# The number of dominating sets of a finite graph is odd 

A. E. Brouwer, P. Csorba \& A. Schrijver

June 2, 2009

## 1 Dominating sets

Let $\Gamma$ be a finite graph with vertex set $V=V \Gamma$. A subset $D$ of $V$ is called dominating when each vertex in $V \backslash D$ has a neighbour in $D$. The following theorem answers a question by S. Akbari.

Theorem 1.1 The number of dominating sets of a finite graph is odd.
Proof: Let

$$
A:=\{(S, T) \mid S, T \subseteq V, S \cap T=\emptyset, s \nsim t \text { for all } s \in S, t \in T\}
$$

A subset $S$ of $V$ is dominating precisely when $\#\{T \mid(S, T) \in A\}$ is odd, and hence the number of dominating sets equals $|A|(\bmod 2)$. But $(S, T) \in A$ iff $(T, S) \in A$, and $(S, T)=(T, S)$ only if $S=T=\emptyset$, so $|A|$ is odd.

Along the same lines one can give the actual number of dominating sets. Given a subset $R$ of $V$, let $c(R)$ be the number of connected components of the subgraph of $\Gamma$ induced by $\Gamma$ on $R$.
Proposition 1.1 The number of dominating sets in $\Gamma$ is equal to $\sum_{R} 2^{c(R)}$, where the sum is over all subsets $R$ such that the subgraph induced by $\Gamma$ on $R$ has no connected components of odd size.

Proof: Let $A$ be as above. For fixed $S$, the sum $\sum_{(S, T) \in A}(-1)^{|T|}$ is 1 when $S$ is dominating, and 0 otherwise. Hence the number of dominating sets equals $\sum_{(S, T) \in A}(-1)^{|T|}=\sum_{R} \sum_{(S, T) \in A, R=S \cup T}(-1)^{|T|}$. The inner sum counts subsets $T$ of $R$ that are unions of connected components, where unions of even size count for 1 and unions of odd size for -1 . So, given $R$, the sum is nonzero only when all connected components of $R$ are even, and in that case the sum equals $2^{c(R)}$.

This reproves the theorem since $\sum_{R} 2^{c(R)}$ has precisely one odd term.
Proposition 1.2 Let $0<m<2^{n}$, $m$ odd. Then there exists a graph $\Gamma$ on $n$ vertices with precisely $m$ dominating subsets.

Proof: Apply induction on $n$. If $\Gamma$ has $m$ dominating subsets, then consider the graphs $\Gamma^{\prime}$ and $\Gamma^{\prime \prime}$ on $n+1$ vertices obtained by adding a new vertex that is isolated (for $\Gamma^{\prime}$ ) or joined to all old vertices (for $\Gamma^{\prime \prime}$ ). Then $\Gamma^{\prime}$ and $\Gamma^{\prime \prime}$ have $m$ and $2^{n}+m$ dominating subsets, respectively.

## 2 Simplicial complexes

The arguments used fit naturally in the setting of simplicial complexes. A simplicial complex $P$ here is a finite nonempty collection of finite nonempty sets such that if $\emptyset \neq X \subset Y \in P$ then $X \in P$. The Euler characteristic $\chi(P)$ is defined by $\chi(P)=\sum_{X \in P}(-1)^{|X|}$.

The barycentric subdivision of a simplicial complex $P$ is the simplicial complex of which the elements are the nonempty chains (subsets totally ordered by inclusion) in $P$.

Second proof of the theorem. Let $\Gamma$ be a graph on $n$ vertices, $n>0$, and look at the simplicial complex $P$ of all nonempty non-dominating sets. The Euler characteristic $\chi(P)$ is an alternating sum, and mod 2 one has $|P|=\chi(P)$. The Euler characteristic of a simplicial complex equals that of its barycentric subdivision.

For any nonempty set $S$ of vertices of $\Gamma$, let $f(S)$ be the set of all vertices of $\Gamma$ not equal or adjacent to anything in $S$. If $S$ is non-dominating, then also $f(S)$ is non-dominating, and $f$ defines a Galois correspondence so that $f^{2}$ is a closure operator. (That is, for all $S$ we have $S \subseteq f^{2}(S)$ and $f(S)=f^{3}(S)$. The set $S$ is called closed if $S=f^{2}(S)$.)

Consider an increasing chain $C=\left(S_{1}, \ldots, S_{m}\right)$ in $P$. If all $S_{j}$ in $C$ are closed, then pair $C$ with $\left(f\left(S_{1}\right), \ldots, f\left(S_{m}\right)\right)$. Otherwise, if $S_{j}$ is the last non-closed element in the chain, and $f^{2}\left(S_{j}\right)=S_{j+1}$ then pair $C$ with $C \backslash S_{j+1}$, otherwise pair $C$ with $C \cup f^{2}\left(S_{j}\right)$.

This pairing shows that the complex of all chains in the poset $P$ has an even number of vertices, and hence $|P|$ is even. Including the empty set we see that the total number of non-dominating sets is odd, and therefore the number of dominating sets is odd.

The simplicial complex $P$ used in this proof is related to the neighbourhood complex $\mathcal{N}(\Delta)$ of a graph $\Delta$ as introduced by Lovász [1]. Indeed, the simplices of $\mathcal{N}(\Delta)$ are the nonempty subsets with a common neighbour in $\Delta$, so that our $P$ is $\mathcal{N}(\bar{\Gamma})$, the neighbourhood complex of the complementary graph.

## References

[1] L. Lovász, Kneser's Conjecture, Chromatic Number, and Homotopy, J. Comb. Th. (A) (1978) 25 319-324.

