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Abstract

We determine the maximal cocliques of size ≥ 4q2 + 5q + 5 in the
Kneser graph on point-plane flags in PG(4, q). The maximal size of a
coclique in this graph is (q2 + q + 1)(q3 + q2 + q + 1).

1 Introduction

Let Γ be the Kneser graph on the point-plane flags (incident point-plane
pairs) in PG(4, q): two flags (P,A) and (Q,B) are adjacent when they are in
general position, i.e., when A∩B is a single point R distinct from P and Q.
In this note we determine the large maximal cocliques in Γ. In particular we
show that the largest cocliques have size (q2 + q + 1)(q3 + q2 + q + 1) and
consist of all flags (P,A) with the plane A in a fixed hyperplane (solid).

For a maximal coclique C in Γ, let a heavy plane be a plane occurring in
at least two C-flags (flags in C). We will see in the next section that a heavy
plane is in fact in q2 + q + 1 C-flags.

Theorem 1 Let C be a maximal coclique in the graph Γ. Then either
(A) C has q3 + q2 + q + 1 heavy planes, and has structure as described in

Proposition 7 (example (i)), or
(B) C has q2 + q + 1 heavy planes, and has structure as described in

Propositions 8–10 (examples (ii)–(v)), or
(C) C has q + 1 heavy planes, and has structure as described in Proposi-

tions 11, 12, 14 (examples (vi)–(xi)), or
(D) C has at most one heavy plane, and |C| ≤ 4q2 + 5q + 4.

∗The first author acknowledges support from ERC grant DISCRETECONT 227701
and OTKA Grant K 81310. The third author was partly supported by OTKA Grant K
81310.
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The sizes of the examples are listed in the table below.

(i) q5 + 2q4 + 3q3 + 3q2 + 2q + 1 (v) q4 + 3q3 + 4q2 + 2q + 1 (ix) q3 + 5q2 + 3q + 1
(ii) 2q4 + 3q3 + 4q2 + 2q + 1 (vi) q3 + 6q2 + 2q + 1 (x) q3 + 4q2 + 4q + 1
(iii) 2q4 + 3q3 + 4q2 + 2q + 1 (vii) q3 + 5q2 + 3q + 1 (xi) q3 + 2q2 + 8q + 1
(iv) q4 + 3q3 + 4q2 + 2q + 1 (viii) q3 + 5q2 + 3q + 1

This is a variation on the Erdős-Ko-Rado and Hilton-Milner theme. These
authors characterized the largest and second largest cocliques in the classical
Kneser graph K(n, k) that has as vertices the k-subsets of an n-set (where
2k ≤ n), adjacent when disjoint.

The q-analog Kq(n, k) of K(n, k) has as vertices the k-subspaces of an
n-dimensional vector space over the field with q elements (with 2k ≤ n),
where two k-spaces are adjacent when they have trivial intersection. Large
cocliques in Kq(n, k) were studied in [1, 2, 4].

These graphs Kq(n, k) can be viewed as graphs with vertex set G/P for
a Chevalley group G (namely, GL(n, q)) and a maximal parabolic subgroup
P (namely, the stabilizer in G of a subspace). More generally one can study
G/P for not necessarily maximal P and look at graphs of which the vertices
are flags in a finite spherical building. Such a building has a W-valued dis-
tance function, and in this setting the Kneser graph is defined as the graph
where two vertices are adjacent when they have the largest possible distance
(cf. [5, 6]). The present note investigates the case of point-plane flags in
PG(4, q), and [3] handles the case of point-hyperplane flags in PG(n− 1, q).

2 Closure properties

In this section we show that maximal cocliques have certain closure proper-
ties. Consider a maximal coclique C. Flags in C will be called C-flags, and
planes occurring in some C-flag, C-planes. If (P,A) is a C-flag we will call P
the top of the flag, and also a top of the plane A.

Lemma 2 If, for some plane A, the coclique C contains both (P,A) and
(Q,A), with P 6= Q, then it contains (R,A) for all R ⊆ A.

Proof. A flag adjacent to (R,A) is adjacent to at least one of (P,A) or
(Q,A), so it does not belong to C. Since C is maximal, (R,A) ∈ C. 2

A C-plane A is called light (heavy) when (P,A) ∈ C for a unique point
(for all q2 + q + 1 points) P in A. If there are h heavy planes, and l light
planes, then |C| = (q2 + q + 1)h + l. We shall call a flag light when its plane
is light.
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Lemma 3 If A and B are distinct heavy planes, then they meet in a line L,
and all planes C in the pencil of planes L ⊆ C ⊆ A + B are heavy.

Proof. Two heavy planes share a line, because both form a flag with a
point not in the other plane. Suppose L ⊆ C ⊆ A + B, and (P,C) 6∈ C for
some point P ⊆ C. Then there is a (Q,D) ∈ C such that C ∩D is a single
point different from P,Q. In particular, Q 6⊆ L. Since (Q,D) is not adjacent
to (PA, A) or (PB, B) for any points PA ⊆ A, PB ⊆ B, each of the planes
A,B either meets D in the single point Q or meets D in a line. It follows
that D lies in A + B and hence meets C in a line, a contradiction. 2

As a consequence we find the following:

Proposition 4 The configuration of heavy planes is one of the following:
A: the q3 + q2 + q + 1 planes in a solid S;
B1: the q2 + q + 1 planes on a line L;
B2: the q2 + q + 1 planes in a solid S on a fixed point P ;
C: the q + 1 planes on a line L in a solid S;
D: at most one heavy plane.

Proof. A collection of planes that pairwise meet in a line, is the dual of
a collection of lines pairwise contained in a plane, that is, a collection of
pairwise intersecting lines, and the lines in such a collection are all contained
in one plane, or all pass through one point. For the heavy planes this means
that all contain a fixed line, or all are contained in a fixed solid. If we are in
the former case, we have one of the cases B1, C, D. If not, the heavy planes
form a dual subspace in the fixed solid, and we have case A or B2. 2

Maximal cocliques with at least q2 + q + 1 heavy planes will be called
large, the other ones small.

Lemma 5 Let (P,A) and (P,B) be two C-flags, with A ∩ B = L a line.
Then (P,C) ∈ C for all planes C with L ⊆ C ⊆ A + B.

Proof. Clearly P ⊆ L. Suppose L ⊆ C ⊆ A + B and (Q,D) ∈ C with
(Q,D) adjacent to (P,C). Then C ∩D is a single point different from P,Q.
In particular, P 6⊆ D and Q 6⊆ L. Since (Q,D) is not adjacent to (P,A)
or (P,B), each of the planes A,B either meets D in the single point Q or
meets D in a line. It follows that D lies in A + B and meets C in a line, a
contradiction. 2

We see that locally in a point P the planes with top P form a collection
of lines that is pencil-closed. Locally in a line L the planes (with fixed top
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P on L) form a collection of points that is linearly closed, and therefore has
size (qi − 1)/(q − 1) for some i, 0 ≤ i ≤ 3. Locally in P the planes inside a
solid S on P form a dual subspace, and again there are (qi − 1)/(q − 1) of
them for some i, 0 ≤ i ≤ 3.

Proposition 6 Fix a point P . We have one of the following possibilities:
(1) The point P is top of all q3 + q2 + q + 1 planes containing it.
(2) There are a solid S and a line L, where P ⊆ L ⊆ S, such that the

point P is top of all 2q2 + q + 1 planes in S or on L containing it.
(3) There is a solid S on P such that the point P is top of the q2 + q + 1

planes in S on P .
(4) There is a line L on P such that the point P is top of the q2 + q + 1

planes on L.
(5) The point P is top of at most 2q + 1 planes, at most q + 1 on a line

and at most q + 1 in a solid.

In these five cases, we call the point P (1) purple, (2) red, (3) orange, (4)
yellow, (5) white. In cases (1)–(4) we call P colored.

Proof. Fix a point P . If all C-planes contain P , we have case (1). Other-
wise, there is a flag (Q,B) ∈ C with P 6⊆ B. Put L = P +Q and S = P +B.
For a C-flag (P,A) either A intersects B in a line not on Q and hence A ⊆ S,
or Q ⊆ A and hence L ⊆ A (or both). By the remark above there are 0, 1,
q + 1 or q2 + q + 1 such flags of each type. If q2 + q + 1 occurs, we have case
(2), (3) or (4). If not, case (5). Note that if there are q+1 flags of each type,
then there is a flag of both types. 2

3 Proof of the theorem—the large examples

We now start classifying the maximal cocliques with various properties. In
the rest of this paper we find examples (i)–(xviii). For each example, we give
the size c and the number h of heavy planes. Each time it is straightforward
to check that a given example is in fact a maximal coclique, and this is not
mentioned separately.

Proposition 4 shows that the number of heavy planes is as is claimed in
the theorem. Case A (of theorem and proposition) is now settled by

Proposition 7 Let C be a maximal coclique as in case A. Then we have

(i) c = (q2 + q + 1)(q3 + q2 + q + 1), h = q3 + q2 + q + 1, and C consists
of all flags (P,A) with A contained in a fixed solid S0. 2
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Next we handle the case that all C-planes contain a given point. We are
in this case when there is a purple point.

Proposition 8 If all C-planes contain a fixed point P0, then we have c =
(q2 + q + 1)(2q2 + q + 1), h = q2 + q + 1, and C is as described in (ii) or (iii)
below:

(ii) C consists of all flags (P,A) with P coinciding with a fixed point P0,
or A containing a fixed line L0 on P0.

(iii) C consists of all flags (P,A) with P coinciding with a fixed point P0

or A containing P0 and contained in a fixed solid S0.

Proof. In this case C consists of all flags (P0, A), together with a collection
of flags (Q,B) with Q 6= P0, where the (necessarily heavy) planes B pairwise
meet in a line on P0. Locally in P0 these planes form a collection of pairwise
intersecting lines, and hence either all lines contain a fixed point, or all lines
are contained in a fixed plane. For the planes B this means that they either
all contain a fixed line L0, or are contained in a fixed solid S0. 2

Case B1 of Proposition 4 is settled by

Proposition 9 A maximal coclique with q2 + q + 1 heavy planes all on a
fixed line L0 is of type (ii) or (iv).

(iv) c = q4 + 3q3 + 4q2 + 2q + 1, h = q2 + q + 1, and C consists of all flags
(P,A) with A containing a fixed line L0 or A contained in a fixed solid S0 on
L0, where P = A ∩ L0.

Proof. The heavy planes on L0 give a non-maximal coclique. The (neces-
sarily light) flags that extend it must have their top on the line L0, and two
extending flags either have the same top, or intersect in a line. If all extend-
ing flags have the same top P0 then we are in the situation of Proposition 8
and have example (ii).

If there are extending flags (P,A) and (Q,B) with P 6= Q and A and
B meeting in a line M , then all extending flags live in the solid L0 + M .
Indeed, if the top is different from P then the plane intersects A in a line,
otherwise the plane intersects B in a line. In this case we have a coclique of
size (q2 + q + 1)2 + q3 + q2, since there are q3 + q2 light planes, the planes in
the solid L0 + M not containing L0. 2

Case B2 of Proposition 4 (and case B of the theorem) is settled by
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Proposition 10 A maximal coclique with q2 + q + 1 heavy planes all on a
fixed point P0 inside a fixed solid S0, is of type (iii) or (v).

(v) c = q4 + 3q3 + 4q2 + 2q + 1, h = q2 + q + 1, and C consists of all flags
(P,A) with A containing a fixed point P0 and contained in a fixed solid S0,
or A contained in S0 but not containing P0, and P = A ∩ L0, where L0 is a
fixed line, or A containing L0 and P coinciding with P0. Here P0 ⊆ L0 ⊆ S0.

Proof. Any light flag (Q,B) must have Q = P0 or B ⊆ S0. If always
B ⊆ S0, we have example (i), impossible. If always Q = P0, we have example
(iii). If (P0, B1), (Q2, B2) ∈ C, with B1 6⊆ S0 and P0 6⊆ B2, then B1 ∩ S0 is a
line L0 on P0 and Q2 must be on L0. We find that the light planes are the
q2 planes on L0 not in S0, and the q3 planes in S0 not on L0. 2

4 The case of a red point

Recall that maximal cocliques with at most q + 1 heavy planes are called
small. As we saw in the above, small cocliques do not have all planes in a
fixed solid, or on a fixed point. The case where a red point occurs is settled
by

Proposition 11 Let C be a small maximal coclique in the graph Γ. Assume
that C contains a red point P . Then we have one of the cases (vi), (vii),
(viii), (xii) or (xiii) below.

(vi) c = q3 + 6q2 + 2q + 1, h = q + 1, and C is constructed as follows. Let
P ⊆ L and let R be a point not on L. Put M = P + R. Let S be a solid on
L + M . Take (a) all flags (P,A) with P ⊆ A ⊆ S, (b) all flags (P,A) with
L ⊆ A, (c) all flags (Q,B) with Q ⊆ L, P 6⊆ B, Q + R ⊆ B ⊆ S, (d) all
flags (R,C) with M ⊆ C, C 6⊆ S, (e) all flags (R′, D) with M ⊆ D ⊆ S.

(vii) c = q3 + 5q2 + 3q + 1, h = q + 1, and C is constructed as follows.
Let P ⊆ L and let R be a point not on L. Put M = P +R and D = L+M .
Let S, T be two solids meeting in the plane D. Take (a) all flags (P,A)
with P ⊆ A ⊆ S, (b) all flags (P,A) with L ⊆ A, (c) all flags (P ′, A) with
L ⊆ A ⊆ T , (d) all flags (Q,B) with Q ⊆ L, P 6⊆ B, Q + R ⊆ B ⊆ S, (e)
all flags (R,C) with M ⊆ C, C ⊆ T .

(viii) c = q3 + 5q2 + 3q + 1, h = q + 1, and C is constructed as follows.
Let S, T be two solids meeting in the plane D. Let K,L be two lines in D
meeting in the point Q. Let P be a point of L other than Q. Take (a) all
flags (P,A) with P ⊆ A ⊆ S, (b) all flags (P,A) with L ⊆ A, (c) all flags
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(P ′, A) with L ⊆ A ⊆ T , P ′ 6= P , (d) all flags (Q,B) with K ⊆ B ⊆ S,
P 6⊆ B, (e) all flags (R,C) with P ⊆ C ⊆ T , L 6⊆ C, R = C ∩K.

(xii) c = 4q2 + 4q + 1, h = 1, and C is constructed as follows. Let S, T
be two solids meeting in the plane D. Let L be a line in S not in D, and
P = L ∩ D. Let K be a line in D not on P . Take (a) all flags (P,A)
with P ⊆ A ⊆ S, (b) all flags (P,A) with L ⊆ A, (c) all flags (Q,B) with
K ⊆ B ⊆ S, P 6⊆ B, Q = B ∩ L, (d) all flags (R,C) with P ⊆ C ⊆ T ,
C 6= D, R = C ∩K, (e) all flags (R′, D).

(xiii) c = 4q2 + 3q + 2, h = 1, and C is constructed as follows. Let P be
a point, L,N lines, B a plane, S a solid, with P = N ∩ S, P ⊆ L, P 6⊆ B.
Take (a) all flags (P,A) with P ⊆ A ⊆ S, (b) all flags (P,A) with L ⊆ A, (c)
the flag (Q,B) with Q = B∩L, (d) all flags (R,C) with N ⊆ C, R = C ∩B,
(e) all flags (P ′, D) where D = L + N .

Proof. Let (Q,B) be a C-flag with P 6⊆ B. Put L := P+Q and S := P+B.
Then (P,A) ∈ C for all planes A on L and all planes A on P in S. If (Q′, B′)
is another C-flag with P 6⊆ B′, then B′ ⊆ S and Q′ = B′ ∩ L.

(a) Suppose that every C-plane not in S contains L. Then C contains all
flags (Q′, B′) with B′ ⊆ S and Q′ ⊆ B′ ∩ L. Since C is small, not all planes
on L are heavy. It follows that there is a C-plane not containing L and with
top not on L, necessarily on P in S. Then every C-plane not in S has top P ,
and all planes on P in S are heavy, a contradiction.

(b) Let (R,C) ∈ C with C 6⊆ S and M := C ∩S 6= L. Now M is a line on
P , so meets C-planes in S not on P in a single point, which must be R. If all
C-flags (R′, C ′) with C ′ not contained in S and R′ 6= P do have C ′ ∩S = M ,
then they must also all have the same point R′ = R = B ∩M . We have case
(vi).

(c) If all C-flags (R′, C ′) with C ′ not contained in S have C ′ ∩ S = L or
M , but there are C-flags (R′, C ′), necessarily on L, with R′ 6⊆ S, then C ′ is
heavy, and all planes C and planes C ′ must meet in a line, and hence all are
contained in a solid T = C + L = C ′ + M . We have case (vii).

(d) Now let also (R′, C ′) ∈ C with R′ 6= P and C ′ 6⊆ S and M ′ := C ′∩S 6=
L,M . We have R′ = M ′ ∩ B. The planes C and C ′ meet in a line on P . If
all such lines M ′ lie in the plane L + M , we have case (viii).

(e) If all lines M = C ∩ S (for C-planes C not in S and with top other
than P ) are coplanar, where this plane D containing these lines does not
contain L, then we have case (xii).
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(f) Finally, if the lines M = C ∩ S (for C-planes C not in S and with top
other than P ) are not coplanar, then (Q,B) is uniquely determined, and we
have case (xiii). 2

5 The case of an orange point

The case where an orange point occurs is settled by

Proposition 12 Let C be a small maximal coclique without red points, but
with an orange point P . Then we have one of the cases (x), (xiv), (xv), (xvi).

(x) c = q3 + 4q2 + 4q + 1, h = q + 1, and C is constructed as follows. Let
K be a line not on P , and S, T solids containing both P and K. Take (a)
all flags (P,A) with P ⊆ A ⊆ S, (b) all flags (Q,B) with K ⊆ B ⊆ S, (c)
all flags (R,C) with P ⊆ C ⊆ T , C 6⊆ S, R = K ∩ C.

(xiv) c = 3q2 + 3q + 3, h = 1, and C is constructed as follows. Let N be
a line on P , B a plane disjoint from N , and S = P + B. Take (a) all flags
(P,A) with P ⊆ A ⊆ S, (b) all flags (Q,B), (c) all flags (R,C) with N ⊆ C,
R = B ∩ C.

(xv) c = 2q2 + 8q + 1, h = 1, and C is constructed as follows. Let S, T
be two solids on P , and let D = S ∩ T . Let R1, R2, R3 be three noncollinear
points in D, distinct from P and such that the three lines P +Ri (i = 1, 2, 3)
are distinct. Take (a) all flags (P,A) with P ⊆ A ⊆ S, (b) all flags (Q,D),
(c) all flags (Ri, C), where C is a plane on P + Ri in T , (d) all flags (Q,B)
where Q = B ∩ (P + Ri) and Rj + Rk ⊆ B, where {i, j, k} = {1, 2, 3}.

(xvi) c = q2 + 2q + 6, h = 0, and C is constructed as follows. Let S
be a solid on P , and let N be a line on P not in S. Let K be a line in S
not on P . Let R1, R2 be two points of S not in the plane P + K, and such
that P + R1 6= P + R2, and R1 + K 6= R2 + K. Take (a) all flags (P,A)
with P ⊆ A ⊆ S, (b) all flags (R,R + N) where R ⊆ K or R = R1 or
R = R2, (c) the two flags (Q,B) where Q = (P + Ri) ∩ B, B = Rj + K,
where {i, j} = {1, 2}.

Proof. Let (P,A) ∈ C for every plane A on P in the solid S, where there
are no further C-flags with top P . For every C-flag (Q,B) with P 6⊆ B we
have B ⊆ S. Since P is not purple, there are such (Q,B).

If (R,C) is a C-flag with C not in S, and we put M := C ∩ S, then for
each C-flag (Q,B) as above we have R ⊆ B or Q ⊆ C, that is, R = M ∩ B
or Q = M ∩B. Since C is small, there are such (R,C).
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If some point R lies outside S, then always Q = M ∩ B so that M is a
fixed line. For all C-planes not containing M , the top must lie on M , so all
planes on M are heavy, but this is impossible since C is small.

We see that for each C-flag (Q,B) as above we have R ⊆ B or R ⊆ P +Q.
Since P is not in any further C-flags, the planes C are not heavy, so that all
lines P + R are distinct. Therefore, the planes C meet pairwise in a line, so
they all contain a common line N or are all contained in the same solid T .
In the latter case, all points R lie in the plane S ∩ T on P .

If all points R lie on a line K in S, not on P , then all planes on K in S
are heavy, and all planes C meet pairwise in a line, so are contained in the
same solid C + K. This is case (x).

If the points R span a plane B in S not on P , then B is heavy, and all
planes C contain the same line N . This is case (xiv).

Fix one of the points R, say R1. Since P +R1 does not contain any point
R 6= R1, there is a C-flag (Q1, B1) with R1 ⊆ B1, R1 6⊆ P + Q1. Now that
not all points R are in B1, there is a unique R2 on P +Q1, not in B1, and we
find (Q2, B2) where B2 contains R2 and all other points R except one. Thus,
the line K = B1 ∩B2 contains all points R except two.

If the points R span a plane D on P , then D is heavy. Every two planes
C meet in a line, so all are contained in the same solid C + D. The line K
meets D is a single point, so that there are three points R. This is case (xv).

Finally, if the points R span all of S, then all planes C contain a common
line N and we find case (xvi). 2

6 The case of a yellow point

Proposition 13 Let C be a small maximal coclique without red or orange
points, but with a yellow point. Then we have case (xvii) or (xviii).

(xvii) c = 4q2 + 4q + 1, h = 1, and C is constructed as follows. Let
P1, P2, P3 be three noncollinear points. Put L1 = P1 + P2, L2 = P2 + P3,
L3 = P3 + P1 and C = P1 + P2 + P3. Take (a) all flags (Pi, A) with Li ⊆ A
(i = 1, 2, 3), (b) all flags (R,C).

(xviii) c = 2q2 + 6q + 1, h = 1, and C is constructed as follows. Let
P,Q,R,R′ be four distinct points, L = P + Q, K = P + R, where R′ is on
K, D = K +L and S, S ′ two solids on the plane D. Take (a) all flags (P,A)
with L ⊆ A, (b) all flags (Q,B) with either B ⊆ S, B ∩K = R, or B ⊆ S ′,
B ∩K = R′, (c) all flags (R′, C) with K ⊆ C ⊆ S, and all flags (R,C) with
K ⊆ C ⊆ S ′, (d) all flags (P ′, D).
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Proof. Let P be a point of a line L such that (P,A) ∈ C for every plane
A on L. Then there are no further flags with top P . For every C-flag (Q,B)
with B not on P we have Q ⊆ L. Since (P,D) 6∈ C for L 6⊆ D, for any such
D there is a C-plane B not on P such that B ∩D is a single point. It follows
that the C-planes B not on P are not contained in a common solid on P .

If (Q,B), (Q′, B′) are two C-flags with distinct Q,Q′ and B,B′ not on P ,
then B ∩B′ is a line K, and B +L = B′+L. It follows that all C-planes not
on P are in the same solid (on L), a contradiction. So, all C-planes B not
on P have the same top Q, and there are C-planes B,B′ not on P such that
P + B 6= P + B′.

Consider the C-flags (R,C) with P ⊆ C, R 6= P . Any two such planes C
must meet in a line, so all are contained in one solid, or all contain a fixed
line. First consider the former case: there is a solid S on P such that all
C-flags (R,C) with P ⊆ C, R 6= P have C ⊆ S. If L ⊆ S, then every flag
(Q,D) with D ⊆ S is in C, a case considered already. So L 6⊆ S. For any
two C-flags (Q,B) and (R,C) (with notation as before), we have R ⊆ M or
C = P + M , where M = B ∩ S. In all cases R ⊆ P + M . Pick B,B′ where
P +B 6= P +B′. Then the planes P +M and P +M ′ are distinct, and meet
in a line K on P that contains all points R. Now the plane K + L is heavy
but not contained in S, contradiction.

Consequently, there is a line K on P such that all C-flags (R,C) with
P ⊆ C, R 6= P have K ⊆ C. If K = L, then all planes on L are heavy, a
case considered already. So let K 6= L. The plane K + L is heavy. Let C
denote planes on P other than K +L. For each C-flag (R,C) either B ∩C is
a line, or R ⊆ B. In both cases (P +B)∩C contains the point R. This holds
for each C-plane B not on P . Let D = (P +B)∩ (P +B′), then D is a plane
on L containing all points R. The C do not all lie in a solid, but contain K
and a line in D. It follows that K ⊆ D, so that K meets all planes B, and
D = K + L. The planes C are not heavy (since there are no further planes
with top P ), so each plane C has a unique top R, and since C 6= D, this top
lies on K. If all tops R coincide, we are in case (xvii).

Suppose (R,C), (R′, C ′) ∈ C with R 6= R′. Write S(B) = B + P and
S(C) = C + Q. If (B,Q), (C,R) ∈ C and S(B) 6= S(C), then B and C do
not meet in a line, so that R = B∩C = B∩K. If S(B) 6= S(C), S(C ′), then
R = R′, contrary to assumption. So S(C) 6= S(C ′), and the planes B are
all in one of these two solids. If S(C ′′) 6= S(C), S(C ′), then R′′ = B ∩ C ′′ =
B ∩ K = R. And with S(B′) 6= S(C ′) also R′′ = B′ ∩ C ′′ = B′ ∩ K = R′,
contradiction again. So also the planes C are in one of two solids. This is
case (xviii). 2
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7 Proof of the theorem—Case C

We continue the proof of the theorem, assuming that we are not in one of the
cases settled already. So all points are white, that is, top of at most 2q + 1
planes, at most q + 1 on a line, and at most q + 1 in a solid. Recall that in
case C we have q + 1 heavy planes A with L ⊆ A ⊆ S.
Also in this case we are able to give a full classification.

Proposition 14 Let C be a small maximal coclique without colored points,
having exactly q + 1 heavy planes A with L ⊆ A ⊆ S, for some line L and
solid S. Then we have case (ix) or (xi).

(ix) c = q3 + 5q2 + 3q + 1, h = q + 1, and C is constructed as follows.
Let P,Q,R be three noncollinear points, and put L = P + Q, M = P + R,
N = Q + R and D = P + Q + R. Let S, T be two solids meeting in the
plane D. Take (a) all flags (P ′, A) with L ⊆ A ⊆ S, (b) all flags (P,B) with
M ⊆ B ⊆ T , B 6= D, (c) all flags (Q,B) with N ⊆ B ⊆ T , B 6= D, (d) all
flags (P ′, B) with B ⊆ S and either P ′ ⊆ M and Q ⊆ B, or P ′ ⊆ N and
P ⊆ B, or P ′ = R.

(xi) c = q3 + 2q2 + 8q + 1, h = q + 1, and C is constructed as follows.
Let R1, R2, R3 be three noncollinear points, and put D = R1 + R2 + R3. Let
L be a line in D not on one of the Ri. For i, j, k = 1, 2, 3, pairwise distinct,
let Mi = Rj + Rk and Pi = L ∩Mi. Let S, T be two solids meeting in the
plane D. Take (a) all flags (P ′, A) with L ⊆ A ⊆ S, (b) all flags (Pi, B) with
Mi ⊆ B ⊆ T , B 6= D, (c) all flags (Ri, B) with Pi ⊆ B ⊆ S, B 6= D.

Proof. Since P is white, there are no further C-flags (P,B) with P ⊆ L ⊆
B. If a C-flag (P,B) has P 6⊆ S, then L ⊆ B, and all C-planes that do not
contain L have their top on L, so all planes on L are heavy, by maximality
of C, contradiction. It follows that light flags (P,B) have L 6⊆ B and satisfy
(i) P ⊆ L; or (ii) P 6⊆ L but P ⊆ S and (hence) B ⊆ S.

Since we are not in case (i), and have seen all flags on L with top on
L already, there is a flag (P,B) with P ⊆ L, B 6⊆ S, M := B ∩ S 6= L.
Since not all planes on M are C-planes with top P (we handled that case
already), there must be further planes not contained in S and meeting L in a
point other than P . If Q is a point of L other than P , then any light planes
with top Q are in the solid T := Q + B = L + B on a fixed line NQ where
NQ ⊆ S ∩ T , and then also the light planes with top P are in the solid T
on a fixed line NP with M = NP ⊆ S ∩ T . Since not all tops of planes not
on L are on L (otherwise all planes on L are heavy), there is a flag (R,C)
with R 6⊆ L, L 6⊆ C, C ⊆ S. For each top P on L we must have R ⊆ NP or
P ⊆ C.
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If all lines NP are concurrent, and there are at least three, we find example
(x), which contains an orange point. If there are only two lines NP , we find
example (ix). Otherwise, since C meets L in only one point, all except one
of the lines NP pass through R, and this contradicts linearity except in the
case of precisely three lines NP , where we can have three points R, and we
find example (xi). 2

8 Intermezzo—flags in the plane

Consider a collection A of point-line flags in a projective plane of order q,
with a partition {A1, . . . ,Am} into m ≥ 2 parts, such that if (P,L) ∈ Ai and
(Q,M) ∈ Aj, with i 6= j, then P ⊆M or Q ⊆ L.

Our aim is to bound |A| when each point and each line occurs at most
once among the flags in a given part Ai, and at most twice in A, while each
part Ai contains two flags (P,L) and (P ′, L′) with P 6⊆ L′ and P ′ 6⊆ L.

Example 1. Fix a conic in PG(2, 3), and take A = A1 ∪ A2, where A1

consists of the four flags (P,L) with P on the conic, and L the tangent at P ,
and A2 consists of the six flags (Q,M) with Q an exterior point, and M the
unique secant on Q.

Example 2. In PG(2, q), fix three noncollinear points P1, P2, P3 and take
A = A1∪A2∪A3, where A1 consists of the q+1 flags (P,L) with P ⊆ P2+P3

and L = P + P1, and A2 of the two flags (Pi, Pi + P2) (i = 1, 3), and A3 of
the two flags (Pi, Pi + P3) (i = 1, 2).

Let (P,L) and (P ′, L′) be flags in A1 such that P 6⊆ L′ and P ′ 6⊆ L. Any
flag (Q,M) in A \ A1 has either Q = L ∩ L′, or M = P + P ′, or Q ⊆ L
and P ′ ⊆ M , or Q ⊆ L′ and P ⊆ M . If m = 2, then A2 contains at most
1 + 1 + (q−1) + (q−1) = 2q flags, and the same holds for A1, so |A| ≤ 4q. If
m ≥ 3, then two flags (Q,M), (Q′,M ′) with Q,Q′ ⊆ L and P ′ ⊆M,M ′ must
belong to the same part, and we find |A\A1| ≤ 2+2+(q−1)+(q−1) = 2q+2,
so that |A| ≤ 3q + 3. Altogether |A| ≤ max(3q + 3, 4q).

Suppose A1 contains (at least) three flags. For a flag (Q,M) in A \ A1

we find three conditions, at least two on Q or at least two on M , so that
|A2| ≤ 6 and |A \ A1| ≤ 12. It follows that |A| ≤ max(12, 2q + 2) for m = 2
and |A| ≤ max(18, 2q + 4) for m > 2. Combining both estimates, we have in
all cases |A| ≤ 3q + 3.
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9 The subspace spanned by the tops

Not all C-flags can have their top on the same line L, since the planes on L
would be heavy. Consider the case where all tops lie in a plane A.

Proposition 15 Let C be a maximal coclique without colored points, with
a plane A containing all tops, and no further heavy planes. Then all other
C-planes intersect A in a line.

Proof. There is no line containing the tops of all planes different from A,
because its points would be colored. Suppose that there is a C-flag (Q,B)
with A ∩ B = Q, a single point. There is a C-plane B′ not containing Q. It
intersects B in a line M disjoint from A, hence also intersects A in a single
point Q′.

The C-planes C that intersect A in a line contain Q and Q′, so if there
is at least one such plane, then all planes different from A have their top on
Q + Q′. Contradiction.

If there is no such plane, then all other C-planes intersect A in a single
point, and not all of them have their top on Q+Q′. It follows that all contain
the line M and the coclique is not maximal. 2

Proposition 16 Let C be a maximal coclique without colored points, with
a plane A containing all tops, and no further heavy planes. Then |C| ≤
4q2 + 4q + 1.

Proof. All C-planes other than A meet A in a line. So a C-plane B 6= A
determines a long flag (Q,M,B, S), where Q is the top, M = A∩B is a line
and S = A + B a solid. The collection of long flags gives a collection A of
flags (Q,M) in the plane A, where A has a partition indexed by S, and AS

contains the (Q,M) from a long flag (Q,M,B, S). We are in the situation
of the previous section:

If (Q,M,B, S) is a long flag, then because of Lemma 5 all (Q,M,B′, S)
are. Since Q is white, it is in at most two such pencils (Q,M, ∗, S), and
at most one with given S, so that Q occurs at most twice in A, and at
most once in AS. Since all planes other than A are light, there are no long
flags (Q′,M,B′, S) with Q′ 6= Q, so that M occurs at most once in AS. If
(Q,M,B, S) and (Q′,M ′, B′, S ′) are long flags and Q 6⊆ M ′ and Q′ 6⊆ M ,
then S = S ′, since B and B′ must meet in a line. For every long flag
(Q,M,B, S) there is such a (Q′,M ′, B′, S), for otherwise all flags with top Q
and plane containing M are in C, and Q would be colored. If (Q1,M,B1, S1)
and (Q2,M,B2, S2) are long flags, with Q1 6= Q2, then S1 6= S2, and now
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(R,N,C, T ) with R not on M (which exists since not all tops are on M)
must have either N = Q1 + R and T = S2, or N = Q2 + R and T = S1. In
particular, M cannot contain a 3rd top, so that M occurs at most once in A.

Having verified the assumptions of the previous section, we may use the
conclusion that the number of flags (Q,M) is at most 3q + 3. It follows that
|C| = q2 + q + 1 + q|A| ≤ 4q2 + 4q + 1. 2

Next, consider the case with all tops in a solid.

Proposition 17 Let C be a maximal coclique without colored points and with
at most one heavy plane, such that all tops lie in a solid S. Then all tops lie
in a plane A.

Proof. Suppose all tops are in S. Not all C-planes are in S, since C is small.
Let F be the collection of C-flags (Q,B) such that B ∩ S is a line, and let L
be the set of those lines. Then L is intersecting. If |L| = 1 then any top Q
on this unique line is colored. Otherwise, if all lines contain a fixed point P ,
then P is colored. Contradiction in both cases. Hence all lines are in a plane
A, and this plane is heavy. Suppose (R,C) is a C-flag with R 6⊆ A. Then A
and C meet in a line L. If (Q,B) is a C-flag with B 6⊆ S then Q ⊆ L. It
follows that all planes on L in S are heavy, a contradiction. 2

10 Proof of the theorem—Case D

Each of the examples (i)–(xi) occurring in the conclusion of the theorem has
one or more colored points. So in bounding the size of C, having only white
points will play an important part.

We further investigate case D by ignoring a heavy plane, and adding q2+q
to the bound for the number of planes in those cases where Proposition 16
does not apply. Recall that C is necessarily small and all points are white.
We start with a lemma that will be used several times in our estimates.

Lemma 18 Let U be a subspace, and let F ⊆ C be a set of flags (R,C) with
C ∩ U = R. Then either all flags in F have the same top or the F-planes
intersect pairwise in a line.

Proof. Two F -planes with different top must intersect in a line, because
they cannot contain the other one’s top. If two F -planes with the same top
are otherwise disjoint, then there are no F -planes with another top. 2
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Proposition 19 Let C be a maximal coclique without colored points, con-
taining three flags (Pi, Ai) (i = 1, 2, 3), where the three planes Ai are distinct
and contain a common line L but are not all contained in one solid, and the
three points Pi are not on L. Then |C| ≤ 4q2 + 4q + 2.

Proof. We count C-flags (R,C).
(i) There are at most q2 + q + 1 planes C with L ⊆ C.
(ii) There are at most q2 + q flags (R,C) with R ⊆ L 6⊆ C:

We apply Lemma 18 with U = L. If all these flags have the same (white)
top then there are at most 2q + 1. If not, then the planes intersect pairwise
in a line. So all are in a solid or on the same line. Since there are at least
two points R, and L 6⊆ C, all planes are in a solid on L. Since the points R
are white, each R is top of at most q + 1 flags in that solid, and in fact of at
most q since L 6⊆ C.

(iii) There are at most q2+q+1 planes C in flags (R,C) where C contains
at least two of the points Pi (i = 1, 2, 3) and R is not on L:
If C meets L and contains Pi, Pj, then it is contained in Ai + Aj and meets
the third plane in a single point on L only, a contradiction. So C meets
each of the Ai in a single point only, either Pi or R. Now the planes C form
a collection of planes pairwise intersecting in a line, hence all are on a line
or are contained in a solid. If all contain the same line, there are at most
q2 + q + 1 planes C. Otherwise, all are contained in a solid S and contain a
side of the triangle P1P2P3 so there are at most 3q + 1.

Finally, add q2 + q to convert the count of planes into a count of flags. 2

Proposition 20 Let C be a maximal coclique without colored points, with at
most one heavy plane (not containing all tops), containing flags (P0, A0) and
(P1, A1) with Pi 6⊆ A1−i (i = 0, 1). Then |C| ≤ 4q2 + 5q + 4.

Proof. The planes A0 and A1 meet in a line L, and A0 + A1 is a solid S.
By Proposition 17 there is a C-flag (Q,B) with Q 6⊆ S. For any such C-flag,
either B ∩ S = L or B ∩ S = P0 + P1. (Indeed, if B intersects both Ai in
a line, then B ∩ S = L. Otherwise B must contain a point Pi, but then it
cannot intersect the other plane in a line, so B also contains P1−i.) If the
former case occurs, we are done by Proposition 19. So we may assume that
B ∩ S = P0 + P1 for all flags (Q,B) with top outside S.

If A is a heavy plane, then we can apply the above with A0 = A, choosing
for A1 a plane with top not on A. But then B ∩ A is a single point other
than Q, a contradiction. Therefore, we may assume that there are no heavy
planes.

Again we count (planes C in) C-flags (R,C):
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(i) There is at most 1 flag (R,C) with R ⊆ L ⊆ C:
The plane C must contain Q, hence C = L + Q.

(ii) There are at most 2q + 1 flags (R,C) with R ⊆ L 6⊆ C:
We apply Lemma 18 with U = L. If all C are on the same (white) R then
we find at most 2q + 1. If not, and all C are in a solid T , then T contains
L and we find at most 2q, since if a point R is on q + 1 C-planes in T then
one of these planes contains L, and this happens for at most one R since the
plane has to be L + Q. Finally, if all C share a line N then N is disjoint
from L (since L 6⊆ C) and we find at most q + 1.

(iii) There are at most q2 + q flags (R,C) with R ⊆ P0 + P1 6⊆ C (this
includes the flags (P0, A0) and (P1, A1)):
We apply Lemma 18 with U = P0 +P1. If all C are in a solid then this solid
is S and on every point of P0+P1 we find at most a pencil of planes on a line,
so at most q planes, since one of the planes of the pencil contains P0 + P1.
In the other case the C are all on a line, but this line is L, so they are still
in the solid S.

(iv) There are at most 2(q2 + q + 1) flags (R,C) with R 6= Pi ⊆ C for
i = 0 or i = 1 (this includes the cases with P0 + P1 ⊆ C):
The number of planes on a point P with another top is at most q2 + q + 1
because the planes must pairwise intersect in a line (hence contain a common
line, or lie on P inside a common solid).

Altogether we find at most 4q2 + 5q + 4 planes, hence flags. 2

Finally we consider the case that the above does not occur.

Proposition 21 Let C be a maximal coclique without colored points and
without heavy planes. If for any pair of flags (Pi, Ai) (i = 0, 1) we have
Pi ⊆ A1−i for at least one i, then |C| ≤ 2q2 + 6q + 4.

The assumption about heavy planes is not essential: if there is a heavy plane
A then this plane contains all tops, and we are in a case already dealt with.

Proof. Define a directed graph on C by (P,A) → (Q,B) if P ⊆ B (so
that in particular (P,A) → (P,A)). Now if |C| = l then there is a flag with
outdegree at least l/2 (since there is an arrow between every two vertices),
so we have a point P on that many C-planes. Since all points are white, the
number of C-flags (P,A) with given P is at most 2q+ 1, but also the number
of C-flags (Q,A) with Q 6= P ⊆ A is small, at most q2 + q+ 1, since two such
flags share a line through P . So we get l/2 ≤ q2+3q+2 and |C| ≤ 2q2+6q+4.
2

Summing up what we found: We determined all C with more than one
heavy plane. That yielded examples (i)–(xi). In the remaining cases we
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found upper bounds for |C| not larger than 4q2 + 5q + 4. This proves the
theorem.
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q-Kneser graphs, Designs Codes and Cryptography, to appear (2012).

[3] A. Blokhuis and A. E. Brouwer and Ç. Güven, Cocliques in the Kneser
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