Covering all points except one

A. Blokhuis & A. E. Brouwer

Dept. of Mathematics, Technological University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands aartb@win.tue.nl, aeb@cwi.nl

and

T. Szőnyi*

Institute of Mathematics, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C and Computer and Automation Research Institute Hungarian Academy of Sciences H-111 Budapest, Lágymányosi ú. 11 szonyi@cs.elte.hu

2008-11-27

Abstract

In many point-line geometries more lines are needed to cover all points except one, than to cover all points. Bounds can be given by looking at the dimension of the space of functions induced by polynomials of bounded degree.

AMS Classification: 51A*, 51E*.

1 Lagrange interpolation

Suppose A is a finite set, and F a field, and for each $a \in A$ we have a function $f_a : A \to F$ that vanishes on $A \setminus \{a\}$ but is nonzero in a. Then the vector space of functions on A, which has dimension |A|, has basis $\{f_a \mid a \in A\}$.

This very simple observation gives easy proofs for various inequalities.

Proposition 1.1 (Jamison [9], BS [6]) Let AG(2,q) and PG(2,q) denote the desarguesian affine and projective plane of order q.

(i) If S is a set of points in AG(2,q) that meets every line, then $|S| \ge 2q-1$. (ii) If S is a set of lines in PG(2,q) that covers all points except one (which

is not covered), then $|S| \ge 2q - 1$. (iii) If S is a set of lines in AG(2,q) that covers all points except one (which

is not covered), then $|S| \ge 2q - 2$.

^{*}The third author gratefully acknowledges the financial support of NWO, including the support of the DIAMANT and Spinoza projects. He thanks the Department of Mathematics of the Technological University Eindhoven for the warm hospitality. He was partly supported by OTKA Grants T 49662 and NK 67867.

Proof: Clearly (i) and (ii) are equivalent via the point-line duality in PG(2,q). And (ii) and (iii) are equivalent: PG(2,q) and AG(2,q) differ by 1 line, and all lines in PG(2,q) are equivalent. It remains to show (iii).

The vector space of functions on AG(2,q) (with values in \mathbb{F}_q) has dimension q^2 and a basis consisting of the polynomials $X^i Y^j$ for $0 \leq i, j \leq q-1$. If $f_0 := \prod_{i=1}^m (a_i X + b_i Y + 1)$ vanishes everywhere except in (0,0), then $f_0(X - a, Y - b)$ vanishes everywhere except in the point (a,b), so that the vector space of functions on AG(2,q) is spanned by these $f_0(X - a, Y - b)$. But then there is a term $X^{q-1}Y^{q-1}$ in the expansion of the product for f_0 , and $m \geq 2(q-1)$. \Box

We can do this again, and show with precisely the same proof

Proposition 1.2 (Jamison [9], BS [6]) Let AG(n,q) and PG(n,q) denote the desarguesian affine and projective space of order q and dimension n. Let n > 0.

(i) If S is a set of points in AG(n,q) that meets every hyperplane, then $|S| \ge n(q-1) + 1$.

(ii) If S is a set of hyperplanes in PG(n,q) that covers all points except one (which is not covered), then $|S| \ge n(q-1) + 1$.

(iii) If S is a set of hyperplanes in AG(n,q) that covers all points except one (which is not covered), then $|S| \ge n(q-1)$.

Of course we did not really use the fact that the cover consists of hyperplanes, only the degrees mattered. We used a hyperplane to go from PG(n,q) to AG(n,q), but that can be avoided. First some preparation.

A homogeneous polynomial $f = f(X_1, ..., X_{n+1})$ of degree d has values on PG(n, q) that are defined up to a d-th power. In particular, it has well-defined values on PG(n, q) when its degree is a multiple of q - 1. Also inhomogeneous polynomials of which all terms have a degree divisible by q - 1 are well-defined on PG(n, q).

Proposition 1.3 Each function f on PG(n,q) can be written in a unique way as linear combination of monomials $X_1^{d_1}...X_{n+1}^{d_{n+1}}$ where $0 \le d_i \le q-1$ for all i, and $\sum d_i = j(q-1)$ where j is an integer, $0 \le j \le n$. The same is true with the condition $1 \le j \le n+1$.

Proof: Since $X^q - X$ and $\prod (1 - X_i^{q-1})$ vanish identically, each function can be written in the indicated way. But the number of monomials as indicated equals the number $q^n + \ldots + q + 1$ of points of PG(n, q).

Proposition 1.4

(i) If $f = f(X_1, ..., X_n)$ is a polynomial that vanishes in all points of AG(n, q) except one, then f has degree at least n(q-1).

(ii) If $f = f(X_1, ..., X_{n+1})$ is a polynomial without constant term and with all terms of degree divisible by q - 1, and f vanishes in all points of PG(n, q) except one, then f has degree at least (n + 1)(q - 1).

Proof: (i) This was proved already. (ii) Using linear transformations we find polynomials f_a that vanish everywhere except in the point a, so that these f_a span the space of functions on PG(n, q). The degrees that occur among the

terms of the f_a are not larger than the degree of f, and by Proposition 1.3 degree (n+1)(q-1) occurs.

Alon–Füredi [1] give a generalization of Proposition 1.2(iii) to rectangular boxes. Bounds on the degree of polynomials not vanishing in a nonempty subset of a grid can be found in Ball–Serra [3] in a more general situation.

Partial covers of PG(2,q)1.1

In the above we looked at the case where a unique point is not covered. For the case of more holes (non-covered points), one has

Proposition 1.5 A partial cover of PG(2,q) with h > 0 holes, not all on one line, has size at least 2q - 1 - h/2.

Proof: We can add at most h/2 additional lines and get a cover with precisely 1 hole. By the foregoing, it uses at least 2q - 1 lines.

This is stronger than recent results in [7], and is best possible since q-1lines on a fixed point together with m lines on a different point on one of the earlier lines leave h = 2(q - m) holes, and equality holds.

1.2Covering the complement of a conic

Let q be odd. A cover of the complement of a conic in PG(2,q) with elliptic lines is a partial cover with h = q + 1 holes, not all on a line. Hence

Proposition 1.6 A cover of the complement of a conic in PG(2,q), q odd, by elliptic lines, contains at least 3(q-1)/2 lines.

This is best possible for q = 3, 5, 7, 11. In each of these four cases there is up to isomorphism a unique cover of the complement of a conic by elliptic lines. There is no other example of size 3(q-1)/2 for odd q, q < 25. (These results were obtained by a computer search for solutions of a differential equation for certain lacunary polynomials very much along the lines of Section 4 in [5].)

$\mathbf{2}$ Variations

Another approach to the same material is via power sums.

Proposition 2.1 Let n > 0. If $f = f(X_1, ..., X_{n+1})$ is a homogeneous polynomial that vanishes in all points of PG(n,q) except one, then f has degree at *least* n(q-1) + 1.

Proof: Let $F = \mathbb{F}_q$. If $0 \le i < q-1$ then $\sum_{x \in F} x^i = 0$. Let $X^d = X_1^{d_1} \dots X_{n+1}^{d_{n+1}}$. If $\sum d_i < (n+1)(q-1)$, then $\sum_{x \in F^{n+1}} x^d = 0$ since for at least one of the d_i we have $0 \le d_i < q - 1$.

Suppose f has degree at most n(q-1). We may multiply f by some monomial and assume that f has degree precisely n(q-1). This is less than (n+1)(q-1)so f sums to 0 over all of F^{n+1} . The degree of f is a multiple of q-1, so f is well defined on PG(n,q), and the sum over a 1-space (projective point) is q-1 times the value in any representative. But f is nonzero in precisely one projective point. Contradiction.

Note that this gives a new proof of Proposition 1.2 and 1.4(i).

Slightly more general is the following version, following the old Brouwer-Schrijver argument.

Proposition 2.2 If $f = f(X_1, ..., X_{n+1})$ is a nonzero polynomial that vanishes everywhere except on some nonempty subset of \mathbb{F}_q^*a , where a is a nonzero vector, then f has degree at least n(q-1) + 1.

Proof: We may take a = (0, ..., 0, 1) and take f reduced mod $X_i^q - X_i$ for all i, so that no exponents larger than q-1 occur. If $x_1 \neq 0$ then $f(x_1, X_2, ..., X_{n+1})$ vanishes identically and hence is the zero polynomial. If follows that f has a factor $X_1^{q-1} - 1$. The same holds for $X_2, ..., X_n$, so $f = (X_1^{q-1} - 1)...(X_n^{q-1} - 1)g$ for some polynomial g. Since f(0) = 0 the polynomial g is not constant. \Box

3 Almost covering curves or surfaces

Let an *almost cover* of a set be a cover of all points of the set except one (which is not covered).

Let C be a subset of PG(n,q) given by the equation $f(X) = f(X_1, ..., X_{n+1}) = 0$, where f is a polynomial with values in the subfield \mathbb{F}_r of \mathbb{F}_q (say, $q = r^m$). Suppose that C is almost covered by a collection of d > 0 hyperplanes. Let L be the product of the equations of these hyperplanes. Then $L.(1 - f^{r-1})$ vanishes everywhere except in a single point and by Proposition 2.2 has degree at least n(q-1) + 1.

For a quadric (f of degree 2, q = r), degenerate or not, we find $d+2(q-1) \ge n(q-1)+1$, so that $d \ge (n-2)(q-1)+1$.

Proposition 3.1 Let n > 2 and let Q be a quadric in PG(n,q) that is not the union of two hyperplanes. Then Q has an almost cover of size (n-2)(q-1)+1 but no smaller almost cover.

Proof: We already proved the upper bound. It remains to construct an almost cover of that size. If n > 3 then use induction: pick q hyperplanes on a fixed PG(n-2,q) that can be chosen later, to cover all points except those in the last hyperplane PG(n-1,q) (and in that PG(n-1,q) this PG(n-2,q) is already covered). For n = 3 if there is a plane π that meets Q in a single point P (that is, if Q is not a hyperbolic quadric) then pick a line L in π not on P, and take for S the set of q planes other than π on L. Finally if Q is a hyperbolic quadric, let π be a plane meeting Q in a conic C. Let P be a point of C, and take for S the set of q tangent planes in the points of C other than P.

For a hermitean variety, given by $\sum_{i=1}^{k} X_i^{r+1} = 0$ $(3 \le k \le n+1)$, where $q = r^2$, we find that $d + q - 1 \ge n(q-1) + 1$, so that $d \ge (n-1)(q-1) + 1$.

Proposition 3.2 Let H be a hermitean variety in PG(n,q) that is not the union of hyperplanes, where $q = r^2$. Then H has an almost cover of size (n - 1)(q - 1) + 1 but no smaller almost cover.

Proof: The proof of the previous proposition can be copied starting from an almost cover of size q of a hermitean curve in PG(2, q). Such an almost cover can be obtained by taking the $r^2 - r$ non-tangent lines through a point p not on the curve and covering all but one points of p^{\perp} by r lines.

In particular, an almost cover of a classical unital(=hermitean curve) in PG(2,q) (where $q = r^2$) has at least q lines. This property might characterize classical unitals.

Among the 4466 designs S(2, 4, 28) with nontrivial automorphism group ([10]) all except the classical unital have the property that for each choice of a point, the complement of the point is the union of 7 or 8 lines (while for the classical unital always 9 lines are needed).

Thas [12] shows for a unital U (a design with parameters $S(2, r + 1, r^3 + 1)$) embedded in $PG(2, r^2)$ that if the tangents of U at collinear points are concurrent, then U is classical. Dually it follows for an embedded unital that if the points of tangency of concurrent tangents are collinear, then U is classical. Now if U is a unital embedded in $PG(2, r^2)$ and $a \notin U$, then there are r + 1 tangents and $r^2 - r$ secants through a to U. If the points of tangency are not collinear, then for some p we can cover $U \setminus \{p\}$ with $r^2 - 1$ lines, violating the above property. This shows that this property characterizes the classical unital among the embedded unitals.

The same argument shows that in the classical unital a partial spread of deficiency 1 can be extended to a full spread.

For more general (affine) curves we can prove something slightly weaker:

Proposition 3.3 Let C be a subset of size N(>1) of an affine curve C of degree d in AG(2,q), given by an equation of the form

$$f(X, Y) = X^d - g(X, Y) = 0,$$

without linear component, where g has no term X^d . Then there is a point $P \in C$ such that in order to cover $C \setminus \{P\}$ one needs at least t = (N/d) + (d-3)/2 lines.

The condition on g simply means that the infinite point (1:0:0) does not belong to the projective closure of C so this is no restriction.

Note that this improves the trivial lower bound (N-1)/d for d > 2.

Proof: Let

$$h(X,Y) = \prod_{i=1}^{t} (a_i X + b_i Y + c_i),$$

be a cover of $C \setminus \{P\}$. Then h is contained after reducing X^d to g(X, Y) in the subspace of dimension (t+1)d - d(d-1)/2 of $\mathbf{F}[X,Y]$ spanned by the monomials X^kY^l , $k+l \leq t$, k < d. If this can be done for each point $P \in C$, then $(t+1)d - d(d-1)/2 \geq N$.

Note that for some points a cheaper cover may exist. For example, one can find a 9-point curve C of degree 4 in AG(2, 4) that is the union of two conics that meet in P, where $C \setminus \{P\}$ can be covered by two lines.

4 Almost covering projective space by subspaces

Jamison [9] showed that one needs $q^{n-m} - 1 + m(q-1)$ copies of AG(m,q) to cover all points except one of AG(n,q). How many PG(m-1,q)'s are needed to cover all points but one in PG(n-1,q)?

Proposition 4.1 Let $m \le n/2$. Then the complement of a PG(n - m - 1, q) in a projective space PG(n - 1, q) has a partition into copies of PG(m - 1, q).

Proof: Let t = n - m. The projective space PG(2t - 1, q) can be partitioned into PG(t - 1, q)'s, and any two of these PG(t - 1, q)'s span PG(2t - 1, q). Fix one of the PG(t - 1, q)'s, say Z, and let Y be a PG(n - 1, q) containing Z. Then Y meets each of the other PG(t - 1, q)'s in a PG(m - 1, q).

Using the fact that PG(m-1,q) minus a point has a cover with q copies of PG(m-2,q) and q-1 copies of PG(i-1,q) for each $i, 1 \le i \le m-2$, we find

Proposition 4.2 In the projective space PG(mt+r-1,q), where $0 \le r \le m-1$, one can cover all points except one with

$$\frac{q^{mt+r} - q^r}{q^m - 1} + (m-1)(q-1)$$

copies of PG(m-1,q).

Proof: Cover the complement of a PG(m + r - 1, q) in PG(mt + r - 1, q) by PG(m - 1, q)'s. Next, if r > 0, fill up PG(m + r - 1, q) by $q^r + 1$ copies of PG(m - 1, q) on a common PG(m - r - 1, q). Finally, replace one of the PG(m - 1, q)'s. If r = 0 we had a partition, and need (m - 1)(q - 1) + 1 hyperplanes. If r > 0 then already a PG(m - r - 1, q) was covered, and we need one hyperplane less.

We will show that this is best possible, essentially using Jamison's proof. Identify the vector space underlying PG(mt + r - 1, q) with $GF(q^{mt+r})$. Then 'projective' functions can be represented by polynomials where all terms have degrees divisible by q - 1. The space of these functions is spanned by the monomials $X^{(q-1)k}$, $0 \le k < (q^{mt+r} - 1)/(q - 1)$. A subspace PG(m - 1, q) has an equation in the subspace

$$\langle 1, X^{q-1}, X^{q^2-1}, \dots, X^{q^m-1} \rangle$$

(cf. [2, 9]).

Now consider a covering of all points but one by a collection \mathcal{A} of (m-1)-spaces. This gives us the function

$$\prod_{a \in \mathcal{A}} (a_0 + a_1 X^{q-1} + \dots + a_m X^{q^m - 1})$$

with the property that all monomials $X^{(q-1)k}$ with $(q-1)k < q^{mt+r} - 1$ occur in the expansion of this product. Assume $|\mathcal{A}| = \frac{q^{mt+r} - q^r}{q^m - 1} + (m-1)(q-1) - 1$. We will show that the exponent $q^{mt+r} - q^r - (m-1)(q-1)$ does not occur in the expansion of this product. Indeed, suppose

$$\sum_{i=0}^{m} \alpha_i (q^i - 1) = q^{mt+r} - q^r - (m-1)(q-1)$$

where $\sum \alpha_i = |\mathcal{A}|$. If we add $|\mathcal{A}|$ to both sides we find

$$\sum_{i=0}^m \alpha_i q^i = q^m \frac{q^{mt+r}-q^r}{q^m-1} - 1$$

which is $-1 \mod q^m$ so that $\sum_{i=0}^{m-1} \alpha_i \ge m(q-1)$. Given $|\mathcal{A}|$, the sum $\sum_{i=0}^m \alpha_i q^i$ is maximal when α_m is maximal. Hence

$$\sum_{i=0}^{m} \alpha_i q^i \le (\frac{q^{mt+r} - q^r}{q^m - 1} - q)q^m + q^m - 1,$$

contradiction. We showed

Proposition 4.3 In the projective space PG(mt+r-1,q), where $0 \le r \le m-1$, one cannot cover all points except one with fewer than

$$\frac{q^{mt+r} - q^r}{q^m - 1} + (m-1)(q-1)$$

copies of PG(m-1,q).

Note that one can cover all points of PG(mt + r - 1, q) with $\frac{q^{mt+r}-q^r}{q^{m-1}} + 1$ copies of PG(m-1, q), and this is best possible (for $1 \le r \le m$), see [4, 8].

5 Fractional versus integral covers

In [11] Lovász shows that a hypergraph (that is a set system) with fractional covering number τ^* and point degrees bounded by d there exists an integral cover of size $\tau \leq (1+\log d)\tau^*$. Here a cover of a set system is a set of points intersecting each member of the set system. Almost covering PG(n,q) by hyperplanes has $d = q^{n-1}$ and $\tau^* = q$ and $\tau = n(q-1) + 1$, so we essentially have this ratio up to a factor log q. Something similar holds for the hermitean surface in PG(n,q).

References

- N. Alon & Z. Füredi, Covering the Cube by Affine Hyperplanes Europ. J. Comb. 14 (1993) 79–83.
- [2] S. Ball, *Polynomials in Finite Geometries*, in: Surveys in Combinatorics, 1999, Edited by J.D. Lamb & D.A. Preece 17–36.
- [3] S. Ball & O. Serra, *Punctured combinatorial Nullstellensätze*, Combinatorica, to appear.
- [4] A. Beutelspacher, On t-covers in finite projective spaces, J. Geometry 12 (1979) 10–16.
- [5] A. Blokhuis & A.E. Brouwer & H.A. Wilbrink, Blocking sets in PG(2, p) for small p, and partial spreads in PG(3, 7), in: special issue dedicated to Adriano Barlotti, Adv. Geom. (2003), suppl., S245–S253.

- [6] A. E. Brouwer & A. Schrijver, The blocking number of an affine space, J. Combin. Th. (A) 24 (1978) 251–253.
- [7] S. Dodunekov, L. Storme & G. Van de Voorde, *Partial covers of* PG(n,q), preprint, Aug. 2008.
- [8] J. Eisfeld, On smallest covers of inite projective spaces, Arch. Math. 68 (1997) 77-80.
- R. E. Jamison, Covering finite fields with cosets of subspaces, J. Combin. Th. (A) 22 (1977) 253-266.
- [10] V. Krčadinac, Steiner 2-designs S(2,4,28) with nontrivial automorphisms, Glasnik Matematicki 37 (57) (2002) 259–268.
- [11] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975) 383–390.
- [12] J. A. Thas, A Combinatorial Characterization of Hermitian Curves, J. Alg. Combin. 1 (1992) 97–102.