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Abstract

Ðoković [3] gave an algorithm for the computation of the Poincaré
series of the algebra of invariants of a binary form, where the cor-
rectness proof for the algorithm depended on an unproven conjecture.
Here we prove this conjecture.

1 Introduction
In [3] Ðoković gave an algorithm for the computation of the Poincaré series
of the algebra of invariants of a binary form, depending on the following
conjecture.

Let n ≥ 3 be an integer. If n is odd, define integers s and m and polyno-
mials pn(z, t) and qn(z, t) and rn(t) by n = 2s− 1 and m = s2 and

pn(z, t) =
s∏
i=1

(1− tz2i−1), qn(z, t) =
s∏
i=1

(z2i−1 − t), rn(t) =
n−1∏
i=2

(1− t2i).

If n is even, let n = 2s and m = s(s+ 1) and

pn(z, t) =
s∏
i=1

(1− tz2i), qn(z, t) =
s∏
i=1

(z2i − t), rn(t) = (1 + t)
n−1∏
i=2

(1− ti).

Let φn(z, t) = zm−2(z2 − 1)rn(t).
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Conjecture 1.1 ([3], Conjecture 3.1) There exist polynomials an, bn ∈ Z[z, t]
of z-degree m− 2 such that φn = anqn + bnpn.

Here we prove a slightly stronger and more precise result. Keep the above
definition of rn(t) for odd n and for n = 2 (that is, r2(t) = 1 + t), but define
for even n ≥ 4:

rn(t) = (1 + t)2
n−1∏
i=3

(1− ti) or rn(t) = (1 + t)2
n−1∏
i=3

(1− ti) / (1 + t
1
2
n−1)

when n ≡ 2 (mod 4) or n ≡ 0 (mod 4), respectively. Again put φn(z, t) =
zm−2(z2 − 1)rn(t). Then

Proposition 1.2 There exist polynomials an, bn ∈ Z[z, t] of z-degree m − 2
such that φn = anqn + bnpn. Conversely, if ψn = anqn + bnpn, where an, bn ∈
Z[z, t] and ψn = zm−2(z2 − 1)h(t) for some h ∈ Z[t], then rn|h.

Unrelated to the computation of Poincaré series was a further conjecture:

Conjecture 1.3 ([3], Conjecture 3.2) Let In = 〈pn, qn〉 be the ideal of Z[z, t]
generated by pn and qn. Then In∩Z[t] is the principal ideal of Z[t] generated
by the polynomial

(1− t2)
n−1∏
i=1

(1− t2i), (1 + t)
n−1∏
i=1

(1− ti),
n−1∏
i=1

(1− ti),

according as to whether n is odd, congruent to 2 modulo 4, or divisible by 4.

This is true when n is odd, or n ≡ 2 (mod 4), or n = 4, but false when
4|n, n > 4. Here we prove

Proposition 1.4 Let In = 〈pn, qn〉 be the ideal of Z[z, t] generated by pn and
qn. Then In ∩ Z[t] is the principal ideal of Z[t] generated by the polynomial

(1− t2)
n−1∏
i=1

(1− t2i), (1 + t)
n−1∏
i=1

(1− ti), (1 + t)
n−1∏
i=1

(1− ti)/(1 + t
1
2
n−1),

according as to whether n is odd, congruent to 2 modulo 4, or divisible by 4.

The generator here is (1−t2)2rn(t) when n is odd, (1−t)rn(t) when n = 2,
and (1− t)2rn(t) for even n > 2.
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2 Relation with the denominator of the Poincaré
function

Consider the Poincaré series P (t) =
∑

k dkt
k of the (graded) ring of invariants

of a binary form of degree n, where dk = dim Ik is the vector space dimension
of the degree k part. Then P (t) is a rational function given by the integral

P (t) =
1

2πi

∫
|z|=1

fn(z, t)
dz

z

where
fn(z, t) =

1− z−2∏n
k=0(1− tzn−2k)

.

If n is odd, then the denominator of fn(z, t) is z−mpnqn. If n is even, it is
(1− t)z−mpnqn. Let In = 〈pn, qn〉 be the ideal of Z[z, t] generated by pn and
qn. Let g(t) ∈ Z[t] be such that ψ(z, t) := zm−2(z2 − 1)g(t) ∈ In. Then
ψ = anqn + bnpn for certain an, bn ∈ Z[z, t], where bn has z-degree at most
m− 1, so that (omitting subscripts) ψ

pq
= a

p
+ b

q
. If n is odd, then

g(t)P (t) =
1

2πi

∫
|z|=1

(
an(z, t)

pn(z, t)
+
bn(z, t)

qn(z, t)

)
dz

z
.

Take |t| < 1. The contribution of the second term vanishes, since all poles are
inside the unit circle, and the residue at ∞ is 0. The first term has all poles
outside the unit circle, and contributes its residue at 0, which is an(0, t). We
find P (t) = an(0, t)/g(t), so that g(t) is a denominator of P (t). Similarly, if
n is even, (1− t)g(t) is a denominator of P (t).

Conjecturally (Dixmier’s Conjecture 1 in [2]), the denominator of lowest
degree of P (t) is rn(t) when n is odd, and (1 − t)rn(t) when n is even, and
Dixmier proved that this is a denominator. The above discussion reproves
his result (but does not prove his conjecture) since we may take g(t) = rn(t)
by Proposition 1.2. A related result was proved in Derksen [1].

3 Proof — Preliminaries
The proofs of Propositions 1.2 and 1.4 are given simultaneously. The two
main parts say that (i) certain specified functions are in the ideal In, and
(ii) all elements of In have certain properties. Proposition 1.2 makes an
additional claim about degrees. Let us settle that first, and make some other
useful observations.
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We drop the index n. Note that each of p, q, φ has z-degree m, and that
q(z, t) = zmp(z−1, t) and p(z, t) = zmq(z−1, t) and φ(z, t) = −z2m−2φ(z−1, t).

Degrees. Assume that φ = aq+ bp for certain polynomials a = a(z, t) and
b = b(z, t). Since q has z-degree m, we may assume that b has z-degree at
most m− 1, and then also a has. The equalities just observed yield

(zm−2a(z−1, t) + b(z, t)) p(z, t) + (zm−2b(z−1, t) + a(z, t)) q(z, t) = 0.

Since p and q have no common factor, zm−1a(z−1, t) + zb(z, t) = Aq(z, t)
and zm−1b(z−1, t) + za(z, t) = −Ap(z, t) for some A. Now Azmq(z−1, t) =
zm−1b(z−1, t) + za(z, t) = −Ap(z, t) = −Azmq(z−1, t), and we must have
A = 0. It follows that a and b are polynomials of z-degree at mostm−2. That
the degrees cannot be smaller follows by comparing both sides of φ = aq+ bp
upon substitution of t = 0.

Polynomials. Let I = 〈p, q〉 be the ideal of Z[z, t] generated by p and q.
Since z | (p − 1), it follows that if zf ∈ I, then also f ∈ I. In particular, if
φ = aq+ bp where a, b are rational functions with no poles other than z = 0,
so that zeφ ∈ I for some e ≥ 0, then also φ ∈ I.

The case n = 2. If n = 2, then s = 1, m = 2 and p = 1− tz2, q = z2 − t,
and r = 1 + t. Proposition 1.2 claims (z2 − 1)(1 + t) ∈ I, which holds since
(z2 − 1)(1 + t) = q − p. And that if (z2 − 1)h(t) ∈ I for some h ∈ Z[t], then
h(−1) = 0. But p(z,−1) = q(z,−1) = 1 + z2, so (z2 − 1)h(−1) has a factor
z2 + 1, and hence h(−1) = 0. Proposition 1.4 claims that I ∩Z[t] = (1− t2),
and that is clear.

4 Proof — Existence
Next we show the existence of a, b in the various cases. Below, n is fixed and
no longer written as index to p = pn and q = qn, so that we can use indices
to p and q with a different meaning. Now p = p(z, t) =

∏s−1
i=0 (1− tzn−2i) and

q = q(z, t) =
∏s−1

i=0 (zn−2i − t), where n = 2s− 1 or n = 2s.
Let ψ ∈ Z[z, t] be given. (It will be the function claimed to be in I in

Proposition 1.2 or 1.4.) In order to show ψ = aq + bp for some a, b ∈ Z[z, t],
we rewrite this equation as

ψ

pq
=
a

p
+
b

q

and split this into partial fractions.
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For some rational functions ah(z), bh(z) and c(z, t), where c(z, t) is a poly-
nomial in t, we have

ψ

pq
=

s−1∑
h=0

ah
1− tzn−2h

+
s−1∑
h=0

bh
zn−2h − t

+ c

The ah, bh follow by multiplying by 1−tzn−2h resp. zn−2h−t and substituting
t = z2h−n resp. t = zn−2h. Thus,

ah =
ψ

phq

∣∣∣∣
t=z2h−n

and bh =
ψ

pqh

∣∣∣∣
t=zn−2h

,

where ph = p/(1− tzn−2h) and qh = q/(zn−2h − t).
If we expand bh as a formal power series in z, we only get integer co-

efficients, since all factors in the denominator (other than powers of z) are
±(1 − zk) for some k. So if we show that fbh is a polynomial, for some
f ∈ Z[z], then in fact it is in Z[z].

We show that ah and bh have no other poles than 0 and ±1, and that a
and b can be taken to be polynomials. There are 6 cases: n odd, n ≡ 2 (mod
4), n ≡ 0 (mod 4) in Proposition 1.2, where ψ(z, t) = zm−2(z2 − 1)r(t), and
in Proposition 1.4, where ψ(z, t) is the polynomial claimed to generate the
ideal I. In all cases ψ(z, t) is divisible by r(t). We assume n ≥ 3.

Poles of bh
The denominator p(z, zn−2h)qh(z, zn−2h) of bh has zeros that are roots of

unity or 0. Let ω be a primitive d-th root of unity, d > 2. We show that
ω is not a pole of bh. The multiplicity of ω as a root of the denominator is
the number of elements of the sequence −2h,−2h+ 2, . . . ,−2, 2, . . . , 2n− 2h
other than n−2h that is divisible by d, at most b(n−h)/ec+bh/ec ≤ bn/ec,
where e = d when d is odd, and e = d/2 when d is even. The multiplicity of
ω as a root of the numerator is at least its multiplicity as root of r(t). If n
is odd, this latter multiplicity is at least b(n − 1)/ec, and hence is greater,
unless perhaps e divides both h and n − h, so that d divides 2n − 4h, and
ω is root of each of the n − 2 factors of r(zn−2h). Since n − 2 ≥ bn/ec this
settles the claim in case n is odd.

Now suppose n ≡ 2 (mod 4). In the numerator we have a factor r(zn−2h)
which has a factor

∏n−1
i=3 (1 − z2i), which has ω as a root of multiplicity

b(n−1)/ec if e ≥ 3. Again we conclude that ω can be a pole of bh only when
e divides h and n−h and d does not divide the omitted number n−2h. Now
ω is a root of (z2(n−2h) − 1)/(zn−2h − 1) = zn−2h + 1, and we are saved by
the additional factor t+ 1 in r(t). The same holds for d = 4, e = 2 since the
other additional factor t+ 1 in r(t) helps for odd h.
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If n ≡ 0 (mod 4), n > 4, then the same holds, except that in r(t) a factor
1− t2s−2 was replaced by 1− ts−1, so that the numerator of bh lost a factor
(1−z2(s−1)(n−2h))/(1−z(s−1)(n−2h)). So we may suppose that d | 2(s−1)(n−2h)
and d - (s − 1)(n − 2h), so that d is even and d - n − 2h. Now ω is a root
of zn−2h + 1 if and only if it is a root of z2(n−2h) − 1. The multiplicity of
ω as a root of the numerator is at least the number of integers i(n − 2h)
divisible by d, where i ∈ {1, 2, . . . , n− 3, n− 1}, that is the number of such
i(s − h) divisible by e. If g = gcd(e, s − h) > 1, this number is at least
bg(n − 1)/ec − 1, which is not smaller than bn/ec, as desired. So, we may
assume gcd(e, s− h) = 1, so that e | 2(s− 1), e - (s− 1)(s− h) and e is even,
h is odd. Now e - h and e - n − h and the multiplicity of ω as root of the
denominator equals b(h − 1)/ec + b(n − h − 1)/ec. Its multiplicity as root
of the numerator is at least b(n− 3)/ec, so if ω is a pole, then e|(h− 1) and
e|(n− h− 1), so e|n− 2h, so e = 2 and we are saved by the additional factor
1 + zn−2h in the numerator.

The case n = 4 follows by a simple direct check.

This shows that bh has no other poles than perhaps 0 and ±1. The
multiplicity of ±1 as a root of the denominator is n− 1, and as a root of the
numerator n− 2 in the case of Proposition 1.2 and at least n− 1 in the case
of Proposition 1.4. Define b(z, t) =

∑
h bh(z)qh(z, t). We show that b(z, t)

has no poles other than perhaps z = 0. The only other possible poles are
simple ones at z = ±1 in the case of Proposition 1.2. If n ≡ 2 (mod 4), the
residue of bhqh at z = 1 is

Rh = (−1)h22−n(n− 2h)n−2(1− t)s−1 (n− 1)!

h!(n− h)!
= C · (−1)h(n− 2h)n−2

(
n

h

)
,

where C is independent of h. These residues add up to zero. Indeed

s−1∑
h=0

Rh =
1

2
C ·

n∑
h=0

(−1)h
(
n

h

)
(n− 2h)n−2.

This sum equals the (n− 2)-nd derivative of (ez − e−z)n evaluated at z = 0.
But since n− 2 < n this derivative is still divisible by ez− e−z and hence the
sum is zero. If n ≡ 0 (mod 4) or n is odd, the residues differ from the above
by a factor 2−1 or 2n−3, respectively, and again sum to zero. The residues at
z = −1 are the same, up to a sign independent from h, and also sum to zero.
So, indeed, b(z, t) has no other poles than possibly at z = 0.

For a =
∑
ahph the computation is the same since ah and bh, and also ph

and qh, have the same residue at z = ±1 (up to a sign independent of h).
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It follows that for sufficiently large N we may write zNψ = aq+ bp+ cpq
where a, b, c are polynomials. We can replace a by a+cp to get zNψ = aq+bp.
It follows that ψ ∈ I. 2

5 Proof of Proposition 1.4 — Part 2
Next, we show that no lower degree polynomials are in I ∩ Z[t].

Lemma 5.1 Let f(x) ∈ R[x] be such that f(x) = u for a positive and f(x) =
v for b negative x. Then f is constant or has degree at least a+ b− 1.

Proof: f ′(x) has (at least) a− 1 positive and b− 1 negative zeros. 2

The next lemma describes a way to get lower bounds for the degree of
nonzero elements in I ∩ Z[t].

Lemma 5.2 Let z0, t0 be complex numbers such that p(z0, t0) = q(z0, t0) = 0.
Let 0 6= h ∈ I ∩Z[t]. Then the multiplicity e of t0 as zero of h is at least the
number of factors of pq of which (z0, t0) is a zero, minus one.

Proof: Let 0 6= h(t) = a(z, t)q(z, t) + b(z, t)p(z, t). Apply the linear trans-
formation z = z0(1 + z̄) and t = t0(1 + t̄) to the polynomials involved, and
define f̄ ∈ C[z̄, t̄] by f̄(z̄, t̄) = f(z, t) for f ∈ Z[z, t]. Since p(0, t) = p(z, 0) =
1, the numbers z0, t0 are nonzero, and this linear transformation preserves
degrees. We find h̄(t̄) = ā(z̄, t̄)q̄(z̄, t̄) + b̄(z̄, t̄)p̄(z̄, t̄).

For any (nonzero) polynomial f , let f0 be the term of f having lowest
total degree. If f = gh then f0 = g0h0, and if f + g + h = 0, then either
f0 + g0 + h0 = 0 or two of f0, g0, h0 sum to zero while the third has higher
degree.

Apply this to the equality h̄ = āq̄ + b̄p̄. Let q =
∏

i∈K(zi − t) and
p =

∏
j∈L(1− tzj). Let K0 = {i ∈ K | zi0 = t0} and L0 = {j ∈ L | t0zj0 = 1}.

A factor zi− t of q transforms to zi0(1+ z̄)i− t0(1+ t̄). If zi0 6= t0 then this has
a nonzero constant term, but if zi0 = t0 its lowest degree term is t0(iz̄ − t̄).
So we find that q̄0 (and hence (āq̄)0) is divisible by

∏
i∈K0

(iz̄ − t̄). Similarly,
the lowest degree part of b̄p̄0 is divisible by

∏
j∈L0

(t̄+ jz̄). The lowest degree
part of h̄ is t̄e for some exponent e which is the multiplicity of t0 as zero of h,
and we conclude that ct̄e = ā0q̄0 + b̄0p̄0, where c = 0 when e is larger than the
degree of ā0q̄0. (Note that h̄ is a function of t̄ only, while q̄0 and p̄0 depend
on z̄, so ā0q̄0 and b̄0p̄0 have the same degree.)

Put t̄ = 1 to dehomogenize the system and look at the polynomial
ā0(z̄, 1)q̄0(z̄, 1). It has zeros at z̄ = 1/i for i ∈ K0, and equals c for
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z̄ = −1/j where j ∈ L0. Now apply the previous lemma to the real part
of sā0(z̄, 1)q̄0(z̄, 1), where s ∈ C is chosen such that this real part is not
identically zero, to find a lower bound for e. 2

Let g(t) be the polynomial claimed to generate I ∩ Z[t]. Below we shall
find for each zero t0 of g(t) a z0 such that this lower bound for the multiplicity
e of t0 as zero of h equals the multiplicity of t0 as zero for g. It will follow
that h is a multiple of g.

Even n

Let n = 2s. Recall that g(t) = (1 + t)
∏n−1

i=1 (1 − ti) for odd s, while g(t) =

(1 + t)
∏n−1

i=1 (1 − ti)/(1 + t
1
2
n−1) for even s. Renormalize, replacing z2 by z,

so that p = pn(z, t) =
∏s

i=1(1 − tzi) and q = qn(z, t) =
∏s

i=1(z
i − t). Let

g(t0) = 0, where t0 is a primitive d-th root of unity. Given t0, we find z0 such
that the lower bound given by the above lemma for the multiplicity e of t0
as zero of h equals the multiplicity of t0 as zero of g. Suitable pairs (z0, t0)
must satisfy zi0 = t0 for some 1 ≤ i ≤ s and zj0t0 = 1 for some 1 ≤ j ≤ s.

For t0 = 1 take z0 = 1, then both zi0 = t0 and zj0t0 = 1 have s solutions,
and we find e ≥ 2s− 1 = n− 1. For t0 = −1 take z0 = −1, then both zi0 = t0
and zi0t0 = 1 are true for all odd i, b(s+ 1)/2c values, and we find e ≥ s if s
is odd and e ≥ s− 1 if s is even, as desired.

For td0 = 1, d > 2, we take z0 = ta0 such that the equations ai ≡ 1 (mod
d) and aj ≡ −1 (mod d) in total have as many solutions with 1 ≤ i ≤ s and
1 ≤ j ≤ s as possible. If the solutions for i are i0, i0 + d, . . ., then for j we
get d− i0, 2d− i0, . . .. Let s = md+ r with 0 ≤ r < d and first try i0 = 1. If
r = 0 we find m i’s, m j’s, and e ≥ 2m − 1. If r > 0 we find m + 1 i’s and
at least m j’s, so e ≥ 2m. We can get the inequality e ≥ 2m + 1 if i0 can
be chosen in such a way that there are m+ 1 i’s and m+ 1 j’s, that is, if i0
can be chosen with d− r ≤ i0 ≤ r, and coprime to d. This requires r > 1

2
d,

and then for odd d the choice i0 = 1
2
(d + 1) works. If 4|d, then the choice

i0 = 1
2
d+1 works. If d ≡ 2 (mod 4), then the choice i0 = 1

2
d+2 works, unless

r = 1
2
d+ 1, that is, unless d|n− 2, d - s− 1. Since this corresponds precisely

to the additional factor in the denominator of g(t) when 4|n, we showed in
all cases that e is at least the multiplicity of the root t0 of g(t).

Odd n

Now let n = 2s − 1, and g(t) = (1 − t2)
∏n−1

i=1 (1 − t2i). Put p = pn(z, t) =∏s
i=1(1− tz2i−1), q = qn(z, t) =

∏s
i=1(z

2i−1 − t).
Let t0 be a primitive d-th root of unity. Put δ = d if d is odd, and

δ = d/2 if d is even. The multiplicity of t0 as a root of g is n for t0 = ±1,
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and b(n − 1)/δc for d > 2. Suitable pairs (z0, t0) must satisfy z2i−10 = t0 for
some 1 ≤ i ≤ s and z2j−10 t0 = 1 for some 1 ≤ j ≤ s. For t0 = ±1 take
z0 = t0, then both z2i−10 = t0 and z2j−10 t0 = 1 have s solutions, and we find
e ≥ 2s− 1 = n. For d > 2 take z0 = ta0 for suitable a. Then we want i, j such
that a(2i− 1) ≡ 1 (mod d) and a(2j − 1) ≡ −1 (mod d). We find solutions
i0, i0 + δ, i0 + 2δ, . . . and j0, j0 + δ, j0 + 2δ, . . . where j0 = δ + 1 − i0. Let
s = mδ+ r with 0 ≤ r < δ. In every interval of length δ we find an i and a j.
If r = 0 we get e ≥ 2m− 1. If r ≥ 1 we get e ≥ 2m. If (δ + 1)/2 < r < δ we
may take i0 = δ/2 if δ is even and (δ− 1)/2 if δ is odd, and find e ≥ 2m+ 1.
2

6 Proof of Proposition 1.2 — Part 2
The last thing to be proved is the ‘Conversely’ part of Proposition 1.2. We
already saw that zf ∈ I if and only if f ∈ I, so the hypothesis here is that
(z2 − 1)h(t) ∈ I, and we hope to conclude that rn|h.

The proof is very similar to the second half of the proof of Proposition
1.4. Again we apply the same linear transformation and take terms of lowest
total degree.

If n = 2s is even, rescale first, replacing z2 by z. Then transform and
take terms of lowest degree. The factor (z − 1) transforms to z0(1 + z̄) − 1
which has constant term of lowest degree, unless z0 = 1, in which case the
term of lowest degree is z̄. Earlier we took for each t0 that is a primitive
d-th root of unity a z0 that also is a primitive d-th root of unity. That is, for
t0 6= 1 we have z0 6= 1 and the lower bound on the multiplicity of the root t0
of h(t) is the same as before.

It remains to estimate the multiplicity of 1 as a root of h(t). From cz̄t̄e =
ā0q̄0 + b̄0p̄0 we see that ā0(z̄, 1)q̄0(z̄, 1) has the property that for the s values
z̄ = 1/i with 1 ≤ i ≤ s it vanishes, while for the s values z̄ = −1/j with
1 ≤ j ≤ s its values lie on the line cz̄. For its derivative that means that
there are s − 1 positive values where it vanishes and s − 1 negative values
where it equals c, so that the derivative has degree at least 2s − 3 = n − 3,
and hence ā0q̄0 has degree at least n− 2, and e ≥ n− 3. This bound is two
less than before, but g(t) = (t− 1)2rn(t) so this suffices.

Now let n = 2s−1 be odd. The factor (z2−1) transforms to z20(1+z̄)2−1,
which has constant term of lowest degree, unless z20 = 1, in which case the
term of lowest degree is 2z̄. All is as before, and we find the same lower
bound on the multiplicity of the root t0 of h(t) as before, unless t20 = 1 and
z0 = t0. As in the case n even, we find e ≥ 2s − 3, that is, e ≥ n − 2. This
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bound is two less than before, but g(t) = (t2 − 1)2rn(t) so this suffices. We
proved everything. 2
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