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1 Dominating sets

Let T be a finite graph with vertex set V. = VI'. A subset D of V is called
dominating when each vertex in V' '\ D has a neighbour in D. The following
theorem answers a question by S. Akbari.

Theorem 1.1 The number of dominating sets of a finite graph is odd.
Proof: Let
A={(S,T)|S,TCV, SNT=0, st tforall seS,teT}

A subset S of V is dominating precisely when #{T" | (S,T) € A} is odd, and
hence the number of dominating sets equals |A| (mod 2). But (S,T) € A iff
(T,S) € A, and (S,7) = (T,S5) only if S =T =0, so | 4] is odd. O

Along the same lines one can give the actual number of dominating sets.
Given a subset R of V| let ¢(R) be the number of connected components of the
subgraph of I' induced by I' on R.

Proposition 1.1 The number of dominating sets in I' is equal to ), 2¢(R)
where the sum s over all subsets R such that the subgraph induced by I" on R
has no connected components of odd size.

Proof: Let A be as above. For fixed S, the sum Z(S’T)GA(—I)‘T‘ is 1 when
S is dominating, and 0 otherwise. Hence the number of dominating sets equals
Z(&T)eA(—l)‘T‘ =R 2.(5T)eA, resur (=171 The inner sum counts subsets
T of R that are unions of connected components, where unions of even size count
for 1 and unions of odd size for —1. So, given R, the sum is nonzero only when
all connected components of R are even, and in that case the sum equals 2¢(/%).
O

This reproves the theorem since ) 2¢(F) has precisely one odd term.

Proposition 1.2 Let 0 < m < 2", m odd. Then there exists a graph I' on n
vertices with precisely m dominating subsets.

Proof: Apply induction on n. If I' has m dominating subsets, then consider
the graphs IV and I'” on n + 1 vertices obtained by adding a new vertex that is
isolated (for T) or joined to all old vertices (for I'). Then I'V and T have m
and 2" + m dominating subsets, respectively. O



2 Simplicial complexes

The arguments used fit naturally in the setting of simplicial complexes. A
simplicial complex P here is a finite nonempty collection of finite nonempty sets
such that if f # X C Y € P then X € P. The Euler characteristic x(P) is
defined by x(P) =3 ycp(—1)IXL

The barycentric subdivision of a simplicial complex P is the simplicial com-
plex of which the elements are the nonempty chains (subsets totally ordered by
inclusion) in P.

Second proof of the theorem. Let I' be a graph on n vertices, n > 0, and
look at the simplicial complex P of all nonempty non-dominating sets. The
Euler characteristic x(P) is an alternating sum, and mod 2 one has |P| = x(P).
The Euler characteristic of a simplicial complex equals that of its barycentric
subdivision.

For any nonempty set S of vertices of T', let f(S) be the set of all vertices
of I' not equal or adjacent to anything in S. If S is non-dominating, then also
f(S) is non-dominating, and f defines a Galois correspondence so that f? is a
closure operator. (That is, for all S we have S C f2(S) and f(S) = f3(5). The
set S is called closed if S = f2(S5).)

Consider an increasing chain C' = (54, ..., Sy,) in P. If all S in C' are closed,
then pair C' with (f(S1),..., f(Sm)). Otherwise, if S; is the last non-closed
element in the chain, and f2(S;) = S;4+1 then pair C with C'\ S; 41, otherwise
pair C' with C'U f2(S;).

This pairing shows that the complex of all chains in the poset P has an even
number of vertices, and hence |P| is even. Including the empty set we see that
the total number of non-dominating sets is odd, and therefore the number of
dominating sets is odd. O

The simplicial complex P used in this proof is related to the neighbourhood
complex A (A) of a graph A as introduced by Lovész [1]. Indeed, the simplices
of N(A) are the nonempty subsets with a common neighbour in A, so that our
P is N(T), the neighbourhood complex of the complementary graph.
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