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Abstract

In many point-line geometries more lines are needed to cover all points
except one, than to cover all points. Bounds can be given by looking at the
dimension of the space of functions induced by polynomials of bounded
degree.

AMS Classification: 51A*, 51E*.

1 Lagrange interpolation

Suppose A is a finite set, and F a field, and for each a ∈ A we have a function
fa : A→ F that vanishes on A \ {a} but is nonzero in a. Then the vector space
of functions on A, which has dimension |A|, has basis {fa | a ∈ A}.

This very simple observation gives easy proofs for various inequalities.

Proposition 1.1 (Jamison [9], BS [6]) Let AG(2, q) and PG(2, q) denote the
desarguesian affine and projective plane of order q.

(i) If S is a set of points in AG(2, q) that meets every line, then |S| ≥ 2q−1.
(ii) If S is a set of lines in PG(2, q) that covers all points except one (which

is not covered), then |S| ≥ 2q − 1.
(iii) If S is a set of lines in AG(2, q) that covers all points except one (which

is not covered), then |S| ≥ 2q − 2.
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Proof: Clearly (i) and (ii) are equivalent via the point-line duality in PG(2, q).
And (ii) and (iii) are equivalent: PG(2, q) and AG(2, q) differ by 1 line, and all
lines in PG(2, q) are equivalent. It remains to show (iii).

The vector space of functions on AG(2, q) (with values in Fq) has dimension
q2 and a basis consisting of the polynomials XiY j for 0 ≤ i, j ≤ q − 1. If
f0 :=

∏m
i=1(aiX + biY + 1) vanishes everywhere except in (0, 0), then f0(X −

a, Y − b) vanishes everywhere except in the point (a, b), so that the vector space
of functions on AG(2, q) is spanned by these f0(X−a, Y − b). But then there is
a term Xq−1Y q−1 in the expansion of the product for f0, and m ≥ 2(q − 1). �

We can do this again, and show with precisely the same proof

Proposition 1.2 (Jamison [9], BS [6]) Let AG(n, q) and PG(n, q) denote the
desarguesian affine and projective space of order q and dimension n. Let n > 0.

(i) If S is a set of points in AG(n, q) that meets every hyperplane, then
|S| ≥ n(q − 1) + 1.

(ii) If S is a set of hyperplanes in PG(n, q) that covers all points except one
(which is not covered), then |S| ≥ n(q − 1) + 1.

(iii) If S is a set of hyperplanes in AG(n, q) that covers all points except one
(which is not covered), then |S| ≥ n(q − 1). �

Of course we did not really use the fact that the cover consists of hyper-
planes, only the degrees mattered. We used a hyperplane to go from PG(n, q)
to AG(n, q), but that can be avoided. First some preparation.

A homogeneous polynomial f = f(X1, ..., Xn+1) of degree d has values on
PG(n, q) that are defined up to a d-th power. In particular, it has well-defined
values on PG(n, q) when its degree is a multiple of q − 1. Also inhomogeneous
polynomials of which all terms have a degree divisible by q − 1 are well-defined
on PG(n, q).

Proposition 1.3 Each function f on PG(n, q) can be written in a unique way
as linear combination of monomials Xd1

1 ...X
dn+1
n+1 where 0 ≤ di ≤ q− 1 for all i,

and
∑
di = j(q − 1) where j is an integer, 0 ≤ j ≤ n. The same is true with

the condition 1 ≤ j ≤ n+ 1.

Proof: Since Xq −X and
∏

(1−Xq−1
i ) vanish identically, each function can

be written in the indicated way. But the number of monomials as indicated
equals the number qn + ...+ q + 1 of points of PG(n, q). �

Proposition 1.4
(i) If f = f(X1, ..., Xn) is a polynomial that vanishes in all points of AG(n, q)

except one, then f has degree at least n(q − 1).
(ii) If f = f(X1, ..., Xn+1) is a polynomial without constant term and with

all terms of degree divisible by q − 1, and f vanishes in all points of PG(n, q)
except one, then f has degree at least (n+ 1)(q − 1).

Proof: (i) This was proved already. (ii) Using linear transformations we find
polynomials fa that vanish everywhere except in the point a, so that these fa

span the space of functions on PG(n, q). The degrees that occur among the
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terms of the fa are not larger than the degree of f , and by Proposition 1.3
degree (n+ 1)(q − 1) occurs. �

Alon–Füredi [1] give a generalization of Proposition 1.2(iii) to rectangular
boxes. Bounds on the degree of polynomials not vanishing in a nonempty subset
of a grid can be found in Ball–Serra [3] in a more general situation.

1.1 Partial covers of PG(2, q)

In the above we looked at the case where a unique point is not covered. For the
case of more holes (non-covered points), one has

Proposition 1.5 A partial cover of PG(2, q) with h > 0 holes, not all on one
line, has size at least 2q − 1− h/2.

Proof: We can add at most h/2 additional lines and get a cover with precisely
1 hole. By the foregoing, it uses at least 2q − 1 lines. �

This is stronger than recent results in [7], and is best possible since q − 1
lines on a fixed point together with m lines on a different point on one of the
earlier lines leave h = 2(q −m) holes, and equality holds.

1.2 Covering the complement of a conic

Let q be odd. A cover of the complement of a conic in PG(2, q) with elliptic
lines is a partial cover with h = q + 1 holes, not all on a line. Hence

Proposition 1.6 A cover of the complement of a conic in PG(2, q), q odd, by
elliptic lines, contains at least 3(q − 1)/2 lines. �

This is best possible for q = 3, 5, 7, 11. In each of these four cases there is
up to isomorphism a unique cover of the complement of a conic by elliptic lines.
There is no other example of size 3(q − 1)/2 for odd q, q < 25. (These results
were obtained by a computer search for solutions of a differential equation for
certain lacunary polynomials very much along the lines of Section 4 in [5].)

2 Variations

Another approach to the same material is via power sums.

Proposition 2.1 Let n > 0. If f = f(X1, ..., Xn+1) is a homogeneous poly-
nomial that vanishes in all points of PG(n, q) except one, then f has degree at
least n(q − 1) + 1.

Proof: Let F = Fq. If 0 ≤ i < q − 1 then
∑

x∈F x
i = 0.

Let Xd = Xd1
1 ...X

dn+1
n+1 . If

∑
di < (n+ 1)(q− 1), then

∑
x∈F n+1 xd = 0 since

for at least one of the di we have 0 ≤ di < q − 1.
Suppose f has degree at most n(q−1). We may multiply f by some monomial

and assume that f has degree precisely n(q− 1). This is less than (n+ 1)(q− 1)
so f sums to 0 over all of Fn+1. The degree of f is a multiple of q − 1, so f
is well defined on PG(n, q), and the sum over a 1-space (projective point) is
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q − 1 times the value in any representative. But f is nonzero in precisely one
projective point. Contradiction. �

Note that this gives a new proof of Proposition 1.2 and 1.4(i).

Slightly more general is the following version, following the old Brouwer-
Schrijver argument.

Proposition 2.2 If f = f(X1, ..., Xn+1) is a nonzero polynomial that vanishes
everywhere except on some nonempty subset of F∗qa, where a is a nonzero vector,
then f has degree at least n(q − 1) + 1.

Proof: We may take a = (0, ..., 0, 1) and take f reduced mod Xq
i −Xi for all i,

so that no exponents larger than q− 1 occur. If x1 6= 0 then f(x1, X2, ..., Xn+1)
vanishes identically and hence is the zero polynomial. If follows that f has a
factor Xq−1

1 −1. The same holds for X2, ..., Xn, so f = (Xq−1
1 −1)...(Xq−1

n −1)g
for some polynomial g. Since f(0) = 0 the polynomial g is not constant. �

3 Almost covering curves or surfaces

Let an almost cover of a set be a cover of all points of the set except one (which
is not covered).

Let C be a subset of PG(n, q) given by the equation f(X)=f(X1, ..., Xn+1)=
0, where f is a polynomial with values in the subfield Fr of Fq (say, q = rm).
Suppose that C is almost covered by a collection of d > 0 hyperplanes. Let L be
the product of the equations of these hyperplanes. Then L.(1− fr−1) vanishes
everywhere except in a single point and by Proposition 2.2 has degree at least
n(q − 1) + 1.

For a quadric (f of degree 2, q = r), degenerate or not, we find d+2(q−1) ≥
n(q − 1) + 1, so that d ≥ (n− 2)(q − 1) + 1.

Proposition 3.1 Let n > 2 and let Q be a quadric in PG(n, q) that is not the
union of two hyperplanes. Then Q has an almost cover of size (n−2)(q−1) + 1
but no smaller almost cover.

Proof: We already proved the upper bound. It remains to construct an almost
cover of that size. If n > 3 then use induction: pick q hyperplanes on a fixed
PG(n−2, q) that can be chosen later, to cover all points except those in the last
hyperplane PG(n− 1, q) (and in that PG(n− 1, q) this PG(n− 2, q) is already
covered). For n = 3 if there is a plane π that meets Q in a single point P (that
is, if Q is not a hyperbolic quadric) then pick a line L in π not on P , and take
for S the set of q planes other than π on L. Finally if Q is a hyperbolic quadric,
let π be a plane meeting Q in a conic C. Let P be a point of C, and take for S
the set of q tangent planes in the points of C other than P . �

For a hermitean variety, given by
∑k

i=1X
r+1
i = 0 (3 ≤ k ≤ n + 1), where

q = r2, we find that d+ q − 1 ≥ n(q − 1) + 1, so that d ≥ (n− 1)(q − 1) + 1.

Proposition 3.2 Let H be a hermitean variety in PG(n, q) that is not the
union of hyperplanes, where q = r2. Then H has an almost cover of size (n −
1)(q − 1) + 1 but no smaller almost cover.
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Proof: The proof of the previous proposition can be copied starting from an
almost cover of size q of a hermitean curve in PG(2, q). Such an almost cover
can be obtained by taking the r2 − r non-tangent lines through a point p not
on the curve and covering all but one points of p⊥ by r lines. �

In particular, an almost cover of a classical unital(=hermitean curve) in
PG(2, q) (where q = r2) has at least q lines. This property might characterize
classical unitals.

Among the 4466 designs S(2, 4, 28) with nontrivial automorphism group
([10]) all except the classical unital have the property that for each choice of a
point, the complement of the point is the union of 7 or 8 lines (while for the
classical unital always 9 lines are needed).

Thas [12] shows for a unital U (a design with parameters S(2, r + 1, r3 +
1)) embedded in PG(2, r2) that if the tangents of U at collinear points are
concurrent, then U is classical. Dually it follows for an embedded unital that if
the points of tangency of concurrent tangents are collinear, then U is classical.
Now if U is a unital embedded in PG(2, r2) and a /∈ U , then there are r + 1
tangents and r2 − r secants through a to U . If the points of tangency are not
collinear, then for some p we can cover U \ {p} with r2 − 1 lines, violating the
above property. This shows that this property characterizes the classical unital
among the embedded unitals.

The same argument shows that in the classical unital a partial spread of
deficiency 1 can be extended to a full spread.

For more general (affine) curves we can prove something slightly weaker:

Proposition 3.3 Let C be a subset of size N(> 1) of an affine curve C of degree
d in AG(2, q), given by an equation of the form

f(X,Y ) = Xd − g(X,Y ) = 0,

without linear component, where g has no term Xd. Then there is a point P ∈ C
such that in order to cover C \ {P} one needs at least t = (N/d) + (d − 3)/2
lines.

The condition on g simply means that the infinite point (1 : 0 : 0) does not
belong to the projective closure of C so this is no restriction.

Note that this improves the trivial lower bound (N − 1)/d for d > 2.

Proof: Let

h(X,Y ) =
t∏

i=1

(aiX + biY + ci),

be a cover of C \ {P}. Then h is contained after reducing Xd to g(X,Y ) in
the subspace of dimension (t + 1)d − d(d − 1)/2 of F[X,Y ] spanned by the
monomials XkY l, k + l ≤ t, k < d. If this can be done for each point P ∈ C,
then (t+ 1)d− d(d− 1)/2 ≥ N . �

Note that for some points a cheaper cover may exist. For example, one can
find a 9-point curve C of degree 4 in AG(2, 4) that is the union of two conics
that meet in P , where C \ {P} can be covered by two lines.
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4 Almost covering projective space by subspaces

Jamison [9] showed that one needs qn−m − 1 +m(q − 1) copies of AG(m, q) to
cover all points except one of AG(n, q). How many PG(m − 1, q)’s are needed
to cover all points but one in PG(n− 1, q)?

Proposition 4.1 Let m ≤ n/2. Then the complement of a PG(n −m − 1, q)
in a projective space PG(n− 1, q) has a partition into copies of PG(m− 1, q).

Proof: Let t = n−m. The projective space PG(2t− 1, q) can be partitioned
into PG(t− 1, q)’s, and any two of these PG(t− 1, q)’s span PG(2t− 1, q). Fix
one of the PG(t−1, q)’s, say Z, and let Y be a PG(n−1, q) containing Z. Then
Y meets each of the other PG(t− 1, q)’s in a PG(m− 1, q). �

Using the fact that PG(m− 1, q) minus a point has a cover with q copies of
PG(m− 2, q) and q− 1 copies of PG(i− 1, q) for each i, 1 ≤ i ≤ m− 2, we find

Proposition 4.2 In the projective space PG(mt+r−1, q), where 0 ≤ r ≤ m−1,
one can cover all points except one with

qmt+r − qr

qm − 1
+ (m− 1)(q − 1)

copies of PG(m− 1, q).

Proof: Cover the complement of a PG(m + r − 1, q) in PG(mt + r − 1, q)
by PG(m − 1, q)’s. Next, if r > 0, fill up PG(m + r − 1, q) by qr + 1 copies
of PG(m − 1, q) on a common PG(m − r − 1, q). Finally, replace one of the
PG(m − 1, q)’s. If r = 0 we had a partition, and need (m − 1)(q − 1) + 1
hyperplanes. If r > 0 then already a PG(m−r−1, q) was covered, and we need
one hyperplane less. �

We will show that this is best possible, essentially using Jamison’s proof.
Identify the vector space underlying PG(mt+ r − 1, q) with GF(qmt+r). Then
‘projective’ functions can be represented by polynomials where all terms have
degrees divisible by q − 1. The space of these functions is spanned by the
monomials X(q−1)k, 0 ≤ k < (qmt+r − 1)/(q− 1). A subspace PG(m− 1, q) has
an equation in the subspace

〈1, Xq−1, Xq2−1, . . . , Xqm−1〉

(cf. [2, 9]).
Now consider a covering of all points but one by a collection A of (m−1)-spaces.
This gives us the function∏

a∈A
(a0 + a1X

q−1 + · · ·+ amX
qm−1)

with the property that all monomials X(q−1)k with (q − 1)k < qmt+r − 1 occur
in the expansion of this product. Assume |A| = qmt+r−qr

qm−1 + (m− 1)(q − 1)− 1.
We will show that the exponent qmt+r − qr − (m− 1)(q − 1) does not occur in
the expansion of this product. Indeed, suppose

m∑
i=0

αi(qi − 1) = qmt+r − qr − (m− 1)(q − 1)
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where
∑
αi = |A|. If we add |A| to both sides we find

m∑
i=0

αiq
i = qm qmt+r − qr

qm − 1
− 1

which is −1 mod qm so that
∑m−1

i=0 αi ≥ m(q−1). Given |A|, the sum
∑m

i=0 αiq
i

is maximal when αm is maximal. Hence

m∑
i=0

αiq
i ≤ (

qmt+r − qr

qm − 1
− q)qm + qm − 1,

contradiction. We showed

Proposition 4.3 In the projective space PG(mt+r−1, q), where 0 ≤ r ≤ m−1,
one cannot cover all points except one with fewer than

qmt+r − qr

qm − 1
+ (m− 1)(q − 1)

copies of PG(m− 1, q). �

Note that one can cover all points of PG(mt + r − 1, q) with qmt+r−qr

qm−1 + 1
copies of PG(m− 1, q), and this is best possible (for 1 ≤ r ≤ m), see [4, 8].

5 Fractional versus integral covers

In [11] Lovász shows that a hypergraph (that is a set system) with fractional
covering number τ∗ and point degrees bounded by d there exists an integral cover
of size τ ≤ (1+log d)τ∗. Here a cover of a set system is a set of points intersecting
each member of the set system. Almost covering PG(n, q) by hyperplanes has
d = qn−1 and τ∗ = q and τ = n(q − 1) + 1, so we essentially have this ratio up
to a factor log q. Something similar holds for the hermitean surface in PG(n, q).
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