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Introduction 

In this thesis we study the rank over the finite field of p elements, or p-rank, of the adjacency matrices 
of strongly regular graphs. Such matrices may be used as generator matrices for p-ary codes and in 
this connection the detennination of the p-rank is of particular importance, since it is the dimension 
of the code. 

For various incidence structures, the p-ranks of associated (0, 1) matrices have been investigated. 
As an example of such investigations that are explicitly related to enor correcting codes, we mention 
the papers of Bagchi and Sastry [2] and Hamada [9], who deal with generalized polygons and block 
designs. respectively. However, also other problems give rise to the study of the p-rank of incidence 
matrices. For example. Linial and Rothschild [13] solve a set theoretical problem by detennining 
the p-rank of the incidence matrix of subsets (see also Wilson [21]). Furthennore. self-dual codes 
associated with symmetric designs are investigated by Lander [12] in order to derive new results on 
the parameters of such designs. Bagchi. Brouwer and Wilbrink [1] and Brouwer and Haemers [3] 
give results on the p-rank of the adjacency matrices of some strongly regular graphs. As a matter of 
fact. these are the only papers known to us which deal with our subject. 

Let A denote the adjacency matrix of a strongly regular graph. We shall not restrict our investi
gations to the p-rank of A. but study the p-rank of A + T I for any integer T. For most combinations 
of p and T. the p-rank of A + T I is completely detennined by the parameters of the graph. For the 
remaining cases. it is really necessary to investigate the structure of the graph. 

Linear algebra. coding theory and group theory play an important role in deriving results on the 
p-rank of a strongly regular graphl. Chapter 1 gives a survey of the concepts used from these areas. 
Besides that. it provides an introduction to the theory of strongly regular graphs. 

The p-rank of an integral matrix is easily derived from its Smith nonnal fonn. which is the subject 
of Chapter 2. We shall detennine the Smith nonnal fonn of the adjacency matrices of two infinite 
families of strongly regular graphs. namely. the lattice graphs and the triangular graphs. 

In Chapter 3 the p-rank of strongly regular graphs with integral eigenvalues is considered. We 
isolate the combinations of p and T for which the detennination of the p-rank of A + T I is nontrivial 
and give a general upper bound for these cases. Furthennore. it is investigated how the P-ranks of 
switching-equivalent graphs are related. 

Chapter 4 deals with Paley graphs. For these graphs. the p-rank of A + T I will be detennined for 
every p and T. 

In Olapter 5 it is shown how character theory can be used to obtain a set of possible values for 
the p-rank of a graph. We also investigate for which graphs such a set is expected to be small. 

In the last chapter we detennine (bounds for) the p-rank of a considerable number of graphs. 
especially sporadic graphs. A table of the results concludes this chapter. 

I By the rank of a graph we mean the rank of its adjacency matrix. 
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Chapter 1 

Preliminaries 

In this thesis many concepts from different areas of mathematics are used. Although most of them are 
elementary, we think it convenient for the reader to have a brief survey. Besides that. some notation is 
introduced and a few results on matrices and strongly regular graphs are given. The results are stated 
without proof. for which the reader is referred to the literature. As far as matrix theory is concerned. 
proofs can be found in any textbook, for example Marcus and Minc [16]. For the theory of strongly 
regular graphs we refer to the surveys of Cameron [5] and Seidel [19]. 

The first convention is that the letter p always denotes a prime. We assume that the reader is 
familiar with the basic notions from the theory of finite fields. If not, it suffices to study the first 
sections of Chapter 4 of MacWilliams and Sloane (15]. A finite field with q elements is denoted by 
lFq• 

1.1 Matrix theory 

Let us first establish some notation. The set of all n x m matrices with entries in a field F is denoted 
by Fnxm. We shall mainly deal with square matrices. Usually, the rows and columns of a matrix will 
be indexed by elements of a given set. A vector:! always denotes a row vector. 

The n x n identity matrix is denoted by In- Furthermore. On denotes the n x n all-zero matrix and 
I n the all-one matrix of size n. The all-one and all-zero vector are written as In and Qn. respectively. 
When no confusion can occur. the index n is omitted. 

We write diag( aI, a2, ... , an) for a diagonal matrix of size n with diagonal elements ai, 1 :5 i :5 
n. Diag(a~l, ail, ... ) denotes the matrix 

Similarly. a block diagonal matrix consisting of nl blocks MJ, nz blocks M2. etc .• is denoted by 
diag(M~1 ,Mi2 , ... ). 

Denote by V the n-dimensional vectorspace over F. Let Vi and V2 be linear subspaces of V. The 
sum of VI and Vz is denoted by VI + V2. If Vi n Vz = {Q}, then we write Vi EB Vz for the direct sum 
of the two subspaces. 

Now let F be a field and let M be an element of Fnxn for some integer n. The matrix M is said 
to be nonsingular if det( M) # 0 and singular otherwise. The characteristic polynomial of M is the 
polynomial p( z) = det( M - zI). The eigenvalues of M are the zeros of p( z). If ). is an eigenvalue of 
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M, then there exists a nonzero vector.l such that ~ M = A.l. The vector ~ is called an eigenvector of 
M (belonging to A). By the algebraic multiplicity of A we mean its multiplicity as a root of p( z). The 
geometric multiplicity is the dimension of the corresponding eigenspace V,\ := {~ E V I ~M = A.l}. 
The spectrum of M is the set of eigenvalues including their algebraic multiplicities. 

The geometric multiplicity of A is at most its algebraic multiplicity. If equality holds. then 

I: dim(V'\i) = n. (1.1 ) 
Ai 

This is equivalent to the assertion that V has a basis consisting of the eigenvectors of M. In this case, 
we omit the adjective and speak about the multiplicity of the eigenvalue. 

The matrix M is called diagonalizable if there exists a nonsingular matrix S E pnxn such that 
S-1 M S = A, where A is a diagonal matrix. M is diagonalizable if and only if (1.1) holds. If 
M' E Fnxn, M M' = M'M and both matrices are diagonalizable. then they can be diagonalized by 
the same nonsingularmatrix S. 

Set (~!l' .. '~m) := {L~l O:i~ilO:i E F}. the vectorspace over F generated bY.ll,· " '~m' We 
write 'Rp(M) for the rowspace of Mover F, that is, the veClorspace generated by the rows of M. 
The F-rank of M is defined as the dimension of np(M). We use the notation rF(M). In the special 
case that F = IF'q, we write rq(M) and nq(M) to denote the rank and rowspace of Mover IF'q, 
respectively. 

The kernel of Mover F, denoted by Np(M), is defined as 

We have 
dim np(M) + dimNp(M) = n. 

Oearly, if A is an eigenvalue of M, then VA = Np(M - AI). 
M is said to be equivalent to M' if there exist two nonsingularelements P and Q of Fnxn, such 

thatM = PM'Q. Notation: 

If r F = r, then M :::::: diag(1 r, on-r). 
The following row operations are called elementary: 

(i) interchanging rows; 
(ii) adding a multiple of a row to another row; 
(iii) mUltiplying a row by a nonzero element of F. 

The elementary column operations are defined similarly. It is evident that if M ~ M', then M can 
be obtained from M' by applying a sequence of elementary row and column operations. 

The trace of M is the sum of its diagonal elements and is denoted by tr(M). One easily sees that 
it satisfies the following property: 

tr(MM') = tr(M'M), M,M' E Fnxn. 

If .0 is a set and .0' C .0, then the characteristic vector of .of is the vector f with coordinates 
indexed by the elements of.Q satisfying 

if wE .of 
otherwise. 
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Finally. a permutation matrix is a square matrix which has precisely one 1 in each column and 
each row and zeros elsewhere. 

1.2 Graph theory 

1.2.1 General concepts 

A (simple. undirected) graph r is a pair (V, E), where V is a finite nonempty set of elements called 
vertices and E is a finite set of unordered pairs of distinct vertices of V called edges. The number of 
vertices of r is called the order of r and is denoted by v. If e = {x, y} is an edge of r, then x and 
y are said to be adjacent and e is said to be incident to x and y. For each vertex x ,in a graph r, the 
number of vertices adjacent to x is called the valency of x. A vertex of valency 0 is called an isolated 
vertex. If all the vertices of r have the same valency. then r is said to be a regular graph. 

A subgraph of a graph r is a graph A = (VI, Ed such that VI ~ V and EI ~ E. If VI is any 
subset of vertices of r. then the subgraph induced by VI is the subgraph of r obtained by taking the 
vertices in VI and joining those pairs of vertices of Vi which are joined in r. An induced subgraph 
of r is a subgraph induced by some subset Vl of V. 

The complement of r (denoted by f) is the graph with the same vertex set as r. but where two 
venices are adjacent iff they are not adjacent in r. 

A graph consisting of v isolated vertices is called a coc/ique of size v. Its complement is a regular 
graph of valency v-I. which is called the complete graph or clique of size v. 

Two graphs r and A are said to be isomorphic (written r 9! A) if there is a one-to-one correspon
dence between their venex sets which preserves the adjacency of venices. An automorphism of r is 
a one-to-one mapping d> of 11 onto itself such that ¢( x) and ¢(y) are adjacent iff x and y are. The 
automorphisms of r form a group under composition, called the automorphism group of r. It is said 
to be transitive if it contains transformations mapping each vertex of r to every other venex. 

A graph r can be described by its (0.1) adjacency matrix A of size v defined by numbering the 
vertices and taking aij = 1 iff the vertices i and j are adjacent. By the eigenvalues of r. we mean the 
eigenvalues of A. which are independent of the numbering of the venices. Since A is a symmetric 
matrix, its eigenvalues are real. Graphs with the same spectrum are called cospectral. Cospectral 
graphs are not necessarily isomorphic. Denote by B the adjacency matrix of f. the complement of r. 
then 

Iv + A+ B = Jv' 

When considering a graph r. its adjacency matrix will always be denoted by Ar. unless stated 
otherwise. If no confusion can occur. we simply write A. 

1.2.2 Strongly regular graphs 

A graph is called strongly regular if there exist integers k, A and p such that: 

1. the graph is regular with valency k; 
2. the number of vertices adjacent to two adjacent venices is A; 
3. the number of vertices adjacent to two non-adjacent venices is p. 

If r is a strongly regular graph (or srg for shon) with parameters (v, k, A, p). then its complement f 
is also strongly regular with parameters 

(ii, k, X, j1) = (v, v - k - I, v - 2k + p - 2, v - 2k + A). 
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Usually, the valency of t is denoted by 1. Disconnected graphs and their complements will be ex~ 
eluded, Le. we assume 0 < J.L < k < v-I. 

Let A be the adjacency matrix of r. For the rest of this section, A is regarded as an element of 
I1VXti. The matrix A satisfies 

AJ = kJ, 

Al = kI+'\A+J.L(J-I-A). (1.2) 

We see that the al1~ne vector is an eigenvector of A with eigenvalue k. The adjacency matrix A has 
two other eigenvalues rand s (r > s), which are the solutions of xl + (J.L - >.)x + (J.L - k) = O. Their 
multiplicities I and 9 satisfy 

I+g = v-I, 

k + Ir+ gs = O. 

Oearly, I and 9 can be expressed in terms of v, k, A and J.L. From the integrality of I and g, a strong 
necessary condition on the parameters of a srg is obtained. If I = 9 (the so~called half~case), we 
have v = 4J.L + 1, k = 2J.L, >. = J.L - 1 and the graph has the same parameters as its complement. 
Otherwise, the eigenvalues r and s are integers. 

For later use, we mention the following relations between k, A, mu, rand s: 

>. - J.L = r + s, J.L = k + rs. (1.3 ) 

These relations immediately follow from the equality xl + (J.L - A)X + (J.L - k) = (x - r)( x - s). 

Let A be the linear span of {I, A, B} over 11, where B denotes the adjacency matrix of f. The 
vectorspace A is closed with respect to ordinary matrix multiplication and is called the adjacency 
algebra or Bose-Mesner algebra of r. Since the matrices in A are symmetric and commute with each 
other, they can be simultaneously diagonalized. Therefore • .A admits a (unique) basis of minimal 
idempotents {Eo, El, El} satisfying 

2 

LEi = J, 
i=O 

EjEj = Cij Ej, (1.4) 

where Cij denotes the Kronecker delta. The following tables list them as linear combinations of the 
basis {I, A, B} and vice versa: 

I A 
vEo 1 1 
VEl I If 
VEl 9 BI 

B 
1 

-/r.:tl 
-g~ 

Eo 
I 1 
A k 
B I 

1 1 
r s 

-r -1 -8 - 1 

From the right hand table and (1.4). we obtain that AEI = rEI and AEl = SE2. The columns 
of the Ei span the eigenspaces of all the matrices of.A. Thus the rank of Ei equals the dimension 
of the ith eigenspace. It follows that r{EJ) = I and r(El) = g, where 1'(M) denotes the l1~rankof M. 
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The last concept discussed here is switching. Let r == (V, E) be a (not necessarily strongly 
regular) graph and let VI be a nonempty proper subset of V. Set V2 : = V \ VI. We construct a new 
graph r' == (V, E') in the following way: 

if VI, v; E Vi, then { VI ,va E E' iff { Vlt va E E; 
if \12, ~ E Yz, then {\12,~} E E' iff {\12, v;} E E; 
if VI E Vb \12 E Vl, then { v}, \12} E E' iff {VI, \12} (/. E. 

r and r' are said to be SWitching-equivalent. Vi is called the switching-set. 
lt can be proven that ifr is strongly regular, its parameters satisfy 

V +4rs + 2r + 28 = 0 

and r' is regular, then r' is again a srg, either with different parameters, or with the same parameters 
but nonisomorphic to r, or isomorphic to r. If VI = {y I x '" y} for an arbitrary vertex x of r, then 
r' is the disjoint union of x and a srg with k = 21t. 

1.3 Codes 

We shall recall only a few basic concepts from coding theory here. 
By a p--ary linear code e oflength n and dimension k, we mean a k-dimensional subspace of the 

n-dimensional vectorspace over F p provided with its standard basis. The elements of e are called 
codewords. A third parameter of the code is the minimum distance d, defined as 

d:= min{d(fbfl)lfbfl E e, fl :/: fl} , 

where the Hamming distance d(~, y) between two n-tuples ~ and y denotes the number of coordinates 
on which ~ and J!. differ. If e has ~inimum distance d, then e is ;; r ¥ l-error correcting code. 

If {fl , ... ,fk} is a basis for e, then the matrix 

( 
fl ) 

Me= L 
is called a generator matrix for C. 

The dual C J. of C is defined as 

CJ. := {~E F;I C£,~) ::: 0 for all fEe}, 

where (', .) denotes the ordinary inner product. The dimension of CJ. is n - k. The code e is said to 
be self-orthogonal if C c eJ.. In case C = eJ., the code is called self-dual. 

1.4 Groups 

In this section a few elementary concepts from group theory are recalled. For more details we refer 
to Suzuki [20]. 

We assume the reader to be familiar with the concept of a group. Let G be a finite group with 
identitye. The number of elements of G is called the order of the group and denoted by JGI. If 9 is 
an element of G, then the order of 9 is defined as the smallest integer 12 for which gn ;;:: e. 

9 



The set {g-lgtg I 9 E G} is called the conjugacy class of g}. A subgroup H of G is called 
normal if H9 :;;:: {g-lhg I h E H} ;;:: H for every 9 E G. If H is a nonnal subgroup of G, then 
the factor group G / H is defined as the group of cosets gH :;;:: {gh I h E H} with multiplication 
(gI H )({J2H):;;:: (gl{J2)H. The index of H in Gis the order ofG/H. 

Let G and G' be two groups. A function 1 : G t--t G' is called a homomorphism from G into G' 
if it satisfies 

f(gd/({J2) ;;:: l(glg2) for all gil {J2 E G. 

If 1 induces a one-to-one correspondence and is surjective, then 1 is said to be an isomorphism. In 
that case, we say that G and G' are isomorphic and write G ~ G', 

If G acts on a set X, then the action of G is wrinen on the right. Thus, if x E X and 9 E G, then 
the image of x under 9 is denoted by xg. The orbit of x is defined as 

{X919EG}. 

If X is itself an orbit, then G is called transitive. 
A ring R is an additive abelian group (i.e. x + y ;;:: y + x for all x, Y E R). together with a 

mu)tiplicationsatisfying(xy)z;;:: x(yz), x(y+z) = xy+xz, (x+y)z;;:: xz+yzandwhichcontains 
an identity element e such that XI" ;;:: ex ;;:: x. Furthennore, let F be a field and V a veclorspace over 
F which is also a ring. If (q!J.Q ;;:: c(.Y:Q) = ~(c.'!!.) for all C E F and .y, .'!!. E V, then V is called an 
F-algebra. 
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Chapter 2 

The Smith normal form 

Throughout this section, M denotes an n x n matrix with integral entries and R-rank r. The Smith 
nOImal fOIm of M is a diagonal matrix obtained from M by a sequence of elementary row and 
column operations over 7Z, from which the p-rank of M is easily derived for all primes p. We first 
give definitions and prove some general results. In the second section, the Smith nOImal fOIm of the 
adjacency matrices of triangular graphs and lattice graphs is calculated. 

2.1 Definitions and results 

For more details on the theory discussed here we refer to Newman [17]. 

Definitions M is called unimodular if I det( M) I = 1. Two integral matrices M and N are said 
to be unimodularly equivalent (denoted by M ,...., N) if there exist unimodular matrices P and Q such 
that M = PNQ. 

Theorem 2.1 Mis unimodularlyequivalentto a diagonal matrix S = diag(s}, ... , snO, ... ,0), where 
r is the R-rank of M and Si I 8i+l, 1 ::; i ::; r - L 

PROOF. If M is the all-zero matrix, then there is nothing to prove. Hence, we assume that M contains 
a nonzero element, that can be brought to the (1,1) position by suitable row and column interchanges. 
Applying the Euclidean algorithm, this element may be replaced by the greatest common divisor of 
the elements of the first row and column. Now all these elements. except the (1,1) element, can be 
made zero. Denote this new matrix by M. Oearly. M f'V M. Suppose that M contains an element 
mij that is not divisible by mn. Adding the ith row to the first row and proceeding as described 
before, we finally reach a state where the element in the (1,1) position divides every element of the 
matrix, and all the other elements of the first row and column are zero. 

The entire procedure is now repeated with the submatrix obtained by deleting the first row and 
column of },f. Since unimodularly equivalent matrices have the same rank, we eventually obtain a 
diagonal matrix with the required properties. 0 

Theorem 2.2 The diagonal entries of the matrix S which is described by Theorem 2.1, are uniquely 
determined, up to sign. 

For the proof of this theorem we introduce the concept of the determinantal divisors of M, di ( M), 1 ::; 
i ::; n. They are defined as the greatest common divisor of all deteIminants of i x i submatrices of 
M. 
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PROOF OF THE THEOREM. From the fact that unimodularly equivalent matrices have the same deter
minantal divisors (see [17] for a proof), it follows that 

i 

di(M) = II Sj, 1 $ i $ r. 
j=1 

Thus SI = dl(M) and Sj = di(M)/di_1(M), 2 $ i $ r. Since the detenninantal divisors are 
detennined up to sign. the statement is proved. 0 

S is called the Smith normal form (SNF) of M. We shall use the notation S(M). The Si are 
known as the invariant factors of M. 

The p-rank of M is easily derived from SCM). Let S(M) = diag(sI," ., sr,O, ... , 0). Then 
rp(M) = Tp(S(M)) = r*. where r'" satisfies pI Sr" and p ISr.+l. Oearly, we have Tp(M) $ T, the 
rank of M over the real field. 

Example 2.1 Let us detennine the SNF of In - In. the adjacency matrix of the complete graph 
of size n. 

0 1 1 1 0 1 1 1 
1 ° 1 1 1 -1 0 ° I n - In = 1 1 0 1 N 1 0 -1 0 '" diag( p~-l ,n - 1). 

1 1 0 1 0 0 -1 

Thus 
{ n-l if pi (n-1) 

rp(Jn - 1n)= n otherwise. 

More generally. S( I n + ,In) = diag(l, ,n-2, ,(, + n ), , E LZ. 

If for M a unimodularly equivalent diagonal matrix is known, then S(M) is easily detennined. 
Let S(M) = diag(sl, ... , Sr, 0, ... ,0) and letpl,P2, ... , Pk be the complete set of primes which occur 
as divisors of the Si. Thus for appropriate nonnegative integers eij we have 

S 1 
-_ pen pel2 pEII< 1 2 .•. k , 

__ perl n:;r2 pErk Sr 1 r4 ••• k • 

Since SdSi+l. 1 $ i $ T - I, the eij satisfy 

0$ elj $ e2j $ ... $ erj, 1 $ j $ k. 

The set of prime powers p~'J ,1 $ i $ r,l $ j $ k, including repetitions, is called the set of 
elementary divisors. Given this set, the invariant factors can easily be reconstructed because of the 
ordering condition. If 

€J. := max eiJ' 1 < J' < k, 
19$r ---
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then sr == p~1 p~ •.. p~k. Deleting these primes from the set of elementary divisors, we determine 
Sr-l in the same way, and so on. This leads to the following theorem: 

Theorem 2.3 If M N A = diag(Al, ... , Ar,O, ... , 0), then the set of prime power factors of the 
Ai,l :5 i:5 r, is equal to the set of elementary divisors of SCM). 

PROOF. We first note that from Theorem 2.2 it follows that S(M) = S(A). Let p be any prime that 
divides some Ai, 1 :5 i:5 r. Order the Ai according to ascending powers of p: 

so that 0 :5 el :5 ... :5 er • Then di. the i-th determinantal divisor of A. satisfies 

d fl",e, ( ) 1 i == P Ii, p, Ii = . 

Thus. if Sj denotes the i-th invariant factor of S(A), and hence of S(M), then 

81 = dj, 
Si = d;jdi-l = pe.p" (p,P) = 1, 2:5 i:5 r. 

Thus pe, is an elementary divisor, 1 :5 i :5 r. Applying the same argument for all primes p which 
divide some Ai, we obtain the result. 0 

2.2 Applications of the Smith normal form 

The adjacency matrices of lattice graphs and triangular graphs have a very simple structure. This 
enables us to compute their SNF by hand. 

The lattice graph L2( n) has as vertices the ordered pairs (x, Y) E {I, ... , n}2, where two 
vertices are adjacent iff they have a common coordinate. L2( n) has parameters (v, k, A, Ii) = 
(n2,2(n - 1), n - 2,2). For n :f 4, L2{n) is unique, i.e. every graph with the same parameters is 
isomorphic to L2( n). For n = 4, there is exactly one nonisomorphiccospectra1 graph, theShrikhande 
graph (see Cameron [5] for a description). 

Proposition 2.4 The SNF of the lattice graph L2 ( n ) is equal to 

PROOF. Let An be the adjacency matrix of L2( n) with columns and rows indexed in the following 
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order: (1,1), (1,2), ... , (1, '1'1), (2, 1), ... , ('1'1, '1'1), Then 

I n - In In In In 
In I n - In In In 

An = In In I n -In In 

In In In I n - In 

On -('1'1 - 2)Jn 2In - I n 2In - I n 
In On On On 
On 2In - I n I n - 211'4 On 

On 2In - I n On I n - 2In 

..... diag(In, (In - 2In)n-2 ,2('1'1 - 2)(Jn - In)) 

,...., diag(1 2n- 2,2(n-2)2, {2(n - 2)}2n-3,2(n - 1)('1'1 - 2» -' An. -, 

Since StAn) = An, the result follows. o 

For sake of completeness, we mention that S(As) = S(A4) = diag(16,24,45 , 12). where As 
denotes the adjacency matrix of the Shrikhande graph. 

The triangular graph T( n ) has as vertices the 2-element subsets of {I, 2, ' , , , '1'1 }. Two vertices 
are adjacent iff they are not disjoint as subsets. The parameters of T( '1'1) are (v, k, A,p) = (!n( n -
1), 2( n - 2), n 2,4). T( '1'1) is unique except for n = 8. In that case, there are three nonisomorphic 
graphs, the Chang graphs. These will be discussed in the next chapter. 

Proposition 2.5 The SNF of the triangular graph T( n) is equal to 

diag(l n-2, 2~(n-2)(n-3), {2( '1'1 - 4)}n-Z, (n - 2)('1'1 - 4)) if2 ! '1'1 

diag(1n-l ,2i(n-l)(n-4), {2(n _4)}n-2,2(n - 2)('1'1 - 4)) otherwise. 

PROOF. Let An be the adjacency matrix of T( '1'1), corresponding to the following labelling of the rows 
and columns: {1,2}, {1,3}, ... , {I, n}, {2,3},.", {n - 1, n}. Furthermore, let a~ denote the all-a 
matrix of size i x j, a E 7Z. Then we have 

1~.2 
O~_3 Or4 01-3 

J,,_I - 1 .. - 1 1!_3 ... l~ 1 
1 .. -2 

1 .. - 3 h 1 

A" = 

1!.3 
Or~ OJ""'' 

Ij-2 1,,-2 J .. _2 - 1.,.-2 '" 1~ 1 
1,,-3 h 1 

Oro °1- j 

01-3 li-3 1,,-3 11-3 1 .. -3 J,,-3 -/,,-3 ... l! 1 
I: I 

... 
0:-4 It 12 0:-5 If h <>:-6 If 12 : ~. * J2 - /z If 

0!_3 11 0~-4 11 0~_5 11 1"'1 11 0 I 
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I n-2 O~_l (n -4)~_1 2~_3 ... 22 2 

2~_3 
22-> 2"-I 

(n _4)j-2 0,,-2 (n - 4)J,,_1 ... 00 0 
2(J - /),,-3 2(h - 12 ) 0 

OJ-· 1 .. _2 0,,-2 O"-:~ ... 02-· OJ-' n-
2j-'> O":~ n- OJ-J 2(J - 1) .. -3 

2j- 0::; OJ- 2j-" 2(J - I}n .... 

21 !(n-'2)(n-3j 
21 O~_l 2;_5 OJ 2(J2 - I2) 
2 O~_l 2~-4 00 I 

where 

( (n - 2)( n - 4 ) {(n-4)2n_z ) (n-2)(n-4) {(n-4)Z}~_2 ) 
(n - 4)(n - 6)Jn-z "" {2(n _ 4)}1- 2(n - 4)(J - I)n-z 
+2( n - 4 )In-z 

"'" ( (n - 2)(n - 4) {-2(n - 4)}~_Z) d' ({2( _ 4)}n-2 ( _ 2)( _ 4» 
{2(n-4)}i- -2(n-4)ln_z "" lag n , n n . 

Thus An "" diag(1 n-2 ,2i(n-2)(n-3), {2(n -4 )}n-Z, (n - 2)(n -4) =: An. Applying Theorem 2.3, 
we obtain 

S A - S A _ { An if 2 I n 
( n)- (n)- diag(ln-I,2!(n-l)(n-4),{2(n-4)}n-2,2(n-2)(n-4» otherwise. 

o 

We recall the fact that if fp(M) = f, then M can be reduced over Fp to a diagonal matrix 
diag(l 1', on-1'), the so-called canonical form. In general, there will only be a few primes p for which 
Tp(M) < n, since Tp(M) = n unless p is a divisor of det(M). Hence in practice it will not be far 
more efficient to compute the SNF of M than to determine the canonical form for those primes p that 
divide det(M). 

In the subsequent chapters we shall try to determine the p-rank of several (classes of) strongly 
regular graphs, without making use of the methods mentioned above. For some primes the rank can 
be calculated in a rather easy way; for other primes we can only derive bounds. In the proofs the next 
lemma will be frequently used. 

Lemma 2.6 Let M be a nonsingular matrix and suppose pk II det(M). Then Tp(M) 2: n - k. (By 
pk II a, a E Zl,wemeanthatpk I a,butpk+l la.) 

PROOF. Since dele S ( .AI») = det( M) f: 0, the diagonal elements 8j of S (.AI) are unequal to zero for 
1 :5 i :5 n. Furthermore. because Sj I 8i+l, 1 :5 i :5 n - 1, at most k of the invariant factors are 
divisible by p. 0 
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Chapter 3 

On the p-rank of strongly regular graphs 
with integral eigenvalues 

Let r be a STg of order v with integral eigenvalues k, T and 8. In this chapter it is proven that the 
p-rank of .4 is completely determined by the parameters of r when p does not divide both T and s. 
For the remaining primes p. an upper bound for r p{ A) is derived. A similar result is obtained for the 
p-rank of .4 + T I, T E 7Z. Furthermore. we examine how the p-ranks of switching-equivalent graphs 
are related. 

3.1 Preliminaries 

In this section a few elementary but useful lemmas from matrix theory are recalled. We omit the 
proofs. which can be found in any textbook on matrix theory (e.g. Marcus and Minc [16]). 

Let M, MI and M2 be n x n matrices with entries in some field F. 

Lemma 3.1 If M = M} + M2. then 

I TF(MI) - TF(M2) I::; TF(M) ::; TF(Md + TF(M2). 

In particular. IT F( M) - T F( I n - M) I ::; 1. 

Lemma 3.2 If M = MIM2. then 

This lemma will mainly be used in one of the following forms: 
(a) If MIM2 = On, then TF(Mt) + T F(M2) ::; n; 

(b) If MIM2 = I n • then TF(Md + TF(M2) ::; n + 1. 

Lemma 3.3 Let AI, ... , Ak, Ai E F, Ai :/; Aj for i :/; j, be the complete set of eigenvalues of M. 
Then thefollowing are equivalent: 

1. TIf=l (M - AJ) = On 
2. l:f=t dim(NF( M - Ail)) = n. 
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3.2 General theorems 

Throughout this section. let A be the adjacency matrix of a srg r with parameters (v, k, ).., p) and 
integral eigenvalues k, r, s with multiplicities 1, f and g, respectively. Denote the rank of A over .It 
by r(A). 

Theorem 3.4 Define 00 := k{modp), 0) := r (modp), Q2 := s(modp). Then thefollowing holds: 
(i) ifprecisely one of QO, Ql, Q2 is equal to zero, say Qi with multiplicity mi. 

then Tp(A) = v - mi; 
(iia) if QO = 0, Ql = 0 and Q2 ;/; 0, then Tp(A) = g; 
(iib) ifQo = 0, QI ;/; o and Q2 = 0, then Tp(A) = f; 
(iii) if Qt = 0 and Q2 = 0, then T p{ A) ::; min(f, g) + 1. 

PROOF. The characteristic polynomial of A over Fp is (x - QO)(x - Qdf(x - Q2)9. Since the 
dimension of the kernel of A is at most the multiplicity of the eigenvalue 0 as a root of the characteristic 
polynomial of A. a lower bound for r 1'( A) is 

(3.1 ) 

where (i = 0 or 1, depending on whether O'i is equal to zero or not. This bound also follows 
immediately from Lemma 2.6. 

Define m:= max«(I - (0), (1 - (t)f, (1- (2)9). Suppose m > O. Let 0' be the eigenvalue of A 
over .It corresponding to m (thus 0' E {k, r, s }). Then an upper bound for T p( A) is 

rp(A) = rp(A - cd) :5 r(A - 0'1) = V - m. (3.2) 

Combining (3.1) and (3.2) proves (i) and (iii). 
Now assume p I k, pi rand p l. s. By (1.2). 

A( A - s1) = (k - p)1 + ().. - p - s)A + pJ. 

From Section 1.2 we recall the following relations between the parameters: 

p = k + rs and ).. - p = r + s. 

Thus, under the assumptions made. 

A(A - sl) == 0 (modp). 

Combining (3.1) and Lemma 3.2 yields 

Thus rp(A) = 9 as claimed. Assertion (iib) is proven in a similar way. o 

Hence, the only primes p for which the determination of TpCA) is nontrivial, are the primes that 
divide both r and s. 

The question arises whether the upper bound in case (iii) is good or not. From the results in 
Chapter 6, we might conclude that the bound is often fairly good. However, most of the graphs that 
are examined, have small for 9 « 25), so we can not say anything in general. 
Remark Sometimes a slightly better upper bound can be obtained in case (iii) as follows. Without 
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loss of generality, suppose f < g. Then according to the above theorem, Tp(A) ~ f + 1. Consider 
the minimal idempotent El satisfying r( El) = f. Let Cl be the smallest integer such that Cl El is an 
integral matrix, say 

CIE} = clOI + ellA + CJzB, cli E :th. 

Suppose thatp I clo,pl clzand P Jell. Then rp(A) = rp(CtEl) ~ r(cIEt) = f. 

The next theorem is a generalization of Theorem 3.4 for A + rI, r E :th. Its spectrum is 
(k + r) 1, ( r + r)f , (s + r)9. where the multiplicities are written as exponents. 

Theorem 3.5 Define ao := (k + r) (modp), at := (r + r) (modp), 0'2 := (8 + r) (modp). Then 
the/ollowing holds: 

(i) ifprecisely one 0/0'0, ai, 0'2 is equal to zero, say ai with multiplicity mi, 
then Tp(A + r1) = v - mi; 

(iia) ifao = O,a} = 0 and a21 0, then rp(A + r1) = 9 + €, where € = Oifp I pand 1 
otherwise; 

(iib) if 0'0 = 0,al1 0 and 0'2 = 0, then Tp(A + rI) = f + f., where f. = 0 ifp I pand 1 
otherwise: 

(iii) if a} = 0 and a2 = 0, then rp(A + r I) ~ min(f, g) + 1. 

PROOF. We shall only prove (iia). 

(A+r1)(A-sI) = (k-p-rs)I+().-p+r-s)A+pJ 

= -s(T+r)I+(r+r)A+pJ 

- pJ(modp). 

From (i) it follows that rp(A - s1) = f + 1 under the assumptions of (iia). Replacing A by A + r I 
in (3.1) yields, together with Lemma 3.2, 

9 ~ rp(A + rI) ~ 9 + rp(/iJ). 

Lemma 3.3 assens that Tp( A + r 1) = 9 if and only if 

(A + rI)(A - s1) == 0 (modp). 

Hence the conclusion holds. o 

Thus. when studying the p-rank of A + rI for a given Stg r with integral eigenvalues k, rand 
s, we may restrict ourselves to the values of p and r for which both r + r and s + r are divisible by 
p. There is no known general strategy to determine (bounds for) the p-rank of A + r I. In the next 
section we give a few small lemmas which might be useful, especially if f or 9 is small. In that case, 
it is often easy to obtain a good lower bound from an induced subgraph, as is shown in Examples 3.1 
and 3.2. 
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3.3 Bounds from subgrapbs and examples 

Let r be a STg. not necessarily with integral eigenvalues. and let 1" E ll. Suppose r contains an 
induced subgraph r' of order v'. Let A' be the adjacency matrix of r'. Then we obviously have 
Tp(A + 1"Iv) ~ Tp(A' + rIv')' In partiCUlar. the following holds: 

Lemma 3.6 Ifr contains a clique o/size nand T ¢ 1 (modp), then 

T (A + 1"1) > { n - 1 if p I ( n. + 1" - 1) 
p - n otherwISe. 

PROOF. If r contains a clique of size n. then I n + (T - 1 )In is a submatrix of A + T Iv. In Example 
2.1 it was derived that S( I n + (1' - 1 )In) = diag( 1, (1" - 1)n-2, (1' - 1)( n + T - 1)). from which the 
result follows. 0 

If r contains a coclique of size n. then n is a lower bound for T pC A + 1'1) if T is not divisible by 
p. On the other hand, Theorem 3.5 provides an upper bound for the size of a coclique in a srg with 
integral eigenvalues. 

Proposition 3.7 The size 0/ a coelique in a strongly regular graph with integral eigenvalues is at 
most min(f, g) + 1. 

PROOF. Let C be a coclique in a srg r and set n := ICI. Let PI and P2 be two (not necessarily distinct) 
primes satisfying PI I (T + 1) and P21( S - 1) (such primes exist since both T and s are different from 
zero). Then. under the assumption that the eigenvalues of r are all integers, we obtain from Theorem 
3.5 

Hence. the statement holds. 

n ::; Tp1(A + 1)::; 9 + 1, 

n ::; TP1 (A - /) ::; f + 1. 

o 

In this way, we have almost proven the Cvetkovit bound for strongly regular graphs with integral 
eigenvalues. This bound assens that the size of a coclique C in a graph r can not exceed the number 
of nonnegative (nonpositive) eigenvalues of r (see Cvetkovit. Doob and Sachs [7]). For a STg this 
yields I CI ::; min(f + 1, g). 

Our problem is related to another graph theoretic problem. namely the detennination of the 
chromatic number of r. This number. usually denoted by x(r). is defined as the minimal number of 
colors needed for a coloring of the venices of r in which adjacent vertices have different colors. 

If X(r) = X. then there is one coclique of size at least r v / xl contained in r. Hence an upper 
bound for X(r) provides a lower bound for Tp(A + TI) whenp Ar. and vice versa. However, general 
upper bounds for X(r) do not give useful lower bounds for rp(A + l' /). 

When we study the p-rank of a given graph, both r p( A + r/) and T p( J - A - r/) will be 
considered. The relation between the two ranks is expressed by 

dim('R.p ( A + T /) + (1) = dim('R.p ( J - A - T I) + (1). (3.3) 

In view of this, the following lemma turns out to be often useful. 
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Lemma 3.8 lfp lv, p I k, then Tp(J - A) ;::: Tp(A) + l. 
PROOF. We have 1( J - A) ;::: {v - k)l :¢ Q (mod p). thus 1 E 'Rp{ J - A). Consider A as a generator 
matrix of a p-ary linear code C. Because <.r., 1) ;::: k == 0 (mod p) holds for every row !. of A, the dual 
code CJ. contains 1. As (1,1) ;::: v :¢ 0 (modp), the all-one vector is not contained in Kp(A). The 
conclusion now follows from (3.3), 0 

A last lemma, before we discuss some examples: 

Lemma 3.9 The 2-rank of the adjacency matrix of any graph is even. 

For a proof of this lemma. we refer to the Appendix (A5). 

Example 3.1 The Clebsch graph can be described in the following way: take as vertices all subsets 
of {I, ... , 5} of even cardinality; two vertices are adjacent whenever their symmetric difference 
has cardinality 4. This yields a STY with parameters (v, k, >',/1) ;::: (16,5.0,2). Its spectrum is 
51, 110

, ( - 3)5. From the discussion at the end of the previous section it follows that we only have to 
determine the 2-rank: of A + 1 and B := J - A-I. 

By Theorem 3.5, we find TZ( A + 1) $ 6. Now consider the subgraph on the five vertices of 
cardinality 4 and the vertex {I, 2}. Let A I be the corresponding submatrix of A. Then 

A' + 16 ;::: (ff ff
T

), where ff ;::: (00011). 

Since 1'2(A + 116) 2:: T2(A' + 16) ;::: 6, we conclude that T2(A + /) = 6. 
Furthermore, IT2(A+/)-T2(B)1 $ 1 (Lemma 3.1) and Tz(B) is even (Lemma 3.9), so 1'z(B) = 6. 

Example 3.2 The Gewirtz graph has parameters (v,k,>.,/1) ;::: (56,10,0,2) and is unique. Its 
spectrum is 101,235 , ( -4 )ZO. A construction of this graph is given in Chapter 6. Since l' - S ;::: 6, the 
only interesting cases are T2(A) and T3(A + /). In this example, we shall only determine f2(A). In 
Chapter 6. the other case is dealt with. 

From the parameters of the graph we deduce that A contains a 20 x 20 submatrix A' of the 
following form: 

° 1 19 Q9 
1 ° Q9 19 

14 Q~ 09 19 
Q9 19 19 09 

). 
Oearly, 1'z(A) 2:: 18. 

Assume w.l.o.g. that 

A = (::1 ~~~). 
Every row in [A21IA22] has a zero in the first two columns, a one in exactly two of the columns 
3,4, ... ,11 and a one in exactly two of the columns 12,13, ... ,20. Suppose T2(A) = 18. Let!. be 
a row of [AZII AZ2]' Then!. can be expressed as the sum (modulo 2) of four of the rows 3,4, ... ,20. 
Since k = 10, one of these four rows must have at least three ones in common with!.. This contradicts 
/1 = 2. Hence. 18 < 1'z (A) $ 21. Since r2 (A) is even, it follows that TZ ( A) ;::: 20. 

In Chapter 6 it will be proven that 1 can be written as the sum of an even number of rows of A. 
This implies that 1 is an element of both 'Rz(A) and 'Rz(J -- A), hence r2(J -- A) = rz(A) = 20. 
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3.4 Switching-equivalent graphs 

In Section 2 it was shown that the p-rank of a srg with integral eigenvalues is completely detennined 
by its spectrum when p does not divide both T and s. Hence cospectral graphs have the same p-rank 
for primes p satisfying this condition. However. this not necessarily holds when p I r and p Is, For 
example, we shall see that the triangular graph T(8) and the Chang graphs have different 2-ranks 
(Example 3.3), Qearly. isomorphic graphs have the same rank over any field F p. since labelling the 
rows and columns of a matrix in a different way does not change the rank. 

Switching-equivalent graphs need not be isomorphic or even cospectral. but when the p-rank of 
one graph is known, there are only a few possible values for the p-rank of the other graph(s). 

Lemma 3.10 Ifrl and r2 are switching-equivalent, then ITp(Al) - Tp(A2)1 $ 2. 

PROOF. Assume that the rows and columns of At and A2 are labelled in the same way. Set 
Bi : = ) - Ai - I for i = 1,2. From the definition of switching as given in Chapter 1, it is readily 
seen that 

B2 - Az = D(Bl - Al)D, 

where D is a diagonal matrix with dii = -1 if the ith row and column of Al are indexed by an 
element of the switching-set and 1 otherwise. This is equivalent to 

) - 2Az = D() - 2At)D. (3.4 ) 

For p > 2, the above-mentioned relation yields 

from which the result is easily derived by Lemma 3.1. 
If p = 2, relation (3.4) gives a trivial result, but in this case we can give a more explicit relation 

between 'R2(Al) and 'RZ(A2)' Denote by £. the characteristic vector of the switching-set with respect 
to the labelling of the columns of Aland A2. Then 

(3.5) 

Hence. the assenion is also proven for p = 2. o 

Of course. this lemma also holds when Al and Az are substituted by Al + r I and A2 + r I for 
r E iZ. 

Lemma 3.11 Let r be a srg on v vertices that is switching-equivalent to the disjoint union 01 a vertex 
and a srg r' on v-I vertices. Denote the eigenvalues olr by k, rand s. 
(a) /121 rand 2 I s, then T2( Ar) = rz( Ar' ) + (, where ( = 2 if 1 E 'R2( Ar) and 0 otherwise. 
(b) 1121C T + 1) and 21(s + 1), then Ir2(Ar + Iv) - Tz(Ap + Iv-I)I $ 1. 

PROOF. W.l.o.g. assume that the first row of Ar, denoted by r., is the characteristic vector of the 
switching-set VI. Write A instead of Ar and denote by A* the matrix obtained from A by switching 
with respect to lil • that is, A* = diag(O, Ar'). Now (3.5) takes the following fonn: 

'R2(A + rI) + (1,r) = 'R2(A* + rI) + (1,r), r = 0,1. 

(a) Since r E 'R2( A) and 1 rt 'R2( A" + (r.), we have dim ('Rz( A) + (1}) = dim('R2( A") + (r) + 1. 
Because both T2( A) and T2( Ap ) = T2( A") are even (Lemma 3.9). the following holds: 
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• if 1 E 'Rz(A). then T2(A) = T2(Ar') + 2 (and 1: (/. 'R2(A*)); 
• if 1 (/. 'Rz(A). then Tz(A) = r2(Ap) (and 1: E 'R2(A*)). 
(b) Denote by B and B' the adjacency matrices oft and t', respectively. If p divides both r + 1 and 
s + I, then (a) applies to rz(B) and Tz,(B'). In Section 1.2. we mentioned the fact that both 'V and the 
valency ofr' are even. Hence, by Lemma 3.8, rz,(A' + Iv-I) = Tz,(B') + 1. 

If 1 E 'Rz,( B), then r2( A + Iv) = rz( B) - 01. where 01 = 0 if 1 E 'Rz( A + Iv) and 1 otheJWise. 
From this we get 

(3.6) 

If the all-one vector is not contained in 'R2( B). a similar argument is used to derive that 

where 62 = 1 if 1 E 'R2(A + Iv) and OotheJWise. Combining (3.6) and (3.7) yields the result. 0 

To illustrate the foregoing, we calculate the 2-rank of the SchHUli graph and the Chang graphs, 
which can all be obtained from T(8) by switching. 

Example 3.3 The triangular graph T(8) has been discussed in Chapter 2. Its vertex set is the 
set of unordered pairs of {I, ... ,8} and two pairs are adjacent whenever they are not disjoint. T( 8) 
has parameters ('V, k, A, J1) = (28,12,6,4), spectrum 121,47 , (_2)20 and its 2-rank is 6 (Proposition 
2.S). 

The SchHUii graph r s is obtained from T(8) by isolating one vertex through switching and then 
removing it. Its parameters are (v, k, A, J1) = (27,16,10,8). The spectrum of r sis 271,46 , (-2?o. 
It can be shown that the Schlafli graph is unique, Le. every graph with the same parameters is 
isomotphic to it. Let As denote the adjacency matrix of r s. Consider the adjacency matrix As as 
shown in the previous chapter and take the first row as the characteristic vector of the switching set 
(Le. switching is performed with respect to the the set { {I, x}, {2, x} 13 ::; x ::; 8} and the vertex 
{I, 2} is isolated). Then the first six rows of As can be written as: 

( J, - I, I, 
11 ) o . 
o 

We see that 16 is a submatrix of As. Hence Tz(As) ~ 6 and equality holds because of Lemma 3.11 
and the fact that Tz(As) = 6. 

The Chang graphs Ci, 1 ::; i ::; 3, are obtained from T(8) by switching with respect to 

(Cd {{I,2}, {3,4}, {S,6}, {7,8}}; 
(Cz) {{1,2},{2,3},{3,4},{4,S},{S,6},{6,7},{7,8},{1,8}}; 
(C3) {{1,2},{2,3},{1,3},{4,S},{S,6},{6,7},{7,8},{4,8}}. 

The Chang graphs all have the same parameters as T(S). There are no other graphs with these 
parameters. 

It is easy to give for every i, 1 ::; i ::; 3. a submatrix .4~. of Ac. of 2-rank 8. The submatrices are 
formed by the rows and columns labelled by { {I , 2}, ... , {I , 8} , { x , y} }, where {x, y} = {3, S} for 
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Cl and {x, y} = {2,4} for Cz and C3. 

A~, = C J, ;. I, v~ ), A~, = ( 

1 
Js - Is 111 

1 1 

!!:l 1 

1 
1 1 

Js - Is 1l~ 
1 113 

where 111 = (101000),!!:l = (01000) and 113 = (10000). Hence 8 :$ fz(Ac') :$ f2(As) + 2 = 8 for 
1 :$ i :$ 3, where the right hand inequality follows from Lemma 3.10. Of course, the upper bound is 
also obtained from Theorem 3.4. 

Let fl denote the characteristic vector of the switching-set of T(8) and Ct. From Lemma 3.11 it 
follows that 11$ 'Rz( As). Substituting this in (3.5) yields, together with the obtained results, 

8 ~ dim('Rz( As) + (fl) + 1 = dim('Rz( ACl) + (f1,l) ~ 8, 

which is only possible if (f1' 1) C 'Rz( ACl) and fl 1$ 'Rz( As). Examining A~l' we see that 
LiE{Z,4,6,7,S}!{I,i} + !{3,S} == 1 (mod 2) must hold. Since 1 can be written as the sum of an even 
number of rows of Ac1 , this vector is also contained in 'Rz( Jzs - ACI)' Hence fZ( Jzs - Ac1 ) = 
TZ( Ac1 ) = 8. The same arguments can be used to derive that rz( Jzs - AC2} = rz( Jzs - AC3) = 8. 

Lemma 3.8 yields that rz(Jz7 - As) = 7. Finally, since 17 is a submatrix of Jzs - As and 
Irz(Jzs - As) - fz(As)\ :$ 1, we conclude that rz(Jzs - As) = 7. 
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Chapter 4 

On the p-rank of Paley graphs 

Paley graphs are strongly regular graphs with half-case parameters. Hence, their eigenvalues are not 
necessarily integral. In this chapter we study the p-rank of Ap + (71, where Ap denotes the adjacency 
matrix of a Paley graph and CT E 7Z. In fact, Tp(Ap + CT1) will be completely determined for all 
values of p and CT. However, we first discuss a method that enables us to calculate the p-rank of a 
circulant in an easy way. This method is based upon results from algebraic coding theory, especially 
from the theory of cyclic codes. 

4.1 Circulants 

Definition A matrix of the form 

[ ·0 

al an-l 

1 T 
ao Un-2 

a2 ao 

is called a circulant. 

In this section it is shown how the p-rank of a circulant can be determined by regarding it as a 
generator matrix of a cyclic code. 

Definition A linear code C is called cyclic if for every codeword (co, c}, ... , cn-d the word 
(Cn-I, Co, ... , Cn-2) is also in C. 

The theory of cyclic codes is based upon the identification of codewords with a set of polynomials. 
Let F be any finite field lFq• Denote by F[x] the set of polynomials in x with coefficients from F. 
The ring Rn := F[x]/(xn - 1) consists of the residue classes of F[x] modulo xn - 1. As a system 
of representatives we take the set of polynomials of F[ x 1 of degree less than n. Now the codeword 
(co, CI, .•• , cn-I) is associated with the polynomial c( x) = 2:i;ol CjX i in Rn. Then a cyclic shift 
corresponds to multiplying c( x) by x in Rn. 

Definitions A principal ideal I of Rn is a linear subspace of Rn consisting of all multiples of a 
fixed polynomialg(x). We call g( x) a generator polynomial of I. This is denoted by I = (g(x )). 
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I can be considered as a cyclic code of length n. The next theorem proves that every cyclic code 
is a principal ideal. 

Theorem 4.1 ([l5.p.190D Let e be a cyclic code of length n. 
(a) There is a unique monic polynomial 9 (x) of minimal degree in e. 
(b) g( x ) is a generator polynomial 0/ C. 
(c) g(x)isafactorof x'l1-l. 
(d) Any e(x) E e can be written uniquely as e(x) == f(x )g(x) in F[x], where f(x) E F[x] 

has degree less than n - r, r == deg(g( x». The dimension ofe is n - r. 

PROOF. (a) Suppose gl(X),92(X) E C are monic and of minimal degree. Because e is linear, 
gl(X) - 92(X) is in e. But gl(X) - 92(x) has lower degree than gl(X) and g2(X). a contradiction, 
unless gl(X) == 92(X). 
(b) Suppose e(x) E e. Write c(x) == q(x)g(x) + rex) in Rn. where deg(r(x)) < r. Linearity yields 
that rex) E e, so rex) == O. Therefore, c(x) E (g(x»). 
(c) Write xn - 1 == h(x)g(x) + rex) in F[x], where deg(r(x)) < r. This implies that rex) == 
- h( x )g( x} E C in Rn. a contradiction unless r( x) == O. 
(d) From (b), it follows that any c(x) E C, deg(c(x» < n, can be wrinen as q(x)g(x) in Rn. Thus 

c(x) == q(x)g(x)+ e(x)(xn -1) in F[xl, 
== (q(x)+e(x)h(x»g(x) inF[x], 
== !(x)g(x) in F[x], 

where deg(! (x)) ::; n - r - 1. Thus the code consists of multiples of g( x ) by polynomials of degree 
::; n - r - 1, evaluated in F[x]. There are n - r linearly independent multiples of g(x), namely 
g(x), xg(x), ... , xn-r-1g(x). Thus the code has dimension n - r. 0 

Let A be a circulant of size n with entries in F. Then A can be considered as a generator matrix of 
a cyclic code Cover F. If (ao, at. . .. , an-I) is a row of A and a(x) :== L:i:J aixi, then e = (a(x )}. 
Write gcd(x, y) for the greatest common divisor of x and y. According to Theorem 4.1, there is a 
polynomial g( x) which is a factor of gcd(xn - 1, a( x» such that C == (g( x)}. We claim that g( x} is 
actually equal to gcd(xn - 1, a(x ». 
Lemma 4.2 ([15, p.199]) Let g( x) be afactor of xn - 1 and let e be the code generated by g( x). Let 
p(x) E Rn be such that gcd(xn - 1 ,p(x» == 1. Then p(x )g(x) is also a generator polynomial/orC. 

PROOF. It is evident that (p(x)g(x») ~ (g(x») holds. If h(x) == (xn -1)/g(x),thengcd(h(x),p(x») 
= 1. Hence, there exist polynomials u( x) and v( x ) such that 

1 == u(x)p(x) + v(x)h(.1:) in F[x], 
g(x) == u(x)p(x)g(x)+v(x)(xn-l) inF[x], 

== u(x)p(x)g(x) inRn • 

Thus (g(x») ~ (p( x )g( x)). We conclude that C = (g( x)} = (p(x )g( x». o 

Continuing with the above notation, r F (A) is now easily determined from the foregoing. 

Corollary 4.3 The F-rank of A equals n - deg(g(x », where g(x) == gcd( a( x), xn - 1). 
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Example 4.1 Let An be the adjacency matrix of the n-gon: 

Thus An is a circulant. Take a( x) = 1 + x2• 

Over F 2 we have 

1 0 
o 1 

o 0 

{ 
x2 + 1 if n is even 

gcd( a( x), xn + 1) = x + 1 if n is odd. 

Thus r2(A2m) = 2(m - 1) and r2(A2m+d = 2m. 
Over F p , p > 2, we have 

{ 
x2 + 1 if n=:O (mod 4) 

gcd(a(x),xn -1) = 1 otherwise. 

Hence rp(An) = n - 2 if n=:O (mod 4) and rp(An) = n otherwise. 

4.2 Paley graphs 

The Paley graphs are an infinite class of strongly regular graphs that satisfy J = g. hence their 
eigenvalues are not necessarily integral. They are defined in the following way. Take F = F q , where 
q == 1 (mod 4). The Paley graph P( q) has vertex set F, with two different vertices x and y joined if 
and only if x - y is a nonzero square in F. Since -1 is a square in F, the adjacency is well defined. 
P( q) is strongly regular with parameters 

1 1 -I+vq -l-vq 
v=q,k==2(q-I),A+I=J.l==4"(q-l),r= 2 ,s= 2,J==g=k. 

Clearly, P( q ) has the same parameters as its complement P( q). 

Lemma 4.4 P(q) and p(q) are isomorphic. 

PROOF. Write P and P instead of P( q) and P( q). It is evident that two vertices x and y of P are 
adjacent iff x - y is not a square. Now let a be a nonsquare in F and define the function <f; : F .........,. F 
as <f;(x) := ax, x E F. Let <f;(P) be the graph with vertex set <f;(F) = F where two vertices x and y 
are adjacent whenever <f;-I (x) '" <f;-I (y). Since ax - ay is not a square iff x - y is a nonzero square, 
it follows that <f;(P) == P. Hence P ~ P. 0 

We denote the adjacency matrix of P( q) by A( q). Combining Lemma 3.1 and Lemma 4.4 yields 

Lemma 4.5 Foreveryprimep, Irp(A(q»- rp(A(q)+I)1 ~ 1. 

Let us first consider the case where qis a prime (congruent to 1 (mod 4». Then F = {O, 1, ... , q
I}. If we number the rows and columns of A( q) from 0 to q - 1, then A( q) is a circulant (suppose 
axy = 1, then x - y is a square, thus (x + 1) - (y + 1) is a square, hence a(x+l)modv,(y+l)modv = 1). 
Thus the p-rank of A( q) can be determined for any prime p by means of Corollary 4.3. 
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However, let us examine first for which primes p the detennination of T p( A( q» might be nontriv· 
ial. Since det(A(q» = !(q - 1 )(1(q - 1 »(q-l)/2 # 0, Lemma 2.6 can be applied. which yields 

(i) ifp l{q - 1), then Tp(A(q)) = q; 
(ii) if411 (q - 1), then T2{A(q» = q - 1. 

Hence, the calculation of Tp( A( q» by application of Corollary 4.3 can be restricted to those primes p 

that divide 9. The next table shows the values of Tp(A(q» for q < 100 and p I~: 

q p Tp(A(q» q p Tp(A(q» 
13 3 6 53 13 26 
17 2 8 61 3,5 30 
29 7 14 73 2,3 36 
37 3 18 89 2,11 44 
41 2,5 20 97 2,3 48 

The values of rp(A(q» in the table suggest that rp(A(q» = !(q - 1) for p 19. It will be proven 
that this holds indeed. 

In the introduction of this chapter we claimed that for all values of p and (I E LZ the ~rank of 
A( q) + (I I could be completely detennined. The next theorem shows that for most combinations of 
p and (I this can be attained by applying simple arguments from linear algebra. The remaining cases 
are dealt with in Theorem 4.9. 

Theorem 4.6 Let q be a prime power, q == 1 (mod 4). Denote by A the adjacency matrix of the Paley 
graph P( q). Then the following holds: 

(a) if (12 - (I + {t is not divisible by p, then 

r p( A + (I I) = { qq - 1 if p I (k + (I) 
otherwise; 

(b) if q == 1 (modp), then rp(A) = k and rp(A + I) k + 1; 
(c) if q is a square modulo p, q ~ 1 (modp), then rp(A + (I} I) = rp(A + (121) = ~(q + 1), 

where (I}, (12 E F p satisfy at + a2 == 1 (modp) and ata2 == -J,L (modp); 

PROOF. Let a E LZ. The matrix A + (II has eigenvalues k + a, a + 4-1 
and (I - ~ and 

detenninant (k + (I)(a2 - (I - {t)(q-l)/2. Assume thatdet(A + (II) # O. Otherwise. replace A + (II 
by A + (a + plIo 

Qearly. if det(A + (II) is not divisible by p, then Tp(A + (II) = q. Furthennore. if pi (k + (I) 
and p 1«(12 - (I - {t), then Tp(A + (II) = q - 1. This is obvious if p II (Ie + (I). If Y I (k + (I), then 
consider the matrix A + «(I + p )1. Since p II (k + (I + p) and p 1 ( (p + (I? - (p + (I) - {t). we get 
Tp(A + (II) = Tp(A + «(I + p)I) = q - 1. Hence. assertion (a) is proven. 

Now we tum to the case where (12 - (I - {t == 0 (mod p). Let us first detennine the (I E F p that 
satisfy (12 - (I - {t == 0 (mod p). 

If p = 2, then there is no solution for (I if J,L is odd. If {t is even, then both 0 and 1 satisfy the 
equation. 

If p > 2, then we must solve 

a2 - (I - {t _ o (modp), 

(2(1 - 1)2 _ 4Jt + 1 == q(modp). (4.1) 
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We distinguish three cases: 
(1) if q is not a square modulo p, then (4.1) has no solutions; 
(2) if q == 0 (modp). the only solution is 0" == !(p + 1 )(modp); 
(3) if q is a nonzero square modulo p, then (4.1) has two different solutions 

0"),0"2 E Fp satisfying 0"1 + 0"2 == 1 (modp) and (710"2 == -p (modp). 

The statements (b) and (c) deal with the case oftwo different solutions 0"1 and 0"2 for (4.1). From 

(A + O"Jl)(A + 0"21) ::;; A2 + (0"1 + 0"2)A + 0"10"21 

and Lemma 3.2, it follows that 

= (p + 0"10"2)1 + (0"1 + 0"2 - I)A + pJ 
_ pJ (modp), 

rp(A + O"tl) + rp(A + 0"2I) :::;; q + rp(pJ). 

Suppose p Ill. Then 0"1 == 0 (modp), (72 == 1 (modp) and 

q::;; rp(I) ::; rp(A + 1) + rp( -A) :::;; q. 

(4.2) 

(4.3) 

From p III it follows that p I v, but p A (k + 1). Thus by Lemma 3.8. we find 1 E np( A + 1) and 
1 f/. Rp( A). Together with Lemma 4.5 this yields 

rp(A + 1) ::;; rp(J - A - 1) + 1 ::;; rp(A) + 1. 

Substituting this in (4.3) gives rp( A) ::;; ~(q - 1) and Tp( A + I) ::;; h q + 1), which proves (b). 

Now suppose p All, while q is still a nonzero square (mod p). Then we have 

(4.2) 
q::;; rp(I) :::;; rp(A + (71 I) + rp(-A - 0"21) :::;; q + 1. 

The left hand inequality holds, because «71 - 0"2)2 == q ¢. 0 (mod p). 
The proof of (c) is completed by showing that rp(A + O"i1) 2: ~(q + 1) for i = 1,2. Let 

q == p2 (mod p), p E Fr Suppose p I( k + 0") for 0" ::;; 0"1,0"2 and recall that 0" satisfies (4.1). Then 
k + 0" == !(q - 1) + 2(1 ± p) == O(modp), which implies p2 ± p == O(modp). In that case, 
q == 0 (modp) or q == 1 (modp), a contradiction. Thus p l(k + 0"). 

WJ.o.g. we assume that det( A + 0" I) f:. 0 for 0" ::;; 0"1,0"2. Now Lemma 2.6 yields that if 
p II (0"2 - 0" -Il). then rp(A + 0"1) 2: i(q+ 1). Ifrl(0"2 - 0" - p), then p II «p+ 0")2 - (p+ 0") - Il), 
since20"-1 == ±p(modp)and P¢.O (modp). Hence again, we get rp(A+O"1) ::;; rp(A+(p+O")I) 2: 
i(q+l}. 0 

From the proof of this theorem it follows that there is one case left, namely, when there is exactly 
one solution for (4.1). Then p and (7 satisfy q == 0 (modp) and (7 == !(p + 1 )(modp). Applying the 
same arguments as in the proof of the above theorem does not yield good bounds. From 

(A + ~(P + 1 )I)2 ::;; ~p(pe-l + p + 2)1 + pA + pJ 

- IlJ (modp), 

we obtain the upper bound 
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Funhennore. det(A + ~I) = !p!(q+l)(pe-l + 1 )(i(p - pe-l )(q-l)/2. Hence only for e = 1 a 
nontrivial lower bound is yielded by Lemma 2.6. 

We computed rp(A(pe) + E.:flI) for several small values of p and e. The values obtained in 

this way suggested that rp(A(pe) + ~I) = (~y~. This has been proven by Brouwer (personal 
communication). The result is obtained by applying the following theorem to the matrix 2A(pe)+ I - J. 

Theorem 4.7 Let F be afield and let A and B be two subsets of F. Set m := IAI and n := IBI. Let 
M be an m X n matrix with the rows labelled by the elements of A and the columns by the elements 
of B. Define the entries of M by 

Mab := pea, b), 

where p( x, y) : = Lf=o Li=o Cij xi yj for d and e satisying d < m and e < n. Define the subspace 
5 S;;; Fly] by 

e 

5:= (2:Cijyj 10 ~ i $ d). 
j=O 

Then rF(M) = dimeS). 

PROOF. Set V := FB, that is. V is the vectorspace consisting of all maps from B into F. Define an 
evaluation map E : F[y] ~ V by 

E(f(y))(b):= feb), for all b E B. 

In fact. Ef is the restriction of f to B (notation: fiB). Define R := 'RF(M). We claim that 5::' R, 
from which the result follows. In order to prove this. we show that 

(1) Eis is injective; 
(2) E(5) = R. 

Indeed, combining (1) and (2) yields S ~ E( 5) = R as claimed. 
We first show that the kernel of Eis contains the all-zero vector only. Let f E 5. Suppose 

f( b) = 0 for every b E B. Then f has n zeros. However. f is a polynomial of degree at most e. Since 
we assumed that n > e, this implies that f( b) can not be zero for every b E B unless the coefficients 
of f all equal zero. This proves (1). 

Funhennore.let 1:.a be a row of M. The yth entry is p( a, y) = Li at Lj CijyJ, which is a linear 
combination of elements of 5. Thus R S;;; E(S). 

We are left with the proof of E(5) S;;; R, which is equivalent to Rl. S;;; E(S)l.. Let 1:. E Rl.. 
Denote its coordinate rb by r( b). Then 1:. satisfies for every a E A 

L r(b)p(a,b) = O. 
beB 

Thus 

i,j,/) 

for a in A. Regard the left hand expression as a polynomial in a, then 

d 

Lxi L r(b)cijtr1 = 0 
1=0 j,b 

for x E A. Since d < m, this polynomial can not have m zeros unless Lj.b r( b )Cijb1 = 0 for every 
i, 0 ~ i ~ e. But. in that case, r. is contained in E(5)1.. Hence Rl. S;;; E(S)l., which completes the 
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proof of the theorem. o 

We shall apply this theorem to the matrix Q defined in the following way. Take F = F q' where q 
is the power of an odd plime p, say q = pe. We introduce here the Legendre symbol X that is defined 
for x E Fq by 

x(x):= { ~ 
-1 

if x is a nonzero square in F q 

if x = 0 
otherwise. 

Oearly, X( x) = x(q-I)/2. Let Q be the q x q matrix with rows and columns indexed by the elements 
of Fq and entries Qxy := X(y - x). Then 

Qxy=(y_x)(q-l)/2= L (_I)i T x i y(-i+(q-l)/2). 
(q-l)/2 (-I ) 

i=O Z 

Q is called a lacobsthal matrix. It clearly satisfies the conditions of Theorem 4.7. In this case, the set 
S takes the following form: 

We obviously have 

dim(S) = I{i I ( T ) ¢ O(modp), O:S i:S ~(q - I)}I· 

In order to compute this number. we need the following well-known result from number theory. 

Theorem 4.8 (Lucas) Let the p-ary expansions of I and k be I = Li lipi and k = Li kipi, where 
o :S Ii, k i :S p - 1. Then 

For a proof of this theorem we refer to Van Lint [14, p.47J. 

Recalling that q = pe. one easily verifies that 

1 e-l 1 . 
-(q -1) = L -(p - l)pt. 
2 i=O 2 

Furthermore. write i = Lj:6 ijpJ. For every i j there are ~ choices such that ( T ) # O. Thus, 

( 
q-l ) 

by Theorem 4.8. there are (E:f r possible values for i such that T # O. By Theorem 4.7. 

Tq( Q) = dim( S), hence 
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Obviously, if q == 1 (mod4) and A denotes the adjacency matrix of the Paley graph P(q), then 
Q = 2A + 1 - J. From 

Q2 = q1 - J == -J (modp) and (2A + 1)2 = q1 + (q - I)J == -J (modp), 

we obtain that both 'R.p(2A + 1) and 'R.p(2A + 1 - J) contain the all-one vector, hence r p( A + 21) = 
Tp(Q). Since the entries of Q are elements of both Fp and F q, we have Tp(Q) = Tq(Q). Together 
with the obvious fact that T p( A + Et! 1) = T p(2A + 1), this proves the following theorem. 

Theorem 4.9 Let Abe the adjacency matrix o!the Paley graph P(q).lfq = pe, then fp(A+91) = 
(9ye. 

Hence for every Paley graph P( q) with adjacency matrix A and for every combination of p and 
(7 E 7L, the p-rank of A + (J I is given by Theorem 4.6 or Theorem 4.9. 
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Chapter 5 

Bounds from character theory 

Character theory provides a powerful tool for proving theorems on finite groups. By applying results 
from this theory to an automorphism group of a srg r, a set of possible values for the p-rank of A can 
be obtained. Of course, such a set will only be of help if it is small. 

The aim of the first two sections is to introduce definitions and results from representation and 
character theory. We do not give many details and usually omit proofs; for an extensive treatment 
we refer to Isaacs [11]. The application of character theory to our problem is discussed in Section 3. 
Finally. a class of graphs is presented for which it is expected that a small set of possible values for 
rp(A) can be derived. 

5.1 Group representations and modules 

Throughout this chapter. G will denote a finite group with identity €. Furthermore, let F be a field. 
We denote by GL( n, F) the group of all nonsingularelements of Fnxn. 

Definition An F-represemation of G of degree n is a homomorphism ~ : G 1---+ G L( n, F). 

Example 5.1 Let G act on a finite set n. The permutation representation n of Gover F is de
fined in the following way: label the rows and columns of n(g), 9 E G. by the elements of 0 and 
set 

(n() ,_ {I if WIg = Wz 
9 ""1.Wl·- 0 otherwise. 

Thus n maps each 9 E G to the appropriate permutation matrix. If we take n = G, then n is called 
the regular F-representation of G. 

Denote by F[G] the set of all formal sums LgEG agg, ag E F. If addition is performed compo
nentwise and multiplication is defined as 

(L aglgJ)( L agzg2):= L L (ag1 a91 )(gtg2). 
glEG gzEG gIEG91EG 

then F[G] can be considered as a ring with identity €. It is easy to see that F[G] can also be con
sidered as a vectorspace over F of dimension IGI. Since (c:r)y = c(xy) = x(cy) for all c E F and 
x, y E F[G], F[G] is an F-algebra. 
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Definition Let V be a finite dimensional vectorspace over F. Suppose for every £ E V and x E F[ G] 
that a unique £X E V is defined. Assume for all x, y E F[ G], E, w E V and c E F that 

(a) (!:! + lQ)x = EX + lQX; 
(b) E(X + y) =!:!X + EY; 
(c) (!:!x)y = !:!{xy); 
(d) (CE)X = C(EX) = E( ex); 
(e) E€ = E· 

Then V is called an F[G]-module. 

There is a one-to-one correspondence between F-representations of G of degree n and F[G]
modules of dimension n. Let 4> be a representation of degree n and denote by V the n-dimensional 
vectorspace over F. Then 

!!(2: agg):= 2: ag(!:!4>(g» E V 
g€G g€G 

holds for every Lg€G agg E F[G]. It is easily verified that V is an F[G]-module. 
Conversely, if V is an F[G)-module, choose an F-basis Eh1!2, ... ,!:!n for V. Let 4>(g) be the 

element of Fnxn satisfying 

( 

!:!l ) 
~n 4>(g) = ( 

!:!~g ) . 

!:!ng 

Then 4> is an F-representation of G. Note that the representation depends on the basis. 
Usually we shall explain ideas from the representation point of view. However, the foregoing 

implies that results for representations can be easily expressed in terms of modules (and vice versa). 
In the rest of this section we write 'modules' instead of ' F[ G)-modules' and 'representations' instead 
of' F-representations'. 

Two representations 4> and 'f' are said to be similar if there exists a nonsingular matrix P such 
that, for every 9 E G, 

If 4> and 'f' correspond to modules V and W, respectively. then the representations are similar iff V 
and IV are isomorphic, i.e. there exists an invertible linear transformation 0 : V 1----+ W satisfying 
O(!:!x) = O(!:!)x for all!:! E V and x E F[G]. 

Let V be a module. A submodule U of V is a linear subspace of V that satisfies 1fX E U for every 
M E U and x E F[G]. V is called reducible if V has a nontrivial submodule (that is, other than {Q} or 
V). Otherwise, we say that V is irreducible. V is completely reducible if it can be written as a direct 
sum of irreducible submodules. 

Theorem 5.1 ([ 11, p.4]) Let G be a finite group and F a field whose characteristic does not divide 
IGI. Then every F[G]-module is completely reducible. 

This theorem is generally known as Maschke's Theorem. 
It is evident that there exists a composition series for a module 11, that is, a series of submodules 

of the form 
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such that for each i the factor module Vi-I /Vi is a nonzero irreducible module. An irreducible module 
U is called an irreducible constituent of V of multiplicity m if U ~ Vi-I/Vi for precisely m values of 
i. The Jordan-Holder Theorem ([20. p.43D asserts that the set of composition factors of V does not 
depend on the choice of composition series. 

These concepts can be translated into the language of representations as follows. Let U be a 
proper nonzero submodule of a module V. Choose a basis bu for U and extend it to a basis for V. By 
a suitable numbering of the basis vectors. the representation Cl> associated with V takes the following 
form: 

Cl>(g) - (Cl>2(9) 9(9») 9 E G 
- 0 Cl>I (g )' . (5.1 ) 

Here Cl>I is the representation corresponding to U with respect to bu and Cl>2 is a representation 
corresponding to V / U. As far as (ir)reduciblility is concerned. the same terminology is used for 
representations as for the associated modules. 

If there exists a submodule W C V in the above situation so that V = U E& W. then. for an 
appropriate choice of basis of V. Cl> -:: diag(Cl>J, Cl>;). where Cl>; is the representation corresponding 
to W. Hence. if Cl> is a completely reducible representation. then Cl> is similar to a representation in 
block diagonal form. where each block is an irreducible representation. 

We see that the irreducible representations play an important rOle in representation theory. As a 
matter of fact, they can be considered as the building blocks for all representations. It can be proven 
(see [11. p.14 7]) that there exist only finitely many irreducible F -representations up to similarity. 

Finally, let Cl> be an F-representation of G and let t be a field containing F. Then <l> can also be 
considered as at-representation. It is entirely possible that <l> is irreducible over F. but reducible as an 
P -representation. If Cl> is irreducible for every field t 2 F. then Cl> is said to be absolutely irreducible. 

Definition The field F is called a splitting field for G if every irreducible F-representation of G 
is absolutely irreducible. 

5.2 Character theory 

5.2.1 Generalities 

For most applications of representations, it is not necessary. to distinguish between similar repre
sentations. Therefore. it would be useful to have a function defined on the set of representations 
that distinguishes between nonsimilar irreducible representations. but has the same value for similar 
representations. A character is such a function. 

Definition Let Cl> be an F-representation of G. Then the F-character cP of G afforded by Cl> is 
the function given by cP(g) = tr(Cl>(g». 9 E G. 

If 1I is an F[G]-module corresponding to the F-representation <l> of G and <l> affords cPt then we 
also say that 1I affords cPo Let us first show that characters do indeed satisfy the required properties. 

Proposition 5.2 Let <l> and'll be F-representations that afford the characters </> and '1/.', respectively. 
If <l> and'll are similar, then ¢ = '1/.'. 
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PROOF. If 4> and -¥ are similar representations, then p-l4>(g)P == -¥(g) for some nonsingularmatrix 
P. This shows that 1/1(g) = tr{'I'(g) = tr(p- l 4>(g)P) = tr(4)(g)) = <I>(g) for every 9 E G. Hence 
<I>==~ 0 

Theorem 5.3 ([ 11, p.155]) Let F be any field. Then the characters afforded by nonsimilar irreducible 
F -representations of G are nonzero, distinct and linearly independent. 

Let us give some examples. In fact, these are the only characters that we shall deal with. 

Example 5.2 The F-character afforded by the trivial representation 4>(g) == 1, for every 9 E G, 
is denoted by 10 and is called the principal F-character. Obviously. 10(g) == 1 for all 9 E G. 

Example 5.3 Consider the permutation representation n defined in Example 5.1. If n is consid
ered as a representation over a field of characteristic 0, then the permutation character 11" afforded by 
nis 

lI"(g)==I{wEOlwg=w}l, gEG. 

If 0 == G, then the regular character p satisfies 

peg) _ { IGI - 0 
ifg == e 
otherwise. 

In the following proposition, some elementary properties of characters are proven: 

Proposition 5.4 Let 4> be an F-representation that affords the character <1>. Denote by F the F[G]
module corresponding to 4>. 

(a) The set of characters is closed under addition. 
(b) If U is a proper nonzero submodule of ll, then II affords the character <1>1 + <1>2. where 

<1>1 and <1>2 denote the character afforded by U and V / U • respectively. 
(c) Characters are constant on the conjugate classes of the group. 

PROOF. (a) Define for 9 E G 

_ ( 4>(g) 0 ) 
.:.(g) := 0 -¥(g) . 

Obviously.::: is also an F-representation of G and affords the character e = <I> + "p. 
(b) This follows from (5.1). 
(c) <1>( h -1 gh) == tr(4)( h -1 gh» = tr( 4>( h -1 )4>(g )4>( h» = tr(4)( h -1 )4>( h )4>(g» = tr(4)(g)) = <I>{g) 
for all g, hE G. 0 

By the exponent of G we mean the least positive integer d such that gd = e for all 9 E G. 
Naturally, d IIGI. 

Lemma 5.5 Let 4> be an F -representation of G of degree n affording the character <p and let 9 E G. 
Let d denote the exponent of G. Suppose that the polynomial xd - 1 splits into linear factors over F. 
Then 4>(g) is similar to a diagonal matrix diag( €1 , ••• , €n), where the €i satisfy €1 == 1, 1 ~ i ~ n. 

PROOF. For each 9 E G we have 4>(g)d == 4>(gd) == In. Thus the eigenvalues €i of 4>(g) satisfy 
£1 == L By assumption. the €j are elements of F, hence 4>(g) is diagonalizable over F. This proves 

35 



the lemma. o 

Thus. if F satisfies the condition of the above lemma. then 4>(g) is the sum of the eigenvalues of 
ct>(g ). counting multiplicities. We also deduce from this lemma that an algebraically closed field is a 
splitting field for every group. 

5.2.2 Ordinary characters 

This section deals with characters over C, the so-called ordinary characters. 

Lemma 5.6 ([11.p.16]) The number of similarity classes of irreducible representations equals the 
number of conjugacy classes of G. 

Theorem 5.3 yields that this latter number is also the number of distinct characters afforded by 
irreducible representations. (In this section 'character' always means 'C-character' and the same 
holds for 'representation'.) These characters are called irreducible and the set of all irreducible 
(['-characters of G is denoted by Irr(G). 

Since C has characteristic 0, it follows from Maschke's Theorem that every C-representation ct> is 
completely reducible. Thus for the character 4> afforded by ct>, we have 4> = I:XiElrr(G) niXi, where 
nj denotes the multiplicity of the irreducible representation that affords Xi as constituent of ct>. The 
Xi with nj > 0 are called the irreducible constituents of <p. 

For later use we introduce the following concept: 

Definition Let <P and 1/J be ([,-characters of G. Then 

1 ~ -
[¢, 1/J]:= TG1 L.... 4>(g)¢(g) 

gEG 

is called the inner product of 4> and '¢. 

We state without proof ([ 11. p.21 J) that 

where Oij denotes the Kronecker delta. Hence. if 4> = LXElrr(G) niXi is a character of G. then 

[¢, ¢] = L n;. (5.2) 

The degree of an ordinary character is defined as the degree of the corresponding representation. 
Since ct>( e) = Ideg(lfJ) for every representation ct>. we can also say that the degree of a character 4> is 
equal to ¢( e ). 

Definition An algebraic integer is a complex number which is a root of a monic polynomial with 
integer coefficients. 

The set of all algebraic integers forms a ring that we shall denote by R*. For an ordinary char
acter <P. we have ¢(g) E R* for all 9 E G. This holds because of Lemma 5.5 and the fact that C is 
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algebraically closed. 

For a particular group G, the irreducible characters are usually presented in a character table as 
shown below. The rows are indexed by the irreducible characters; the columns correspond to the 
conjugacy classes of G. A class is denoted by the order of its elements. Oasses of elements of the 
same order are distinguished by subscripts. 

In [6], the so-called Atlas, the character tables of many finite groups are given. 

Example 5.4(a) The character table of As. the alternating group of degree 5. has the following 
form: 

Oass: 1 2 3 51 52 
Xl : 1 1 1 1 1 
X2 : 4 0 1 -1 -1 
X3 : 5 1 -1 0 0 
X4 : 3 -1 0 01 °2 
xs: 3 -1 0 02 01 

where 01 = ¥, 02 = 1-20 . 

5.2.3 Modular characters 

The theory of modular characters is concerned with the connections between ordinary representations 
and representations over a field of characteristic p. We shall need only a few results from this theory. 
For proofs and more details the reader is referred to Chapter 15 of [11]. 

Throughout this section we fix a prime p. The (p-)modular characters are defined in a particular 
field F" that is constructed in the following way. Choose a maximal ideal I 2 pR* of R'" and 
set F* := R* /1. Let (J : R* ~ F* be defined as 8(r) := rI, r E R*. Furthermore. let 
U:= {f E £'1 fn = 1 for some n E 7Z withp In}. Oearly,U ~ n*. 

The field F* has the following properties: 
(a) F* has characteristic p; 

(b) F* is algebraically closed; 
(c) 8: U.....- F'" \ {OJ is an isomorphism of multiplicative groups. 

Definition If p divides the order of 9 E G, then 9 is called p-singular. Otherwise, 9 is said to be 
p-regular. 

Let 4> be an P* -representation of G of degree n. Denote by S the set of p-regular elements of G. 
We define a function "1 : S ~ R* in the following way. Let ¢> denote the P* -character afforded by ct> 
and let 9 E S. From Property (b) and Lemma 5.5 it follows that ¢>(g) = Ei:l fi, where the fj E F* 
denote the eigenvalues of 4>(g), counting multiplicities. Property (c) says that for each i, 1 $ i $ n, 
there exists a unique Uj E U such that 8( Uj) = fj. Define "1(g) := Ei=1 Uj. 

Definition The function "1 is called the modular character or Brauer character of G afforded by 
4>. 

Strictly speaking, it is not correct to define "1 as the modular character afforded by 4>, since the 
maximal ideal I is not uniquely determined. To avoid this problem, we always assume that a particular 
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maximal ideal I has been fixed. 
We notice that the modular characters are only defined on the p-regular elements of G. It can be 

proven that this is sufficient to reconstruct the full F*-character afforded by cl>. 
Similar P* -representations afford equal modular characters and modular characters are constant 

on conjugacy classes. Both statements follow from the fact that similar representations have the same 
eigenvalues. 

Let cl>1, ••• ,cl>m be a set of representatives for the similarity classes ofirreducible P* -representations 
of G and let T/i be the modular character afforded by cl>i. The T/i are called the irreducible modular 
characters and we write IM( G) = {T/l, ••• , T/m}. 

Theorem S.7 IIM( G) I equals the number of conjugacy classes of p-regular elements of G. Further
more, the irreducible modular characters are nonzero, distinct and linearly independent. 

Modular characters connect Irr( G) and the representations of characteristic p as is shown in the 
next theorem. 

Theorem S.8 Let <p be an ordinary character of G and let 4> denote the restriction of <p to S, the set 
of p-regular elements of G. Then 4> is a modular character of G. 

Thus 4> = LT/iEIM(G) niT/i, for some nonnegative integers ni which are not all zero. The next 
theorem shows that the construction of p-modular character tables for G can be restricted to those 
primes p that are a divisor of IGI. 

Theorem S.9 Suppose P fiGI. Then IM(G) = Irr(G). 

The Modular Atlas ([ 18]) provides for many finite groups G the tables of irreducible p-modular 
characters. As an example, the tables of p-modular characters of As for p = 2, 3, 5 are presented. 
We establish the notation that the irreducible p-modular characters are denoted by xf. 

Example S.4(b) G = As 

p = 2: a: 1 3 51 52 P = 3: a: 1 2 51 52 
Xi: 1 1 1 1 x3 • 1 . 1 1 1 1 
X2 . 2 . 2 -1 f31 132 X3 • 2 . 3 -1 -f31 -132 
X2 . 3 . 2 -1 132 f31 X3 . 3 . 3 -1 -132 -f31 
X2 . 4 . 4 1 -1 -1 x3 . 4 • 4 0 -1 -1 

P = 5: a: 1 2 3 
XS • 1 • 1 1 1 
~: 3 -1 0 
~: 5 1 -1 

where f31 = -11'15, 132 = -1'2v'5. 

In the following section we shall need the next lemma: 

Lemma S.10 Let cl> be an F* -representation which affords the modular character T/. Then T/( e) = 
deg(cl». 

PROOF. Recall that cl>( e) = Ideg(/l». Since U and F* are isomorphic, we must have B( 1) = 1. Hence, 
the conclusion holds. 0 

Inspired by this lemma, we define the degree of a modular character T/ afforded by the F*
representation cl> in the same way as the degree of an ordinary character, i.e. deg( T/) : = deg( cl». 
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5.3 Application to strongly regular graphs 

Let us now explain how representation and character theory can be used to obtain more information on 
the p-rank of the adjacency matrix A of a srg r. For notational convenience, we shall only consider 
rp(A), but all results can be easily translated into results for the p-rank of A + ul, u E 7Z. 

Let F be a field. Take for G an automorphism group of r. Then G acts as a permutation group 
on the vertex set V of r. Denote by 4ll F the permutation representation of G acting on V regarded as 
an F-representation. Consider also A as a matrix with entries in F. 

Proposition 5.11 4ll F(9) commutes with A/or every 9 E G. 

PROOF. This follows from 

(411~(9)A411F(9))ij = (A)ig,jg = (A)ij 

and the fact that 4ll~(g) = 4llFI (g). 

This proposition yields 

o 

for every 9 E G. Hence 'R F( A) can be considered as a submodule of the F[ G)-module corresponding 
to <1>F. 

Let us first deal with the case F = C. Denote by 'R( A) the rowspace of A over C and by r( A) the 
C-rank of A. For the C-representation of G acting on V we simply write 4ll. Finally, <1>(A) denotes 
the C -representation corresponding to the submodule 'R(.4). 

Let <I> and <1>( A) denote the characters afforded by <1> and <l>( A), respectively. Because r( A) == 
v == deg( <1», we have </> == </>( A). In C the minimal idempotents Ei, 0 ~ i ~ 2, can be expressed as 
linear combinations of I, A and J. So from the above remark it follows that 'R( Ei) is a submodule 
of 'R(A), 0 ~ i ~ 2. In fact, 

hence <1> can be written as 
<1> == diag(<1>o, <1>1, <1>2), 

where <1>i :== <1>(Ei). Denote by <Pi the character afforded by <1>i and recall that vEo == J. Then 

<I> == tG + </>1 + </>2, with deg( <pd = f and deg( </>2) == g. (5.3) 

We now tum to fields of characteristic p. Let us first introduce some notation. Since p is not 
fixed, we write F; and IMp( G) instead of F* and IM( G). Furthermore, <1>; denotes the permutation 
representation of G considered as an F;-representation and <1>;(A) the representation associated with 
the submodule 'R;( A), the rowspace of A over F;. The notation 'R;( A) should not be confused with 
'Rp( A), which as usual denotes the rowspace of A over F p. Finally, if <I> is an ordinary character, 
then ;p denotes the restriction of <I> to the p-regular elements of G. Theorem 5.8 asserts that;P is a 
p-modular character. 

A first observation is that the p-rank of A equals its rank over F;. Together with Lemma 5.10, 
this yields 

rp(A) = dim 'R;(A) == deg(<f>P(A»), (5.4) 
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where ¢>P(A) denotes the p-modular character afforded by <I>;(A). Now what can we say about 
¢>P(A)? 

Let ¢>P denotes the p-modular character afforded by <1>;. Since 4>(g) is equal to the number of 
vertices fixed under the action of g. it follows from the next lemma that the character ¢>P can be 
computed in a rather easy way. 

Lemma 5.12 Let 4? and ¢>P be as defined above. Then 4? = ¢>p. 

PROOF. Let 9 be a p-regular element of G. By definition. 4?(g) = 4>(g) = tr(<I>(g) = 2:i=1 fi. 

where the f, denote the eigenvalues of <I>(g ). counting multiplicities. Furthermore. let () be as defined 
in Section 5.2.3. Then ¢>P(g) = 2:i=lO-1(1li). where the Tli denote the (F;-)eigenvalues of <I>;(g). 
But <I>;(g) = <I>(g) for every element 9 of G. so £, = (}-1 (Tli) for all i. which proves the statement. 0 

Since n;( A) is a submodule of the module associated with <1>;. we can write ¢>P as 

<J>1' = <J>1' ( A) + 4>f 

for some p-modular character 4>f. Hence a set of possible values for the p-rank of A is 

{ L nixf(e) 10$ ni $ ni, 1 $ i $ IIMp(G)I}, 
xfeIMp(G) 

where ni denotes the multiplicity of xf as constituent of ¢>p. For the case that we are interested in, 
namely when p divides r and s, this set can be reduced to 

{ L nixf(e) 10$ ni $ ni, 1 $ i $ IIMp(G)I, L nixf(e) $ min(j,g) + I}, 
xfeIMp(G) 

where the upper bound of Theorem 3.4 is used. 

From now on it is assumed that p I r and pis. Under this assumption, a set smaller then the one 
above can be obtained by considering the minimal idempotents Ei, 0 $ i $ 2. 

Define Li := h::l.!: E n{Ei) n ~V} and Lf:= {.!:(modp)l.!: ELi}, 0 $ i $ 2. 

Proposition 5.13 Lf is a vectorspace over F l' of dimension r( Ed. 

PROOF. Set p : = r( Ei). Let {.!:l' .. ',.!:p} be a ~-basis of L,. Then {.!:i (mod p) 11 $ i $ p} is a 
basis for Lf. If!..:= 2:f=1 (Xi~i E P~v. then il. ELi. thus il. = 2:f=l f3i~i for some Pi E ~. This 
implies that p I (Xi for all i. From this it follows that dime Lf) = p. 0 

Let Ef be a basis for Lf. Consider L~ = (I), Lf and L~ as p-ary linear codes. We recall from 
Chapter 1 that the minimal idempotents satisfy 

Thus (.!:],~) == o (modp) for every .!:t ELf and ~ E Lr This implies L~ C (Lf).L and 1 E (Lf).L. 
Since dim( Lf).L = v - dim( Lf) = 9 + 1 and 9 $ dim( L~ + (l}) $ 9 + 1, it follows that 

dim(Lf).L /(L~ + (1))) $ 1, (5.5) 
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with equality iff 1 E L~. From AEI = rEI and the assumption that r == 0 (mod p). we get 

1<.p{A) C (L)).L. 

Combining (5.S) and (5.6) yields 

dim(1<.p(A)j(1<.p(A) n L~» $; 1. 

By similar arguments we obtain 

(5.6) 

(5.7) 

(5.8) 

So far everything has been considered over F p instead of F;. It is obvious that the above relations 
still hold when 1<.p( A), Lf and L~ are substituted by 1<.;( A), 1<.;( En and 1<.;( En. respectively. The 
R; ( Ef), 0 $; i $; 2. are also submodules of the module corresponding to Cl>;. Oearly. ¢'P (EG) = 1 G. 

where IG is considered as a p-modularcharacter. Write ¢'P(En and ¢'P(En as 

¢'P(En = L 11iXf and ¢l'(Ei) = L 12iXf· 
xfeIMp(G) xfeIMp(G) 

From (5.7) and (5.8) with R;(A), R;(Ef) and R;(En instead of Rp(A), Lf and L~, respectively. 
and the above expressions, we obtain that ¢'P( A) is an element of the set 

{6xg + L lixf 16 E {O, I}, xg(e) = 1,0:; Ii $; min(rli,,2i), 1 :; i:; IIMpl}. (5.9) 
xfeIMp(G) 

This leads to the following theorem: 

Theorem 5.14 Let r be a srg with eigenvalues k, rand s and let G be a group of automorphisms 
ofr. Denote by ¢ the ordinary character afforded /:Jy the permutation representation ofG acting on 
r. Let the p-modular character xj be an irreducible constituent of 41>( Ei) with multiplicity nij for 
i = 1,2. Thus 

¢;>(Ed = L nlixf and ¢;>(F;z) = L nZiXf, 
xfeIMp(G) xfeIMp{G) 

If p divides r and s, then 

rp(A) E { 6 + L nixf( e) 16 E {O, I}, ° $; ni :; mine nli, nZi), 1 $; i $; lIMp I }. 
xfeIMp(G) 

PROOF. Let Lf, i = 1,2. be as defined before. Let Bi be a 7Z-basis for R(Ei) such that Bf := 
{~(modp) I ~ E Bd is a basis for Lf (cf. Proposition 5.13). Then ¢'P(A) is an element of the set (5.9) 
with Ef substituted by Bf. Because Tp(A) = deg( ¢'P(A)). it suffices to show that 41>(E;) = ¢P(Bn 
for i = 1,2. 

Denote the C -representation of G on the basis Bi by '¥ and the F; -representation of G on Bf by 
'1';. Let 'l/J denote the character afforded by 'I' and let ¢'P denote the p-modular character afforded by 
'1';. By definition, 41>(Ej) = iiJP and ¢P(Bn = '¢r>. Since 'I'{g) = ,¥;(g) for all p-regular elements 
of G, we obtain from Lemma 5.12 that 

iiJP = 'tjJp. 

Hence 41>( Ed = ¢P( Bn for i = 1,2, which proves the theorem. o 
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Remark The set of possible values for rp(A) as given in the above theorem always contains 1 
and, in many cases, also 2. However, we shall never mention these possibilities, since for the graphs 
to be discussed, it will always be easy to find a submatrix of A of p-rank 3. 

In general we want to determine both r p( A) and r p( J - A). In that case, the following lemma is 
often useful. 

Lemma 5.15 Let <f>P(A) be the character afforded by the permutation representation Cl>;(A) of G 
acting on r. If 1 E np(A), then the principal character IG (regarded as a p-modular character) is 
a constituent of <f>P( A). 

PROOF. Obviously, since (1) is a submodule of n;( A). o 

Let us illustrate the foregoing with a small example. A more interesting example will be discussed 
at the end of the next section. 

Example S.S The full automorphism group of the triangular graph T(5) (cf. Section 2.2) is Ss, 
the symmetric group of degree 5. Thus the alternating group As is also a group of automorphisms of 
the graph. Since the spectrum ofT(5) is 61,1 4, (_2)5, the only interesting case is r3(A - f). Denote 
by 4> the permutation character associated with the action of As on the vertices of T(5). 

We first determine the irreducible constituents of 4> by means of the table in Example 5.4(a). Since 
4>(e) = to, 4>((12)(34)) = 2, 4>((123)) = I and 4>((12345)) = 0, we find that 4> = XI + X2 + X3. 
By (5.3),4>(£1) = X2 and 4>(£2) = X3. 

From the tables in Example 5.4(b) we find that XI = XI, X~ = X~ and X~ = XI + X~. Hence, by 
Theorem 5.14, 4>3(A - 1) = :d or 4>3(A - 1) = xi + X~. The rows of A - f add up to -1 (modulo 
3), thus 1 E n3(A - 1). Now it follows from Lemma 5.15 that XI is an irreducible constituent of 
4>3(A - 1). Thus r3(A - 1) = I + deg(x~) = 5. Taking A as in Proposition 2.5, a subgraph of 
A - f of 3-rank 5 is readily found. Furthermore, r3(A - 1) :$ 5 by Theorem 3.5. Hence indeed, 
T3(A - 1) = 5. Finally, since -J( J - A + 1) == J (mod 3), we also find that T3(J - A + 1) = 5. 

S.4 Rank 3 graphs 

Continuing with the notation of the previous section, it seems reasonable to assume that the set (5.9) 
will be large if Cl> has many irreducible constituents. Let G act transitively on a finite set n. If Gw , 

the subgroup of G fixing wEn, has p orbits on n, then G is said to be a rank p group. Denote by 
7r the permutation character of G as defined in Example 5.3. Write 7r as 7r = Lx.Elrr(G) niXi, where 
ni denotes the multiplicity of Xi as a constituent of 7r. In [II, p.68] it is proven that [7r, 7r 1 = p, where 
[ , 1 denotes the inner product as defined in Section 2. From (5.2) we obtain that L nr = p. Hence 
7r has at most p irreducible constituents. Thus if G is a group of automorphisms acting transitively 
on the vertex set of r and has low rank, then probably G gives rise to a small set of possible values 
for the p-rank of A. We now introduce a class of graphs for which such an automorphism group exists. 

Let G and n be as defined above. If G is a rank 3 group of even order, then a STg r can be 
constructed from G in the following way. Take n as the vertex set of r. Denote the three orbits of 
G w, wEn by {w}, r w and ~w. Let two vertices WI and W2 be adjacent whenever WI E r W2' The 
adjacency is well defined, because from the assumption that IGI is even, it follows that WI E r W2 iff 
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W2 E r WI' Oearly. G is a transitive group of automorphisms of the graph. For obvious reasons, r is 
called a rank 3 graph. 

Denote by 4» the permutation representation of G with respect to O. Write </> for the character 
afforded by 4». From the above discussion it follows that</> has precisely three irreducible constituents. 
say </> = Xl + X2 + X3, Xi E Irr(G). Now according to (5.3). we have Xl = IG. deg(X2) = f and 
deg{X3) = g. Hence for a rank 3 graph we expect the set (S.9) to be small when G is the group that 
defines the graph. 

We conclude this chapter with an example in which we study the p-rank of three rank 3 graphs. 
We shall only give the groups from which these graphs are derived. By applying Theorem 5.14 to 
these groups. small sets of possible values for the p-rank are obtained. In some cases the actual value 
of the p-rank can be easily determined from this set; in other cases we need more information about 
the structure of the graph. The character tables of the groups involved can be found in the Atlas and 
the Modular Atlas. The degree of an irreducible character is written as a subscript. Characters of the 
same degree are distuinguished by letters. 

Example 5.6 Let r be a rank 3 graph derived from the group G and let x be a vertex of r. It 
may happen that G x has a rank 3 representation on the set r:r. which denotes the set of vertices 
adjacent to x. This process may occur several times and yield a so-called rank 3 tower. 

In this example we shall investigate the p-rank of the first three elements of the Suzuki tower. 

v k ). p, r s f 9 G 
r1 36 14 4 6 2 -4 21 14 G2(2) 
rl 100 36 14 12 6 -4 36 63 HJ 
r3 416 100 36 20 20 -4 65 350 G2(4) 
r4 1782 416 100 96 20 -16 780 1001 Suz 

The groups involved in this tower are the Chevalley groups G2(2) and G2( 4), the sporadic Hall-Janko 
group and the sporadic Suzuki group. For more details on the rank 3 representations we refer to 
Hubaut [to]. 

The permutation representation of G2 (2) acting on rl affords the ordinary character Xl + XI4 + X21. 

From the Modular Atlas we obtain 

and 
,,3 _ 3 3 _ .3 3 ,,3 2 3 3 _ .3 3 
X14 - XI + X3a + X3b + X7, X21 = Xl + X6a + X6b + X7' 

Theorem 5.14 yields that 14 :5 r2(At}, r2(J - Ad :5 15. Since r2(AJ) is even (Lemma 
3.9) and rl(J - Ad satisfies flU - Ad :5 r(6J - 3Al + J) = r(E2) = 14, we conclude that 
f2(Ad = rl(J - Ad = 14. 

For the 3-rank of At + J( -J) we can only deduce that 7 :5 r3(Al + J( -J» :5 9. However. this 
is a considerable improvement on the upper bound 15. which is obtained from Theorem 3.5. 

For the Hall-lanko graph r 2 the interesting cases are r2(A2) and 1'5(A2 - J). With respect to H J 
we have </>(Et) = X36 and <p(~) = X63. which satisfy 

,,2 _ 2 
\'36 = X36, 

43 



and 

X~6 = xi + XI4 + X~l , X~3 = XI + ~l + X~l . 
From Theorem 5.14 and the fact that rz(Az) is even, it immediately follows that r2(A2) = 36. 

Furthennore. wehaverz(J -Az) = 36+£, where £ equals OorI depending on whether 1 E RdJ -Az) 
or not. 

Looking only at the characters. we obtain that 21 :5 T5(Az - I( -J» :s 23. This result can be 
slightly improved in the following way. It is easily verified that 

3(Az - 1)2 == J (modS) and 3(1 - Az)(J - A2 + I) == J (modS). 

Hence xi is a constituent of 4>5(Az - I( -J» by Lemma 5.15. Thus 22 :5 r2(Az - I) = 
T2(J - A2 + I) :s 23. 

As for r 3 we restrict ourselves to TZ ( A3). The irreducible characters X65 and X350 of G2 (4) satisfy 

X~s = x1 + x14a + x14b + x16' X~so = 6X! + 4X~a + 4X~b + x14a + X!4b + 2x16 + x196' 

First of all, we notice that r2(A3) > T2(A2) = 36. The strict inequality can be seen in the following 
way. Since 4>2(A2) = X~6 (where X~6 is a character of H J). Lemma 5.15 implies that 1 is not 
contained in R2( A2)' The induced subgraph on a vertex of r3 and its neighbours has adjacency 
matrix 

Now it is evident that r2(A2) = T2(A3) would imply that 1 E R2(A2). From R(Ed = R(161 + 
4A3 - J) it follows that xi as constituent of Xis corresponds to (l). This leads to the conclusion 
that r2(A3) E {50,64} if R2(A3) does not contain the all-one vector and T2(A3) E {38,52,66} 
otherwise. Furthennore, r2(J - A3) E {37,38,50,51,52,64,65,66}. 
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Chapter 6 

Results 

In this chapter we shall detennine (bounds for) the p-rank of a considerable number of strongly regular 
graphs. In most cases the theory of the previous chapters is not sufficient to detennine the p-rank 
completely, hence we also have to examine the structure of the graph. A table of the results is given 
at the end of this chapter. All graphs discussed here are described in Brouwer and Van Lint [4] or 
Hubaut [10]. 

In general. the notation is the same as used in the previous chapters. The subscripts of the 
irreducible characters indicate their degree. The character tables of the groups involved can all 
be found in the Atlas or the Modular Atlas. Furthennore, 'subgraph' will always mean 'induced 
subgraph'. 

The graphs that we consider are often constructed from other combinatorial objects. The reader 
who is not familiar with (some of) these concepts is referred to the Appendix. Besides definitions, 
results that are used in order to detennine the p-rank are mentioned there. We refer to the Appendix 
by (An), where n indicates the section. 

In this chapter we mainly deal with so-called sporadic graphs. These graphs are related to the 
sporadic groups by means of their group of automorphisms. Usually, the sporadic group acts as a rank 
3 group on the vertex set of the corresponding graph. As for the greater part of the groups mentioned 
here we refer to the literature for a description, e.g. Suzuki [20]. 

6.1 The Higman.Sims family 

The Steiner systems S(4, 7,23) and S(3,6,22) (AI) give rise to many sporadic graphs. The three 
graphs of the Higman-Sims family are derived from S(3, 6, 22). Each of them is a unique rank 3 
graph. 

The Higman-Sims graph r Hi has parameters (v, k, A, It) = (100,22,0,6) and is obtained by 
the following construction. Take as vertex set the 22 points and 77 blocks of S(3,6,22) and the 
symbol 00. Join 00 to all the points, join a point to the 21 blocks containing it and let two blocks 
be adjacent whenever they are disjoint. The subgraph on the 77 blocks is a srg with parameters 
(v, k, A, It) = (77,16,0,4 ) and is denoted by r 77. Let xo be a point of S(3, 6, 22). The subgraphofr 77 

on the blocks not containing Xo is again strongly regular with parameters (v, k, A, It) = (56,10,0,2). 
This graph is the Gewirtz graph which has already been discussed in Example 3.2. We shall denote 
it by r G. 

Label the first row of A H , by 00, the next 22 rows by the points and the last 56 rows by the blocks 
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not containing xo. Then AHi has the following fonn: 

( 

0 1 ... 1 0 ... 0 ) 
AH • = 11 022 Nt , 

!t Nt An 

(6.1 ) 

Let us start with the Gewirtz graph. Its spectrum is 101,235, ( -4 )20, Hence the only interesting 
cases are f2(AG) and f3(AG + 1). In Example 3.2 we derived that f2(AG) = 20. Funhennore, we 
claimed that 1 could be written as the sum of an even number of rows of Aa. which implied that 
f2( J - AG ) = 20. This will be proven now. 

fa is a rank 3 graph derived from P5L(3,4). The corresponding pennutation representation 
affords the ordinary character Xl + X20 + X35. The 2·modular characters X~ and X~s satisfy 

fzo = 2xr + ~a + X§b' xj5 = xI + Xia + Xib + ~a + ~b' 
Since 1'z(Aa) = 20, we have ¢2(Aa) = 2xr + X~a + ~b' The constituent xi of ~5 corresponds 
to the submodule (1). because 24El = 161 + 4Aa - J, thus! ELi. From this we conclude that 
! E 'RdAa). Number the points of 5(3,6,22) from 1 to 22 and assume that the vertices of fa do 
not contain 22. The rows of Aa labelled by the following blocks fonn a basis of 'R2( Aa ). 

(1 2 5 12 18 19)* 
(l 4 6 8 12 13)* 
(l5 6 7 914) 
(l 7 11 13 16 18)* 
(1 9 10 11 12 15)* 

(245 91113)* 
(2 5 6 8 10 15)* 
(278 11 12 14)* 
(345 10 12 14)* 
(346 71115) 

(3 7 8 9 10 13)* 
(45 7 8 1821)* 
(469101721)* 
(47 912 16 19) 
(48 10 11 1620)* 

(5 6 11 12 1621) 
(57 10 11 17 19)* 
(5 8 9 12 17 20) 
(6710 12 1820)* 
(68 91118 19) 

The sum of the rows indexed by the *·marked blocks equals 1 (modulo 2). This is easily veri
fied from the submatrix of Aa corresponding to these blocks. Hence, 1 can indeed be written as the 
sum of an even number of rows of AG • 

Let us now examine the 3-rank of Aa + I. From the Modular Atlas we obtain 

... 3 _.3 3 3 
X35 - Xl + X15 + X19' 

So 1'3( J - Aa - I) :2: 19. We claim that equality holds. The Gewirtz graph is a subgraph of a s1'g 
f on 112 vertices (the first subconstituent of the McLaughlin graph) that will be discussed in the next 
section. It will be shown that f3( J - Ar - I) ::; 19. This proves our claim. From Lemma 3.8 we 
find 1'3(Aa + I) = f3(J - Aa - I) + 1 = 20. 

We mention here that Brouwer and Haemers [3] have obtained the same results by different 
methods. 

rn has spectrum 161,255 ,(_6)21, so we only have to detennine 1'2(An). Obviously. 20 = 
1'2(AG ) ::; 1'2(An) ::; 1'(221 - llAn + 2J) = f(Ez) = 21 holds. By Lemma 3.9, rz(An) is even, 
hence 1'2 (An) = 20. From Lemma 3.8 it follows that f2 (J - An) = 21. 

The spectrum of the Higman-Sims graph is 221,277 , (_8)22. Therefore. we consider 1'2(AH.) and 
1'5(AHi + 3/). 

Examining the matrix AHi in (6.1), we observe that a row of AHi indexed by a point can not 
be expressed as the sum of rows labelled by blocks. From this, it follows that 20 = T2(An) < 
1'2(AH.) ::; 23. Because 1'z(AH,) has to be even, we conclude that 1'2(AH,) = 22. In order to 
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detennine rl(J - AHi ), we consider the matrix J - AH• in more detaiL As in (6.1), let the first row 
be labelled by 00. Furthennore. assume that the second row is indexed by xo and that the last 56 rows 
are indexed by the blocks not containing Xo. Thus the submatrix of J - AHi on the last 56 rows and 
columns is J - Aa' Since rl( J - Aa) = 20. we can choose 20 rows of J - Aa that are linearly 
independent over Fl. Denote these rows by Qj, 1 5 i 5 20, and let gi be the corresponding row 
of J - AHa' thus gi = (ll;~i;Qi)' Denote the first row of J - AHi by!!o. Then!!o = (1O;~;1). 
Obviously, dim( (,g, 10 5 i 5 20}) = 21. Suppose that the second row can be expressed as a linear 
combination of the gi' Then for the first two coordinates the following must hold: 

and for the last 56 coordinates 

Thus 
L7~1 Ai == 1 (mod2), 
L7~1 Ad:!i == Q (mod2). 

Since the Qi fonn a basis for R2( J - Aa), it follows from the second equation that Ai = 0 for 
1 5 i S 20, which contradicts the first equation. Hence. T2 (J - A H.) ~ 22. Together with the upper 
bound T2(J - AH.) S r(lOJ - 5AH• + J) = r(E2) = 22, this yields T2(J - AHi ) = 22. 

For rs( A H. + 31) we have 22 = TS( An + 31n) < rs( A Hi + 31)00) S 23. The strict inequality is 
obtainedbythesameargumentasusedfortheinequalitY T2(AnJ < T2(AH.). Thus Ts(AHi+31) = 23. 
Furthennore, from (21 - AH.)(J - AHi - 31) == J (mod5), it follows that rs(AH. + 31) S TS(J
A Hi - 31). Together with the upper bound derived in Theorem 3.5, this yields TS( J - AHi - 31) = 23. 

6.2 The McLaughlin graph and its subconstituents 

The McLaughlin graph r M is the unique graph with parameters (v, k, A,tt) = (275,112,30,56). It 
can be constructed in the following way. Denote the set of points of the Steiner system S ( 4, 7, 23 ) 
by X and the set of blocks by B. Let Bl be the set of blocks containing a fixed point Xo and define 
B2 := B \ Bt • Take as vertex set of r M the set X \ {xo} u B. Join a block Bl E Bl to all points that 
are nonincident to it; join a block of B2 to the points incident to it. Let two blocks of Bi, i = 1,2, 
be adjacent when they have a single point in common. Finally, a block Bl E Bl is joined to a block 
B2 E B2 whenever they intersect in three points. r M is a rank 3 graph with the sporadic McLaughlin 
group as group of automorphisms. 

The spectrum ofr Mis 1121,2252, (_28)22, so the interesting cases are Tz(AM), T3(AM + J) and 
Ts(AM + 31). Let ¢ be the character afforded by the pennutation representation of the McLaughlin 
group acting on r M' then 

<P = Xl + X22 + X25Z· 

Because X~2 = X~2 and the 2-rank of AM is even (Lemma 3.9). it immediately follows that 
T2(A M ) = 22. Furthennore rz(J - AM) = 23 by Lemma 3.8. 

Oearly, the subgraph of r M induced on the 22 points is a coclique. Thus T3(AM + 1) ~ 22. 
We claim that in fact equality holds. Denote by P B the set of points adjacent to the block B. Thus 
I P B I = 16 if B E Bl and I P B I = I B I = 7 otherwise. Let Bi and B; be two different blocks of Bi for 
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i = 1, 2. From the above-mentioned construction of r M we deduce that 

if BJ ,..., B;, then IBI n B;I = 1 and {xo} E BI n B;, hence [PI n P;I = 10; 
if Bl '" B;, then IBI n B;I = 3 and {xo} E BI n B;, hence IPI n P;I = 12; 
if BI ,..., Bl, then IBI n Bli = 3 and {xo} tJ. Bl n Bl, hence IPI n Pli = 4; 
if Bl '" Bl, then IBt n Bli = 1 and {xo} tJ. BI n Bz, hence IPI n Pzl = 6; 
if Bl '" B~, then IBl n B~I = 1 and {xo} tJ. B'J, n B~, hence IPz n p~r = 1; 
if B2 '" B~, then IBl n B~I = 3 and {xo} tJ. Bl n B~, hence IPz n p;r = 3. 

Now it is easily verified that for every block B the row !B satisfies 

!B == L !p (mod 3). 
pEPB 

Hence indeed T3 (A M + 1) = 22. Again Lemma 3.8 yields that r3( J - AM - I) = r3 (A M + 1) -1 = 21. 
By the subconstituents of a graph we mean the induced subgraphs on the vertex sets {x I x "" y} 

and {x I x '" y} for an arbitrary vertex y. The subconstituents of the McLaughlin graph are both 
strongly regular. We shall denote them by r U2 and r l62 and their parameters are (112, 30. 2. 10) and 
(162,56, 10,24), respectively. Thus 

( 

0 1. .. 1 0 ... 0 ) 
AM = 11 Am N . 

Ql Ni AI62 

(6.2) 

Now Ts(A},f+31) is easily detennined. The second subconstituentrl62 has spectrum 561 ,2140
, (_16)21. 

Hence. 22 ~ Ts(AM + 31) ~ 23. Considering the matrix AM + 31 with AM as in (6.2), we no
tice that the first row can not be written as the sum of some of the last 162 rows because of the 
first coordinate. Hence Ts(AM + 31) = 23. From (21 - AM )(J - AM - 31) == J (modS). it 
follows that Ts(AM + 31) ~ TS(J - AM - 31). Together with the usual upper bound, this yields 
TS( J - AM - 31) = 23. Let us now tum to the subconstituents ofr,\r 

We start with r ll2 • Since its spectrum is 301,29°, (_lO)ZI, we shall consider Tl(A1I2 ) and 
T3(A112. + 1). However. let us first give a direct description ofrl12 • Choose two points x and y from 
the point set of S( 4,7,23). Take as vertices the 112 blocks that contain exactly one of these points. 
Join two blocks containing the same point when this is the only point they have in common. Join a 
block containing x to a block containing y iff they intersect in three points. This produces directly the 
STg (112,30,2. 10). Notice that the subgraph on the blocks containing x (y) is the Gewirtz graph. 

We first consider T'J,(Auz). The graph r 1l2 is the point graph of the generalized quadrangle 
GQ(3, 9) (A2). Bagchi, Brouwer and Wilbrink [1] have proven that the 2-rank of the adjacency 
matrix of the point graph of GQ ( q, q2) for odd q equals q3 - q2 + q + 1. Hence rl( Am) = 22. 

We prove that rl( J - A1I2 ) = 22 by showing that 1 can be written as an even number of rows of 
Am' In GQ(3, 9) every line is incident with four points. Take a line I = {Xl, Xl, X3, xd. WJ.o.g. 
assume that the first four rows of AU2 are indexed by the points Xi, 1 ~ i $ 4. Then from the 
parameters of the graph. it follows that these rows can be written as 

[ ~~~~ 1101 
1110 
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nus obviously proves the statement. 
The last result can also be obtained in a different way, using the fact that T2( Anz) = T2( AM)' 

Without loss of generality assume that the first 22 rows of Am form a basis for R2( Am ). Set 
Qi := (1; l!a; .!!i) for 1 ::; i ::; 22, where Qi denotes the ith row of Am and Qi is the corresponding row 
of AM' with the latter as in (6.2). Because the Qj are a basis for R2( AM)' there exist Ai, 1 ::; i ::; 22, 
such that 

Et;tAiQi :; (O;l;Q) (mod 2). 

Thus E Ai :; 0 (mod2) and E AjQj :; 1 (mod 2). which is equivalent to the assenion that 1 can be 
written as an even number of rows of Am. 

Let us now look at T3(J - Am -I) and T3(Am +1). It is clear from Lemma 3.8 that T3(AIl2 +1) = 
T3( J - Am - I) + 1. For the Gewittz graph r G we derived before that T3( J - AG - I) 2:: 19. so 

(6.3 ) 

Set p := T3( J - Am - I). Without loss of generality. assume that the first p rows of J - Am - I 
are linearly independent. Denote by L the ith row of J - AM - I, with AM as in (6.2). Let 
S ~ 'R3(J - AM - I) be defined as 

Thendim(S) = p. One easHy sees that the first row of J - AM -I is not contained in S. because other
wise the first p rows of J - Am - I would not be linearly independent. A row indexed by a block can not 
be contained inS + (II). because of the first coordinate. Thus T3(J - AM - 1) 2:: T3(J - Am - 1)+2. 
Combining this with (6.3), we conclude that T3(J - Am - I) = 19. This also proves that 
T3( J - AG - I) = 19. 

The graph r l62 can be constructed from the projective plane PG(2, 4) (A3) in the following way. 
Let the venex set consist of the 21 points, the 21 lines and one class of 120 Fano subplanes. Join a 
point to a line when they are not incident; join a point to a Fano plane when they are incident; join 
a line to a Fano plane when they have two points in common and join twO Fano planes when they 
intersect in one point. 

( 
021 Nt NZ) points 

Al62 = N{ OZl N3 lines 
Ni Nt A' Fano planes 

(6.4 ) 

nus graph is a rank 3 graph derived from PSU4(3). Since r l62 has spectrum 561,214°, (-16)21, the 
interesting cases are f2( Al62 ) and f3( A l62 + 1). 

We first consider f2( AI62 ). Goethals and Seidel [8] have shown that the venex set of rl62 

can be split into two halves such that the induced subgraphs on these halves both form a strongly 
regular graph on 81 venices with spectrum 201,26°, ( -7)2°. Denote this graph by r SI ' Then 
20 = T2(AsI) ::; T2(A I62 ) ::; 21. Because T2(A I62 ) is even by Lemma 3.9. we conclude that 
T2(A l62 ) = 20. 

In order to determine the 2·rank of J - Am' write the matrix as 

There are 61 ones in every column of JSI - ASI and 45 ones in each column of N. Hence the sum of 
the rows of [JSI - ASliN] equals 1 (modulo 2). In order to find out whether 1 is contained in 'R2( A l62 ) 
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or not, we look at the pennutation character <I> = Xl + X2i + X140 yielded by the action of P 5U4(3) 
on the vertices of r l62 • From T2 ( Al(2 ) = 20 and 

X21 = xi + ~o, Xl40 = ~o + xi2o, 

it follows that ¢>2 (Al62 ) = x220• We see that ¢>2( A162 ) has no constituent of degree 1. thus, by Lemma 
5.15, the all-one vectoris not contained in 'R2(AI62 ). Hence T2(J - A l(2 ) = 21. 

For the 3-rank of AI62 + J and J - Al62 -J, we look at (6.4). It is evident that T3(Al62 + J) ~ 21. 
In PG(2,4) every line is incident to 5 points and every Fano subplane is incident to 7 points. Thus 
Nl has 16 ones in every column, while N2 has 7 ones per column. So 

21 21 

L!i == 1 (mod 3) and L(1- !i) == -1 (mod 3), 
i=l i=l 

where Ii denotes the ith row of Al62 + J. This proves that T3(Al62 + J) = T3( J - AI62 -I). 
Let I be a line and I a Fano subplane. Denote by PI the set of points not incident to I and by P, 

the set of points incident to I (thus 1111 = 16 and IP,I = 7). From the construction Ofrl62 it follows 
that 

if I # I' , then IP/np/,I 12; 
if 1"" I, then IPI nPII = 4' , 
if 11- I, then IP/nPII = 6; 
if I'" I', then IPf n PI'I 1; 
if 11-1', then IPf n PI'I 3. 

From this it follows that any row of AI62 + J can be written as a linear combination of the first 21 
rows. Hence T3 (AI62 + I) = T3 (J - AI62 - J) = 21. 

6.3 Graphs related to the McLaughlin graph by switching 

Let r~ be the graph obtained by adjoining an isolated vertex to the McLaughlin graph. This graph 
can be switched into several interesting graphs one of which is strongly regular. The adjacency matrix 
A ~ of r~ satisfies 

T2(A~J 
T3(A::' + I) 

= T2(J-A::')-1 
= T3( J - A::' - I) + 1 

r5(A~ - 2/) 

= 22; 
= 22; 
= 24 .. 

Define a graph r~6 on the 23 points and 253 blocks of 5(4,7,23) by joining a point to the 
blocks containing it and joining two blocks whenever they intersect in one point. From the explicit 
construction of r M as given in the previous section, it is immediately seen that isolating a point from 
r~6 by switching produces r~f' Note that r;,6 is not strongly regular. However, the subgraph induced 
on the blocks is a srg with parameters (v, k, A, J.L) = (253,112,36,60). This graph is denoted by r 253 

and will be discussed in the next section. 
Write the adjacency matrix of r~ as 

N ). 
~3 

(6.5 ) 
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The submatrix N has 7 ones in each column and 77 ones in every row. Thus 

276 276 

L:!i == 1 (mod2) and L:(1- !i) == 1 (mod2), 
i=l i=l 

where!i denotes the ith row of A;'6. Hence T2(A;'6) = T2(J - A;'6). From Lemma 3.11 it follows 
that T2(A;'6) = T2(A M ) +2 = 24. Thus T2(A;'6) = T2(J - A;'6) = 24. 

Furthennore, we prove that T3(A;,6 + I) = T3(J - A;'6 - I) = 23. Oearly, T3(A;'6 + I) ~ 23, 
since h3 is a submatrix of A;'6 + I. Let x denote a point, B a block and X the point set of S( 4,7,23). 
Write !x erB ) for the row of A;'6 + I indexed by x (B). From the fact that two blocks of S(4, 7,23) 
intersect in 1 or 3 points, it follows that 

L:!x ==!B (mod 3). 
reB 

SO T3 (A;76 + 1) = 23. The proof is completed by observing that 

L:!x == 1 (mod 3) and L: (1-!x) == -1 (mod3), 
rex reX 

The graphs r~ and r;'6 can be switched into a STg r 276 with parameters (v, k, A, J-L) = (276,140,58,84). 
This graph was first constructed by Goethals and Seidel [8]. Its spectrum is 1401,2252, ( _28)23. Hence 
the interesting cases are T2(.4n6)' T3(An6 + I) and TS(An6 - 21). 

Let us start with T2( Az76). In [8] the first six rows of An6 are given by 

(6.6) 

where Di := [didi ... di], 0 ::; i ::; 9, is a 6 x 27 matrix and [dodl ... d9] denotes the incidence matrix 
of the 2-(6,3,2) design (AI). Thus there are 3 ones in every column di , 0 ::; i ::; 9. Hence 

6 6 

L:!i == 1 (mod2) and L:(1-!d == 1 (mod2), 
i=l i=l 

where Ii denotes the ith row of(6.6). Thus T2(A276 ) = T2(J - An6) and T2(An6) = T2(A M ) +2 = 24 
by Lemma 3.10. 

For the 3-rank of An6 + I and J - An6 - I, Lemma 3.10 yields 

22 = T3(A;'6 + 1) - 2 ::; T3(An6 + 1) ::; T3(A~ + I) + 2 
21 = T3(J-A;,6-I)-2::; T3(J-An6-1)::; T3(J-A~-1)+2 

For TS(An6 - 21) we find the following bounds: 

22 = Ts(A~ - 21) - 2 ::; TS(An6 - 21) ::; 24, 

< 24, 
< 23. 

where Theorem 3.5 provides the upper bound. The same bounds apply to TS( J - Az76 + 2I), since 
TS (J - An6 + 21) = TS (Az76 - 2I). This can be seen by consideration of 

(6.7) 
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with the Di as in (6.6). Denote the ith row of (6.7) by r.i. then 

6 6 

LL == J. (modS) and L{l- r.d == J. (modS). 
i=1 i=1 

Thus rs( An, - 21) = rs( J --~ + 21). 

The above graphs are switching-equivalent to a graph that consists of 11 mutually nonadjacent 
triangles and 243 further venices each of which is adjacent to exactly one venex of each triangle 
(see [8] for more details). The subgraph on the 243 venices is strongly regular with parameters 
(v, k, A, 11-) = (243,110,37,60). This graph is called the Delsarte graph~ we denote it by rD' Its 
spectrum is 1101,222°, (_25)22, hence we only have to consider r3{AD + 1). In [8] it is proven that 
r D contains a subgraph on 162 venices that can be switched into r l62 • the second subconstituent of 
the McLaughlin graph. Hence 19 = r3(Al62 +1)-2 5 r3(AD +1) 523,wherethelowerboundis 
obtained by applying Lemma 3.10 and the upper bound is the bound derived in Theorem 3.5. Since 
r3 (J -- AI62 -- 1) = r3 (A l62 + 1). the same bounds apply to r3 (J - AD + 1). 

6.4 Other graphs derived from S ( 4, 7, 23 ) 

Most graphs discussed in this chapter are derived from the Steiner system 5(4,7,23). This also holds 
for the three srgs that are studied in this section. Their parameters are 

r253 (V,k,A,p);:: (253,112,36,60); 
r 176 : (V,k,A,p) ;:: (176,70, 18,34}; 
r l20 : (V,k,A,J1.) = (120,42,8,18). 

We have seen r 253 already as a subgraph of the graph r;6' which was discussed in the previous 
section. It is constructed by taking as venices the blocks of 5(4,7,23) and joining the blocks 
intersecting in one point. Clearly, the subgraph on the blocks containing a fixed point is the graph 
r 77 of the Higman-Sims family. The graph r 253 has spectrum 1121,2230, (_26)22, thus we shall 
investigate r2( Azs3) and f7( Azs3 - 21). 

r 253 is a rank 3 graph derived from M23. The associated permutation character is Xl + X22 + XZ30. 
From the Modular Atlas we obtain 

,,2 _ 2 2 .2 ,2 .2 
X230 - XlIa + Xllb + X44a + X44b + Xl20 

and 
.. 7 7 .. 7 7 + 7 
XZ2 = X22, X230 = X22 X20S' 

Since r2(~) 2: rz(A,,) = 20 and r2(Azs3) is even, we find r2(Azs3) = 22 by application of 
Theorem 5.14. Furthermore, Lemma 3.8 yields that f2(J -- Azs3) = r2(Am) + 1 = 23. 

We also obtain from Theorem 5.14 that 22 5 n(A -- 21) 5 23. Since 

3J(Azs3 - 21) == J (mod7), 
-2J(J -- Azs3 + 21) == J (mod 7), 

it follows from Lemma 5.15 that xi is an irreducible constituent both of {P(Azs3 - 21) and of 
q/(J - Azs3 + 21). We conclude that n(Azs3 -- 21) = f7(J - Azs3 + 21) = 23. 
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r 176 is the subgraph of r 2S3 on the blocks not containing a fixed point. Every other element of the 
point set of 5(4,7,23) is contained in 56 of the 176 blocks. The subgraph on the blocks containing 
a second fixed point is the Gewirtz graph. Deleting these blocks produces a graph on 120 vertices 
which is again strongly regular. This graph is r 12O • 

The spectrum ofrl76 is 701 ,21S4, (_18)21. Therefore we shall consider Tz(Al76 ) and Ts(Al76 -21). 
The Mathieu group Mn acts as a rank 3 group on the vertex set ofr116 • The corresponding permutation 
character is Xl + X21 + X1S4. For X21 and X1S4 the following holds: 

~1 = xt + xtoa + xtOb' xtS4 = 2xt + xtoa + xtOb + xi4 + ~8 
and 

(6.8) 

Using the facts that the Gewirtz graph r a is a subgraph of r l16 and that Tz(Aa ) = 20. we find 
Tz(A176 ) = 20 or Tz(A176 ) = 22, depending on whether the all-one vectoris contained in Rz(AI76 ) or 
not. For the 2-rank of J - A176 • we obtain that 20 ::; TZ( J - A176 ) ::; 22. 

We now prove that Ts(A176 - 21) = TS(J - A176 + 21) = 22. Applying Theorem 5.14 to (6.8) 
yields 21 ::; 1'7(A176 - 21( -J» ::; 22. The rows of A176 - 21 add up to ~ (modulo 5) and the same 
holds for the rows of J - AI76 + 21. Hence the assertion is true by Lemma 5.15. 

The last graph discussed in this section has spectrum 421,299, ( -12 fO, hence the interesting cases 
are T2(A I2O ) and 1'7(AI2O - 21). P5L(3,4) is a group of automorphisms for r 12O • The permutation 
representation of its action on the vertices of the graph affords the character ¢ = Xl + X20 + X3S + X64. 
For 4>( Ed = X3S + X64 and 4>{ E2) = X20 we have 

A2 2.2.2.2.2 2 A2 2.2.2 
4> (Ed = XI + XSa + XS/) + X9a + X9b + X64, 4> (~) = 2XI + X9a + X9b (6.9) 

and 
"'1 1 7 1 A1 7 1 
¢ (Ed = XI9 + X35 + X45' 4> (~) = XI + X19' 

For the 7-rank of Al20 - 2/ and J - A120 + 2/. we immediately obtain from 

3J(A I2O -21) == J (mod7), 
-2J(J - Al20 + 2/) == J (mod7), 

and the constituents of J? (Ed and J7 (~) that r,( A 120 - 21) = r7(J - Al20 + 21) = 20. 
Theorem 5.14 yields that r2(A I2O ) E {1O, 18,20}. Number the points of 5(4,7,23) from 1 to 23. 

Take as vertex set of r 120 the set 8' which is defined as the collection of blocks containing neither 1 
nor 2. Assume that {I ,2, 3,4,5, 6, 7} is a block of 5(4,7,23). Then every 3-subset of {3,4, 5,6, 7} 
is contained in exactly four blocks of S'. The blocks containing 3 and one of the 2-subsets of {4, 5,6} 
form a coclique of size 12; the same holds for the blocks containing 3, 7 and one of {4, 5, 6}. Let 
A' be the 24 x 24 submatrix of A120 corresponding to the 24 blocks described above. By a suitable 
labelling of the rows and columns. we get 

A' = ( ~1 I ~ ). 
The matrix N has the following form: 

{345} 
{346} 
{356} 
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Every Ni. 1 $; i $; 3, is a 4 x 4 matrix with two ones in each row and column. Thus r2(Ni) ~ 2. 
Hence from (6.10) and (6.11) it follows that rzCAI20) ~ rz(A' ) ~ 12. This leads to the conclusion 
that rz(AI20 ) = 20 if 1 E 'R2(AI20 ) and 18 otherwise. For the 2-rank of J - AI20 we find 18 $; 
T2(J - A I20 ) $; 20. 

6.5 The Cameron graph 

The Cameron graphr c haspararneters (v, k, >',/J) = (231,30, 9,3)and is constructed from 8(3,6,22) 
in the following way: take as vertices the unordered pairs from the point set of the Steiner system 
and let two pairs be adjacent when they are disjoint and their union is contained in a block. Since its 
spectrum is 301, 95S, (_3)17S, we shall examine T3(Ac) and Tz(Ac + I). 

Clearly. MZ2 is a group of automorphisms of r c' For the character 4> afforded by the permutation 
representation of M22 acting on r c' we find 

4> = Xl + XZl + XSS + XlS4· 

Thus 4>(EJ) = XSS and 4>(E,.) = X21 + X154. 

Let us first deal with T3(Ac). Then 

"3 3 "3 _ ;3 3 _ ;3 3 3 
¢ (Ed = Xss and ¢ (Ez) = Xl + XII + X49a + X49b + Xss· 

Thus 55 $; r3(J - Ac) $; r(211 + 7Ac - J) = r(EI) = 55. Furthermore. r3(Ac) = 55 or 56, 
depending on whether 1 is contained in 'R3( Ac ) or not. 

The 2-rank of Ac + / is not as easily determined as the 3-rank of Ac. since 

¢i(Ed = xi + xToa + xrOb + Xi4 and 4>2(E2) = 3X1 + 2\100 + 2xTob + xi4 + ~8' 
Taking into account that rz(J - Ac -I) $; r(211 + 7Ac - J) = r(Et) = 55 and r2(J - Ac - /) 
is even (Lemma 3.9). we obtain that r2(J - Ac - I) E {1O,20,34,44,54}. By Lemma 3.8. 
rl(Ac + I) = T2(J - Ac -I) + 1. 

The set of possible values for r3(Ac + I) can be reduced by examining the structure of the graph 
in more detail. Number the points of S(3, 6, 22) from 1 to 22. The vertices {I, i}, 2 $; i $ 22, form 
a coclique. hence T2(Ac + I) ~ 21. Without loss of generality assume that {I, 2,3,4,5, 6} is a block 
of S(3, 6, 22). We claim that 

!{Z.3} ¢ !{1,4} + !{l.S} + !{l,6} (mod2). 

From this it follows that 'R2(Ac + /) is not generated by the rows !{l,i}, 2 $; i $; 22. A counting 
argument shows that there are 20 pairs {x,y} with x,y E {7, ... ,22} such that {I,4,x,y} is 
contained in a block and {2, 3, x, y} not. Assume that {7. 8} is such a pair. From the fact that two 
blocks of S (3, 6, 22) intersect in 0 or 2 points, it follows that neither {I, 5, 7 ~ 8} nor {I, 6, 7, 8} is 
contained in a block. NOW!{Z,3} has a zero at the coordinate corresponding to {7,8}. whereas the 
sum of the three rows mentioned above has a one at the same coordinate. Hence rz( Ac + I) > 21. 
We conclude that rl(Ac + /) E {35,45,55}. 

6.6 The Hoffmann"Singleton graph and related graphs 

In Brouwer and Van Lint [4] it is shown that the venex set of the Higman-Sims graph can be split 
into two halves such that the each of the induced subgraphs is a sry with parameters ('/), k, A, /J) = 
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(50,7,0,1), This graph is called the Hoffmann-Singleton graph and is denoted by rHo' The group 
P S U3 (52) acts as rank 3 group on the vertex set of rHo' The action yields the pennutation character 

XI + X21 + X28· 

rHo has spectrum 71,228 , (_3)21, Thus only Ts(A Ho - 21) is of interest. The irreducible 
5-modular constituents of ~1 and XS28 are 

:Bl = 2x1 + x1g, :Bs = xi + xi + X19' 

Thus 19 :$ rs(AHo - 2/) :$ 21. The lower bound can be improved since 

(AHo - 21)2 == J (modS), 
(21 - AHo)(J - AHo + 2/) == J (modS). 

So Rs(AHo - 21) and Rs(J - AHo + 21) both contain the all-one vector. Thus, by Lemma 5.15, 
20::; Ts(A Ho - 2/) = TS(J -- AHo + 21) ::; 21. 

The action of PSU3(52) on the edges ofr Ho gives rise to a STg r l7S with parameters (v, k, >..,p) = 
(175,72,20,36). This graph is also produced by isolating a vertex of the graph r176 discussed in 
Section 4, and deleting it. Its spectrum is 721, 21S3 , ( -18 )21. Therefore. we shall consider T2( Am) 
and Ts(A17S -- 2/). 

The 2-rank of A175 is easily detennined. We derived before that T2( A176 ) = 20 + f, where f = 2 
if 1 E R2( A176 ) and 0 otherwise. Now it immediately follows from Lemma 3.11 that T2( Am) = 20. 
Funhennore, T2( J - Am) = 21 by Lemma 3.8. 

The group P S U3 (52) is an automorphism group of r 17S ' The associated pennutation character <P 

equals <p = XI + X21 + .\:28 + XI2S. Hence ¢i(E)) = .\:28 + X125. ¢i(E2) = X21 and 

J>s(Ed = xi + xi + X19 + X12s, ¢s(~) = 2xj + X19' 

Thus by Theorem 5.14,19::; Ts(A17S -- 2/(-J»::; 21. Since 

(A17S -- 2/)2 == J (mod5), 
(2/-Al15)(J-A17S+2/) == J (modS), 

it follows from Lemma 5.15 that 20:$ Ts(Am - 21) = TS(J - Am + 21) ::; 21. 

r 176 can also be switched into a STg with parameters (v, k, >..,p) = (176,90, 38, 54) and spectrum 
901 ,2153 , ( -18)22. We denote this graph by r~76' 

Applying Lemma 3.11, we find that T2(A~76) = 22 if 1 E R2(A~76) and 20 otherwise. Then we 
also know that 20 ::; T2( J - A:

76
) $ 22. 

Since k = 90, the sum of the rows of A:
76 

-- 21 equals 3. (modulo 5) and the same holds for the 
sum of the rows of J -- A:76 + 2/. By Theorem 3.5 and Lemma 3.10, 

20 = Ts(A176 -- 2/) - 2 $ Ts(A~76 - 21) = TS(J - A;6 + 21) $ 23. 

6.7 Graphs derived from the Golay codes 

The Golay codes (A4) give rise to several STgS (see [4]). In this section we shall study three of them. 
The Berlekamp-Van Lint-Seidel graph r BLS has parameters (v, k, >..,p) = (243,22,1,2) and is 

constructed in the following way. Take as vertices the 3s = 243 cosets of the [11,6] ternary Golay 
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code and join two vertices when the corresponding cosets have representatives differing by a vector 
of weight one. Its spectrum is 221,4132,(_5)110, hence the only interesting case is T3(A BLS - 1). 
The Mathieu group MIl is a group of automorphisms of r BLS' The pennutation representation of its 
action on the graph affords the character 6Xl + 6XlO + 3X44 + X4S. Furthennore, 

<pCEd = 3XI + 4XlO + X44 + X4S, 
<p(~) = 2XI + 2XlO + 2X44. 

The 3-modular characters 4>3 (Ed and 4>3 (~) satisfy 

4>3(EJ) = 3x~ + X~a + ¥Sb + 5x~0 + X~4 + x~s, 4>3(~) = 2x~ + 2X~a + 2¥Sb + 4x~0 + 2X~4' 

Now Theorem 5.14 yields the following set of possible values for T3(A BLS - 1): 

{al +5(a2 + (3) + lOa4 +24as10 Sal S 3, 0 S a2,a3,as S 1,0 S a4 S 4}. 

We shall reduce this set to 

(6.12) 

We first show that al = 3. Take as representatives of the cosets the vectors of weight S 2. Let 
1 a( -1 )boc denote a vector having a one at a, a minus one at b and a zero at c coordinates. Then by a 
suitable labelling of the rows and columns, ABLS - I can be written as 

-1 1 1 
11 -Ill III 
11 III -Ill 

N{ 
N.1 I 

Nt Nt 

Nl 
Nl 

A' + Iss N4 
Nt A' + Iss 
Nt N1 

N2 
N3 
Ns 
]''.'6 

A" + 1110 

011 
11010 

(-1 )1010 

1209 

(-1)209 

11( -1)109 

It is easily seen that NI has 2 ones in every column and that N2 and N3 have both lone per column. 
Thus T3( ABLS - 1) contains the following linearly independent vectors: 

.!Z1·- (-1; Ill; 111; Qss; Qss; Ql1o), 

.!!z := (-1; -Ill; 111; -15s; Qss; 1110), . 
~ := ( -1 ; 111 ; -Ill ; Qss; -15S; 1110)' 

These three vectors are all invariant under the action of MIl on the coordinates. This proves our 
claim. Since 

-.!Z1 + 12 + 1b == 1 (mod3) 

and 1-.!ZI' 1 +.!!z and 1 + ~ are contained in R3(J - ABLS +1), this also shows that T3(A BLS -1) = 
T3(J - ABLS + I). 

In order to prove that a4 = 4, we obseJVe that every element of MIl maps a vector 1 a( -1 )boc to 
a vector 1 a( -1 )boc. Consider the following four subspaces over F3: 

RIa .- (I11010 ), 

RIb .- (I( _1)1010 )' 

R2a .- (Ii 11 SiS 11), 

R2b .- (I~ 11 SiS 11), 
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where Ii (I:) denotes the sum of the rows corresponding to a vector 1209 (( -1 )209 ) and a 1 ( - 1) at the 
ith coordinate. These four subspaces are submodules of dimension 11 of the module corresponding 
to the pennutation representation <1> of MIl on the vertex set of r BLS' Let ¢} be the (3-modular) 
character afforded by <1>, then 

~I + 1G E R2a; .Y.I +.Y.2 E R2b). Set R := RIa + RIb + R2a + R2b. It is easily verified that 

Hence indeed. 0'4 = 4. 
We have proven that the set (6.12) contains the value of T3( A BLS - 1). It has been computed by 

Brouwer that the actual 3-rank of ABLS - I equals 67. 

The Delsarte graph r D with parameters (v, k, >., Jl) = (243, lID, 37,60) has been introduced in 
Section 3 as a subgraph of a graph on 276 vertices related to the McLaughlin graph by switching. 
However. r D can also be directly constructed in the following way. Take as vertices the codewords 
of the unique ternary Golay code of length 11 and dimension 5. Join two vertices when they have 
Hamming distance 6. 

We derived before that 19;:; T3(AD - 1(-J));:; 23. The lower bound can be slightly improved 
by using characters. The Mathieu group MIl is an automorphism group of rD' Denote by <I> the 
pennutation character yielded by the action of Mil on the vertex set of rD' Because 9 = 22. the 
irreducible constituents of <1>( E2) must have degree;:; 22. The irreducible characters of Mil of degree 
;:; 22 are XI, XIOa, XIOb, XIOc and XII. They satisfy 

~.3 ~) XI = I, 
~3 
\'IOi = 3 

XlOi for i E {a, b, c}, 

i II = 333 
XI + X5a + X5b' 

Applying Theorem 5.14 to the above-mentioned relations and recalling that T3(AD + 1( -J)) ~ 19. 
it follows that T3(A D + 1( -J) ~ 20. 

We finally consider a rank 3 graph derived from M24. This graph. which is denoted by r l288 • 

has parameters (v, k, >., Jl) = (1288,792,476,504). Its spectrum is 7921,81035, ( -36 )252. Hence the 
interesting cases are T2( A 1288 ) and TIl (AI288 + 31). 

Let us first give an explicit description of r l288 . Take as vertices the cosets of {Q, l} in the extended 
binary Golay code which contain two dodecads. Join two cosets when they have Hamming distance 
12. 

The II-rank of AI288 + 31 is easily obtained from Theorem 5.14. Let <I> denote the pennutation 
character corresponding to the action of M24 on the vertex set of the graph. Then <1>( EI) = XI035 and 
<I>(~) = X252. The irreducible constituents of ¢II(EJ) and ¢II(~) are given by 

¢II(EJ) = XH9 + x~lx" ¢11(E2) = x~j + XH9 ' 

Thus. by Theorem 5.14.229 ;:; Til (AI288 +31(-J»);:; 230. Since the sum of the rows of A 1288 +31 
(J - AI288 - 31) equals 1 (-~) (modulo 11). the all-one vector is contained both in RIl (AI288 + 31) 
and in RI d J - AI288 - 31). So Til (AI288 + 31) == Til (J - AI288 - 31) = 230 by Lemma 5.15. 
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For the constituents of X~52 and XT035 we find 

X152 = 2XTla + 2xTlb + ~4a + ~44b + XT20' 
XT035 = ;t2252 + 3XT + ~44a + Xitb + X~20a + X~20b' 

When not examining the structure of the graph in more detail, we can only conclude that ¢2(AI288) is 
a constituent of ¢2( EI), which implies that the 2-rank of AI288 is an element of the set 

6.8 Rank 3 graphs related to S2m ( q) 

Infinite classes of strongly regular rank 3 graphs are derived from classicaL groups. For a survey we 
refer to [4J or (lOJ. Here we shall consider the p-rank of elements of one such class. 

Let q be a prime power of p. Denote by V2m,q the 2m-dimensional vectorspace over IFq. Define 
the symplectic form hm,q : V2m,q X V2m,q 1--+ IF q (A5) by 

Denote by P2m,q the collection of points of the projective geometry PG(2 m - 1, q). Take P2m,q as 
vertex set of a graph r2m,q and join two different vertices (:g) and (Q) by an edge iff hm,q(J!, Q) = O. 
Then r2m,q is a srg with parameters 

q2m_1 q2m-l_ q ~m-2_1 
V= ,k= ,A+2=J.L= ,r=qm-I-l,s=-qm-I_l. 

q-l q-l q-l 

From the eigenvalues it follows that if q is even, then the only interesting case is r2( A + 1). If q is 
odd, then r2(A) and rp(A + 1) are the nontrivial cases (recall that p is such that q = pe). r2m ,q is a 
rank 3 graph derived from S2m (q). 

If q = 2, then r2( A2m,2) is easily determined by induction. Let (J!), (Q) be two different elements 
of P2m -2,2. Then 

Put A' := A2m-2,2 + hm-2. Then it follows from the above-mentioned relation that, by a suitable 
labelling of the rows and columns, A2m.2 + hm can be expressed as 

A' 1T A' 1T 
1 1 1 

A' 11 A' 
1 1 
A' J - A' 11 

1 
A' J - A' 
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A' 1T 

J - A' 
1 
A' 

I 
J - A' 11 

A' 

J - A' 

J - A' 
1 
A' 

(J!; (0)) 
(Q; 10)) 
(J!; lO)) 
((Q; 01)) 
(J!; 01)) 
(Q; 11)) 
((J!;ll)) 



where (!f) denotes an element of P2m-2,2. Perfonning suitable elementary row and column operations 
over F2 on A2m.2 + hm we get 

A' IT A' IT A' IT A' 

1 1 1 
J1 J V J 

A2m,2 + hm ::: I 1 I 
IJ J ~ J 

I I 
IJ J J1 J 

A' A' A' A' 
I 1 

1 1 
1 1 

1 1 
1 1 

0 

(note that the rows of A' add up to I (modulo 2». Thus 

(6.13) 

The graph A4,2 has the same parameters as the complement of the triangular graph T(6). From 
the uniqueness of the latter, it follows that T2( A4,2 + I) = T2( AT (8)) + 1 = 5 (Proposition 2.5). 
Substituting this in (6.13) yields 

T2( A2m,2 + 1) = 2m + 1. 

Finally. since v = 22m -1 and k = 22m- 1 - 2 for r2m,2. we find T2(J - A2m,2 - I) = 2m by Lemma 
3.8. 

For q > 2. the adjacency matrix A2m.q is not as easi1y described as for q = 2. In that case we have 
to look at the character obtained from the action of S2m ( q) on the vertices of r 2m,q. Let us examine 
r4,3 and r4,S. 

The action of S4(3) on the venex set of r4,3 yields the character Xl + XIS + X24. From the 
Modular Atlas we obtain 

and 

X~3 - ,,3 + X3 X" 3 -- X,3 + X3 IS - "S 10, 24 - 10 14' 

For r 4.3 we have v = 40 and k = 12, so it immediately follows from Lemma 3.8 and Theorem 
5.14 that r3(A4 ,3 + 1) = T3(J - A4,3 - I) + 1 = 11. 

Concerning the 2-rank, we derive that T2(.44,3) = 14 or 16 depending on whether IE R2(A4.3), 
and 14 ::; T2(J - A4,3) = T2(81- 4A4,3 + J) ::; r(E2) = 15. 
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The character afforded by the pennutation representation of S4(5) acting on r4,S equals Xl + 
X65 + X90· We only examine the 2-rank of A4,5, since the Modular Atlas does not give a table of the 
5-modular irreducible characters of S4(5). For X~5 and X~o we find 

~s = xr + ~4' ~o = xt + Xt2a + Xt2b + X~4· 
So r2(~,3) = 64 or 66 depending on whether 1 E n.2(~,3) or not, and 64 ::; r2(J - A4,3) = 
r2(24I - 6~,3 + J) ::; r(~) = 65. 

6.9 Table of the results 

To conclude this chapter, we list the results on the p-rank of srgs that have been derived in this chapter 
or in the examples of Chapters 3 and 5. For results on the lattice and triangular graphs we refer to 
Chapter 2. 

If a set of possible values for rp( A + (J 1) is given, then 'idem' means that the same set holds for 
rp( J - A - (J I). The entry '(=)' denotes that rp( J - A - (J 1) = rp( A + (J 1) and '(-1)' denotes that 
r p( J - A - (J I) = r p( A + (J 1) - 1. Furthennore, the entry' *' in the last column indicates that this 
result is not derived in this thesis (but is given for sake of completeness). Finally, the graphs No. 25 
have parameters al = 22m - 1, a2 = 22m- 1 - 1 and a3 + 2 = a4 = 22m- 2 - 1. 
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No. v k A f.t P 0' Tp(A + 0'1) Tp(J - A - 0'1) 
1 16 5 0 2 2 1 6 6 Ex. 3.1 
2 27 16 10 8 2 0 6 7 Ex. 3.3 

3 -1 7 7 '" 
3 36 14 4 6 2 0 14 14 Ex. 5.6 

3 1 7$;T$;9 idem 
4 40 12 2 4 2 0 14, 16 14 $; r $; 16 6.8 

3 1 11 10 
5 50 7 0 1 5 -2 20,21 (=) 6.6 
6 56 10 0 2 2 0 20 20 Ex. 3.2 

3 1 20 19 6.1 
7 77 16 0 4 2 0 20 21 6.1 
8 100 22 0 6 2 0 22 22 6.1 

5 -2 23 23 
9 100 36 14 12 2 0 36 35,36 Ex. 5.6 

5 -1 22,23 idem 
10 112 30 2 10 2 0 22 22 6.2 

3 1 20 19 
11 120 42 8 18 2 0 18,20 18 $; r $; 20 6.4 

7 -2 20 20 
12 156 30 4 6 2 0 64,66 64,65 
13 162 56 10 24 2 0 20 21 6.2 

3 I 21 21 
14 175 72 20 36 2 0 20 21 6.6 

5 -2 20,21 (=) 
15 176 70 18 34 2 0 20,22 20 $; r $; 22 6.4 

5 -2 22 22 
16 176 90 38 54 2 0 20,22 20 $; r $; 22 6.6 

5 -2 20 $; r $; 23 (=) 
17 231 30 9 3 2 1 35,45,55 (-1) 6.5 

3 0 55 55,56 
18 243 22 1 2 3 -1 67 67 6.7 
19 243 110 37 60 3 -1 20 $; r $; 23 idem 6.4.6.7 
20 253 112 36 60 2 0 22 23 6.4 

7 -2 23 23 
21 275 112 30 56 2 0 22 23 6.2 

3 1 22 21 
5 -2 23 23 

22 276 140 58 84 2 0 24 24 6.3 
3 1 22$;r$;24 21 $; r $; 23 
5 -2 23,24 idem 

23 416 100 36 20 2 0 38,50,52, 37,38,50,51 Ex. 5.6 
64,66 52,64,65,66 

24 1288 792 476 504 11 3 230 230 6.8 
25 al a2 a3 a4 2 1 2m + 1 2m 6.8 
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Appendix 

Al t-Designs 

Let X be a set of v elements. called points. and 8 a collection of k-subsets of X. called blocks, 
such that every t-subset of X is contained in exactly A blocks. The pair (X,8) is called at-design 
or, more preciseI y. a t-( v, k, A) design. 

If A = 1. the design is called a Steiner system. Notation: 8(t, k, v). We shall only deal with the 
following Steiner systems: 

bo b1 ~ b3 h4 bs S 

8(5,8,24) 759 253 77 21 5 1 4,2,0 
8(4,7,23) 253 77 21 5 1 3,1 
8(3,6,22) 77 21 5 1 2,0 

The column bi gives the number of blocks in which an arbitrary i-tuple is contained. Hence bo denotes 
the number of blocks. The last column gives the possible values for the intersection of two different 
blocks. 

8 (4,7,23) is obtained from 8(5, 8, 24) by taking all blocks containing a fixed point and deleting 
this point. In the same way, 8(3,6,22) is derived from 8(4,7,23). The remaining blocks form a 
3-(22.7,4) design. From this design we obtain a 2-(21.6,4) design and a 2-(21,7,12) design. The 
former can also be derived from 8(3,6, 22) by deleting aU blocks containing a fixed point. 

v k t bo hI ~ h) s 
22 7 3 176 56 16 4 3,1 
21 7 2 120 40 12 3,1 
21 6 2 56 16 4 2,0 

An automorphism of a design is a permutation of the points such that blocks are carried into 
blocks. The sporadic Mathieu groups M24 and M23 are the full automorphism groups of 8(5,8,24) 
and 8(4, 7,23). respectively; the Mathieu group M22 is a group of index 2 in the full automorphism 
group of 8(3,6,22). 

A2 Partial geometries 

A partial geometry with parameters (1(, R, T) consists of a set of elements, called points, and a 
collection of J( -subsets, called lines. such that 
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(i) every point is on R lines; 
(ii) for every pair of points there is at most one tine containing them both (if there 

exists such a line for a pair {x, y}. then x and y are said to be collinear); 
(iii) if a point p is not on a tine L. then p is collinear with exactly T points of L. 

A partial geometry with T = 1 is called a generalized quadrangle GQ(s, t), where s := K - 1 and 
t:= R - 1. 

The point graph of a partial geometry is defined as foUows. Take the points as vertices and join 
two vertices by an edge iff they are collinear. This graph is strongly regular with parameters 

v = KT-1«K - l)(R -1) + T), k = R(K -1), ~ = K - 2 + (R -l)(T - 1), p = RT. 

A3 Projective geometries 

The projective geometry of dimension mover F q can be defined as the collection of linear sub
spaces of the vectorspace V := ~+l. It is denoted by PG( m, q). The I-dimensional subspaces of 
V are called points and the 2-dimensional subspaces of V are called lines. 

A projective plane is defined as a collection of points and lines satisfying 
(i) for every pair of two points there is a unique line containing them both; 
(ii) any two lines meet in a unique point; 
(iii) there exist four points no three of which are on a line. 

It is a Steiner system S(2, n + 1, n2 + n + 1) for some n ~ 2. when taking the lines as blocks. A 
projective geometry of dimension 2 is a projective plane; the converse does not necessarily hold. 

A collineation of PG( m, q) is a permutation of the points carrying lines into lines. The full 
collineation group is denoted by prL(m + l,q). Every element of GL(m + l,q). the group of 
nonsingular (m + 1) x(m + 1) matrices with entries in F q, induces a collineationof PG(m, q). The 
projective general linear group PG L( m + 1, q) consists of all collineations induced by the elements of 
G L( m + 1, q). The subgroup induced by the matrices of determinant 1 is denoted by P S L( m + 1, q). 

A subplane of a projective plane is a subset of points and lines which is itself a projective plane. 
The subplanes of order 2 in PG(2, 4) are called Fano sub planes. There are 360 Fano subplanes which 
fall into 3 orbits under the action of P S L(3, 4). Fano planes in the same orbit intersect in an odd 
number of points; those in different classes have an even number of points in common. 

A4 The Golay codes 

Several strongly regular graphs are derived from the extended binary Golay code g24 and the ternary 
Golay code gil. For an extensive treatment of the Golay codes. we refer to Chapter 20 of Mac Williams 
and Sloane [15]. 

The extended binary Golay code {h4 is a [24,12] code with minimum distance 8. The 759 
codewords of weight 8 form an S(5, 8,24) and are called octads. The 1288 codewords of weight 
12 are called dodecads. The code is self-dual. The automorphism group of a code is fonned by the 
permutations of the coordinates which map every codeword to a codeword. The Mathieu group M24 

is the full automorphism group of g24. 

gil is a [11.6,5] code over F3 which contains its dual. The Mathieu group Mll is a group of 
automorphisms for the code. The dual go is a [11.5] code consisting of the all-zero word. 110 words 
of weight 6 and 132 words of weight 9. 
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Let C be an [n, k] linear code over F q. For any vector £> the set 

is caUed a coset of C. Two vectors £ and y are in the same coset iff £ - 11 is a codeword. Two cosets 
are either disjoint or coincide. The 35 = 243 cosets of (ill are uniquely represented by the 220 vectors 
of weight 2. the 22 vectors of weight 1 and the all-zero vector. This holds. because the minimum 
distance of the code equals 5, hence every vector of weight::; 2 must be in a coset containing no other 
word of weight::; 2. 

AS Symplectic forms 

Let V be a vectorspace of finite dimension n over a field F. A bilinear form I on V is said to 
be symplectic if I(J!, y.) = 0 for every J! e V. A symplectic form satisfies 

1(y.,J./.) = - l(lZ,J!) 

for all Y.,lZ e V. 
A symplectic form I is called degenerate if there exists an element Y. :f:. Q such that I(y., lZ) = Q 

for alllZ e V. If II and h are both symplectic forms defined on V, then they are called equivalent if 
there exists a linear transformation 9 on V such that 11 (J!, lZ) = h ( 9(y), 9(lZ» for all y., lZ e v. 

Theorem Let I be a nondegenerate symplectic form defined on a vectors pace V. Then dimeV') 
is even and I is equivalent to r, where r is defined as 

For a proof of this theorem we refer to Suzuki [20, p.373]. 
A linear transformation () on V is said to leave the form I invariant if for every y., lZ e V 

The symplectic group Sn(q) consists of all n x n matrices over Fq leaving the nondegenerate sym
plectic form r invariant. 

We conclude this section with the proof of Lemma 3.9 in which it is stated that the 2-rank of the 
adjacency matrix of any graph is even. 

A matrix M with entries in a field F of characteristic :f:. 2 satisfying M = - MT, corresponds to 
the symplectic form I defined by 

1(Y.,lZ):= JJr.MlZT. 

It is easily verified that I is indeed a symplectic form. If char(F) = 2, then a symmetric matrix 
M e pnxn with zeros on the diagonal represents a symplectic form in a similar way. 

The form I is nondegenerate on the rowspace of Mover F. Thus, by the above-mentioned 
theorem, 'RF( M) is even. The adjacency matrix of a graph is symmetric and its diagonal elements 
all equal zero, hence its 2-rank is even. 
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