O110)s
(=15 =131 1135 —~1ss; Oss; 1y10)s -
(=15 1135 =115 Oss3 —1ss5 1y10)-

5 &5 s

These three vectors are all invariant under the action of M, on the coordinates. This proves our
claim. Since

-v1 + 22 + 23 =1 (mod3)
and 1 — vy, 1+ v, and 1 + v are contained in R3(J — A, o +I), this also showsthat r3(Ap, . — 1) =
r3(J — Ag,s +1).
In order to prove that a4 = 4, we observe that every element of M;; maps a vector 14(—1 )%0¢ to
a vector 1%(—1)%0°. Consider the following four subspaces over F's:

Rla :': <‘tl10w)’

Ry = (T _ o)

RZa = (L‘ll<isll)’
Ry := (r;|1<i<11),



where r; (r;) denotes the sum of the rows corresponding to a vector 120° ((—1)20°) anda 1 (—1) at the
ith coordinate. These four subspaces are submodules of dimension 11 of the module corresponding
to the permutation representation @ of M) on the vertex set of I', .. Let #* be the (3-modular)
character afforded by @, then

¢*(Ria) = $*(R1s) = ¢*(Raa) = 6°(Ras) = x3 + X0
(U + v3 € Raq; vy + 15 € Ryp). Set R:= Ry, + Ryp + Raa + Rop. Itis easily verified that
#(R) = 2x3 + 4x30-

Hence indeed, a4 = 4.
We have proven that the set (6.12) contains the value of 73( A, s — 7). It has been computed by
Brouwer that the actual 3-rank of A, . — I equals 67.

The Delsarte graph I',, with parameters (v, k, A, u) = (243,110,37,60) has been introduced in
Section 3 as a subgraph of a graph on 276 vertices related to the McLaughlin graph by switching.
However, I' ;) can also be directly constructed in the following way. Take as vertices the codewords
of the unique ternary Golay code of length 11 and dimension 5. Join two vertices when they have
Hamming distance 6.

We derived before that 19 < r3(A, — I{—J)) < 23. The lower bound can be slightly improved
by using characters. The Mathieu group M); is an automorphism group of I',. Denote by ¢ the
permutation character yielded by the action of Mj; on the vertex set of I',. Because g = 22, the
irreducible constituents of ¢( E; ) must have degree < 22. The irreducible characters of M); of degree
< 22 are X1, X10as X106, X10c and x1;. They satisfy

3 3
1

)2 = Xla
foi = xioi fori€ {a,b,c},
-3

X3+ X3a + b

<
o
ho

Applying Theorem 5.14 to the above-mentioned relations and recalling that r3(A, + I(-J)) > 19,
it follows that r3(A, + I(—J)) > 20.

We finally consider a rank 3 graph derived from Mp4. This graph, which is denoted by T,
has parameters (v, k, A, ) = (1288,792,476,504). Its spectrum is 792", 8193 (—-36)>2. Hence the
interesting cases are 72( A, ) and 711 (A, + 37).

Let us first give an explicit description of I',,,. Take as vertices the cosets of {0, 1} in the extended
binary Golay code which contain two dodecads. Join two cosets when they have Hamming distance
12.

The 11-rank of A, + 31 is easily obtained from Theorem 5.14. Let ¢ denote the permutation
character corresponding to the action of M4 on the vertex set of the graph. Then ¢(E) = x1035 and
#(E2) = x252. The imreducible constituents of ¢'!( Ey) and ¢! ( E3) are given by

S(EY) = xBo + xbber 611 (E2) = X33 + x2ho

Thus, by Theorem 5.14, 229 < 711( A, + 31(—J)) < 230. Since the sum of the rows of 4 ,,, + 3/
(J — A — 37)equals 3 (—2) (modulo 11), the all-one vector is contained both in R11( A, +37)
and in R11(J — Ae — 371). So 111(A e + 31) = 111(J — Appee — 31) = 230 by Lemma 5.15.
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For the constituents of 35, and 3,35 we find

>§52 2x31, + 231, + X4 '*2‘ Xha ‘*2‘ x}20, )
Xoss = $s2+3x3 + Xhaa + Xiay + X3200 + X204

I}

When not examining the structure of the graph in more detail, we can only conclude that P A ) is
a constituent of ¢2(E1 )» which implies that the 2-rank of A, is an element of the set

{11(a1 4 a2) + 44(a3 + a4) + 12005 |0 < 012 £ 2,0 < a345 < 1}

6.8 Rank 3 graphs related to S,,,(q)

Infinite classes of strongly regular rank 3 graphs are derived from classical groups. For a survey we
refer to [4] or [10]. Here we shall consider the p-rank of elements of one such class.

Let ¢ be a prime power of p. Denote by V2., , the 2m-dimensional vectorspace over IF'y. Define
the symplectic form f2,1.4 : Vam,g X Vam,g — F, (AS) by

f2m,q((ula e ',u2m)a(vls .. wvlm)) =y - WUt .ot Wn-12m — WR2mV2m-]-

Denote by P, 4 the collection of points of the projective geometry PG(2m — 1, q). Take Pop, 4 as
vertex set of a graph I'2,,, , and join two different vertices (u) and (v) by an edge iff fo,m o(2,2) = 0.
Then I'y,, o is @ s7g with parameters

q2m -1 2m

q Fr -1

=1 _
-1 ak=—q_—1q,A+2:N=T,T:qm‘l—l,s=—q”‘_1—-1.

From the eigenvalues it follows that if ¢ is even, then the only interesting case is 72(A + I). If g is
odd, then r2(A) and r,(A + I) are the nontrivial cases (recall that p is such that ¢ = p®). T2, gis 2
rank 3 graph derived from 53,,(q).

If ¢ = 2, then r2( Az, 2) is easily determined by induction. Let (u), (v) be two different elements
of Py;m—22. Then

f2m.2((2; u2m—lu2m)s (E va—l”Zm)) = f2m—2.2(ﬂyl).) + U2m—12m — U2mV2m—1-

Put A’ := A3,,-22 + Iom—2. Then it follows from the above-mentioned relation that, by a suitable
labelling of the rows and columns, A2, 2 + I2.» can be expressed as

( A’ _I_T A lT A lT Al \ ((g,m»

1]1 1 ((0;10))

Al 1! A J— A J—A" | ((w10))

Ao+ =1 1 1 1 ((6;01))
A’ J-A 1T A J-A" | ((»01))

1 1 1 ((0;11))

A’ J— A J-A 1T A ((w 11))
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where (u) denotes an element of Poy,2 2. Performing suitable elementary row and column operations
over IF; on Az, 2 + I we get

(AI lT A’ lT A .I_T A’\
111 /1
17 171J
A2m,2+12m =~ 1 1
1 |J 1" J
1 111
\ T[T 177 )
[OA A A A
1)1
111
~ 1
1 1
1 1
\ 0

~ diag(4’,12,03%77-2)
(note that the rows of A’ add up to 1 (modulo 2)). Thus
r2({A2m2 + ) = r2(Aom-22+ hhm—2)+2 = ... = 12{Ag2 + Is) + 2m — 4. (6.13)

The graph A4 has the same parameters as the complement of the triangular graph 7'(6). From
the uniqueness of the Iatter, it follows that 7(A42 + I) = r;;(AT(S)) + 1 = 5 (Proposition 2.5).
Substituting this in (6.13) yields

12(Aama+I)=2m + 1.

Finally, since v = 22™ — 1 and k = 22™~1 _ 2 for I'3,,, 5, we find r5(J — A2m 2 — I) = 2m by Lemma
3.8.

For ¢ > 2, the adjacency matrix Az, 4 is not as easily described as for ¢ = 2. In that case we have
to look at the character obtained from the action of 52,,(¢) on the vertices of I'z,,, ¢. Let us examine
T4z andTys.

The action of S4(3) on the vertex set of I'y 3 yields the character x1 + Xx15 + x24. From the
Modular Atlas we obtain

Rs=xd+xdes Ba =28+ X + Xo + X0
and
Rs=x3+x30, 14 =x%0 + e
For I’y 3 we have v = 40 and k = 12, so it immediately follows from Lemma 3.8 and Theorem
SA4that r3(Ags+ 1) =r3(J — Aa3-I)+ 1 =11

Conceming the 2-rank, we derive that r2( A4 3) = 14 or 16 depending on whether 1 € Ra(A43),
and 14 < rp(J — Ag3) = r2(81 - 4443+ J) < r(Ez) = 15.
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The character afforded by the permutation representation of S4(5) acting on I'y 5 equals x; +
X65 + X90. We only examine the 2-rank of A4 s, since the Modular Atlas does not give a table of the
5-modular irreducible characters of S4(5). For %5 and %%, we find

Bs=x+ X%M X%o =X} + xh, + X3 + Xia-

So r2(As3) = 64 or 66 depending on whether 1 € R3(A43) or not, and 64 < 72(J — Asg3) =
(241 — 6A43 + J) < r(Ep) = 65.

6.9 Table of the results

To conclude this chapter, we list the results on the p-rank of srgs that have been derived in this chapter
or in the examples of Chapters 3 and 5. For results on the lattice and triangular graphs we refer to
Chapter 2.

If a set of possible values for 7,(A4 + oI)is given, then ‘idem’ means that the same set holds for
ro(J — A— o). The entry ‘(=)’ denotes that r,(J — A — o]) = r,(A + ol)and ‘(—1)’ denotes that
ro(J — A—0l)=r,(A+ ol)— 1. Furthermore, the entry ‘+’ in the last column indicates that this
result is not derived in this thesis (but is given for sake of completeness). Finally, the graphs No. 25
have parameters a; = 227" 1. a;=2>""1_landas +2=a4 = 22m-2 _ 1,
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No. v k A plpl o rg(A+al) | ro(J —A-0al)
1 16 5 0 21 2 1 6 6 Ex. 3.1
2 27 16 10 8, 2, 0 6 7 Ex. 3.3
3! ~1 7 7 *
3 3% 14 4 6 2| 0 14 14 Ex. 5.6
3 1| 7€r<9 idem
4 40 12 2 41 21 0 14, 16 14<r<16 6.8
3 1 11 10
5 50 7 0 11 5| -2 20, 21 = 6.6
6 56 10 0 2121 0 20 20 Ex. 3.2
3 1 20 19 6.1
7 77 16 0 4 21 0 20 21 6.1
8 100 22 0 6 2| 0O 22 22 6.1
5|2 23 23
9 100 36 14 124 2 0 36 35,36 Ex. 5.6
51 -1 22,23 idem
10 112 30 2 100 2 0 22 22 6.2
3 1 20 19
111 120 42 8 18y 2} 0 18,20 18<»<20 64
T -2 20 20
12 156 30 4 6] 2| O 64, 66 64, 65
13 162 56 10 24| 2 0 20 21 6.2
3 1 21 21
14 175 72 20 36 2 0 20 21 6.6
5)-2 20, 21 =)
150 176 70 18 34 2| 0 20, 22 20<r<22 6.4
5| -2 22 22
16| 176 90 38 54| 2| 0 20, 22 20 r<22 6.6
51 -2120<r<23 =)
171 231 30 9 3 2 1| 35,45,55 (-1 6.5
3 0 55 55,56
181 243 22 1 2| 3| -1 67 67 6.7
19| 243 110 37 60 3|-1120<r<23 idem 64,6.7
20 253 112 36 60| 2 0 22 23 64
712 23 23
211 275 112 30 56| 2 O 22 23 6.2
3 1 22 21
5(-2 23 23
22| 276 140 58 84| 2 0 24 24 6.3
3 1122<r<24 21<r <23
5| -2 23,24 idem
23| 416 100 36 20| 2 0| 38,50,32, 37,38,50,51 | Ex. 5.6
64, 66 52, 64, 65, 66
24 1 1288 792 476 504 | 11 3 230 230 6.8
25 aj a a3 aq| 2 1 2m + 1 2m 6.8
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Appendix

Al t-Designs

Let X be a set of v elements, called points, and B a collection of k-subsets of X, called blocks,
such that every ¢-subset of X is contained in exactly A blocks. The pair (X, B) is callcd a t-design
or, more precisely, a t-(v, k, A) design.

If A = 1, the design is called a Steiner system. Notation: 5(t, k,v). We shall only deal with the
following Steiner systems:

bo | by | by [ b3 |ba|bs| s

5(5,8,24) (7591253 |77 (21|5 |1 (4,2,0
5(4,7,23)1253 77 |21 5 |1 3,1
$(3.6,22)| 77 | 21| 5| 1 2.0

The column b; gives the number of blocks in which an arbitrary i-tuple is contained. Hence by denotes
the number of blocks. The last column gives the possible values for the intersection of two different
blocks.

5(4,7,23)is obtained from S(5, 8,24 ) by taking all blocks containing a fixed point and deleting
this point. In the same way, S(3,6,22) is derived from S(4,7,23). The remaining blocks form a
3-(22,7,4) design. From this design we obtain a 2-(21,6,4) design and a 2-(21,7,12) design. The
former can also be derived from 5(3, 6,22) by deleting all blocks containing a fixed point.

v | k|t|b |b|ba|b3| s
2217|3|176|56 16| 4 |3,1
21(712]120|40 |12 3,1
21162 56 |16 4 2,0

An automorphism of a design is a permutation of the points such that blocks are carried into
blocks. The sporadic Marhieu groups M4 and My are the full automorphism groups of 5(5,8,24)
and 5(4,7,23), respectively; the Mathieu group M); is a group of index 2 in the full automorphism
group of 5(3,6,22).

A2 Partial geometries

A partial geometry with parameters (X', R, T) consists of a set of elements, called points, and a
collection of K -subsets, called lines, such that
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(i) every pointis on R lines;
(ii) for every pair of points there is at most one line containing them both (if there
exists such a line for a pair {z, y}, then z and y are said to be collinear);

(iii) if a point p is not on a line L, then p is collinear with exactly T points of L.
A partial geometry with 7' = 1 is called a generalized quadrangle GQ(s,t), where s := K — 1 and
t:=R-1.

The point graph of a partial geometry is defined as follows. Take the points as vertices and join

two vertices by an edge iff they are collinear. This graph is strongly regular with parameters

v=KTY(K-1R-1)+T), k=R(K-1), \= K -2+ (R-1)T - 1), p = RT.

A3 Projective geometries

The projective geometry of dimension m over F, can be defined as the collection of linear sub-
spaces of the vectorspace V := F;"“. It is denoted by PG(m, ¢). The 1-dimensional subspaces of
V are called points and the 2-dimensional subspaces of V are called lines.

A projective plane is defined as a collection of points and lines satisfying

(i) forevery pair of two points there is a unique line containing them both;

(ii) any two lines meet in a unique point;

(iii) there exist four points no three of which are on a line.
It is a Steiner system S(2,n + 1, n4+n+ 1) for some n > 2, when taking the lines as blocks. A
projective geometry of dimension 2 is a projective plane; the converse does not necessarily hold.

A collineation of PG(m,gq) is a permutation of the points carrying lines into lines. The full
collineation group is denoted by PTL(m + 1,q). Every element of GL(m + 1, g), the group of
nonsingular (m + 1) x (m + 1) matrices with entries in F,, induces a collineation of PG(m, q). The
projective general linear group PG L(m+1, ¢) consists of all collincationsinduced by the elements of
GL(m+ 1, q). The subgroup induced by the matrices of determinant 1 is denoted by PSL(m +1,¢).

A subplane of a projective plane is a subset of points and lines which is itself a projective plane.
The subplanes of order 2 in PG(2,4) are called Fano subplanes. There are 360 Fano subplanes which
fall into 3 orbits under the action of PSL(3,4). Fano planes in the same orbit intersect in an odd
number of points; those in different classes have an even number of points in common.

A4 The Golay codes

Several strongly regular graphs are derived from the extended binary Golay code Ga4 and the ternary
Golay code Gy;. For an extensive treatment of the Golay codes, we refer to Chapter 20 of MacWilliams
and Sloane [15].

The extended binary Golay code G4 is a [24,12] code with minimum distance 8. The 759
codewords of weight 8 form an S5(5,8,24) and are called octads. The 1288 codewords of weight
12 are called dodecads. The code is self-dual. The automorphism group of a code is formed by the
permutations of the coordinates which map every codeword to a codeword. The Mathieu group Mp4
is the full automorphism group of Ga4.

G is a [11,6,5] code over F3 which contains its dual. The Mathieu group M, is a group of
automorphisms for the code. The dual (}ﬁ is a [11,5] code consisting of the all-zero word, 110 words
of weight 6 and 132 words of weight 9.
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Let C be an [n, k] linear code over F,. For any vector z, the set
z+C:={z+cleceC}

is called a coser of C. Two vectors z and y are in the same coset iff z-  is a codeword. Two cosets
are either disjoint or coincide. The 3° = 243 cosets of Gy; are uniquely represented by the 220 vectors
of weight 2, the 22 vectors of weight 1 and the all-zero vector. This holds, because the minimum
distance of the code equals 5, hence every vector of weight < 2 must be in a coset containing no other
word of weight < 2.

A5 Symplectic forms

Let V be a vectorspace of finite dimension n over a field F. A bilinear form f on V is said to
be symplectic if f(u,u) = 0 forevery u € V. A symplectic form satisfies

f(y,2) = -f(v,2)

forallu,peV.

A symplectic form f is called degenerate if there exists an element u # 0 such that f(z,2) =0
forall y € V. If f; and f, are both symplectic forms defined on V, then they are called equivalent if
there exists a linear transformation # on V such that fi(u,2) = f2(6(u),8(2)) forall y,v € V.

Theorem Let f be a nondegenerate symplectic form defined on a vectorspace V. Then dim(V')
is even and f is equivalent to f*, where f* is defined as

F (w1, un)s (01,00, 00)) i= u0p — upt) + UsV4 — UaV3 + .o F Un—1Vn — UnVno1.

For a proof of this theorem we refer to Suzuki [20, p.373].
A linear transformation 8 on V is said to leave the form f invariantif foreveryu,v € V

f(6(n), 6(x)) = f(u,v).

The symplectic group S.(q) consists of all n x n matrices over F, leaving the nondegenerate sym-
plectic form f* invariant.

We conclude this section with the proof of Lemma 3.9 in which it is stated that the 2-rank of the
adjacency matrix of any graph is even,
A matrix M with entries in a field F of characteristic # 2 satisfying M = — M7, corresponds to
the symplectic form f defined by
f(u,0) = uMa".

It is easily verified that f is indeed a symplectic form. If char(F) = 2, then a symmetric matrix
M € F™*" with zeros on the diagonal represents a symplectic form in a similar way.

The form f is nondegenerate on the rowspace of M over F. Thus, by the above-mentioned
theorem, R (M) is even. The adjacency matrix of a graph is symmetric and its diagonal elements
all equal zero, hence its 2-rank is even.
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