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1 Dominating sets

Let Γ be a finite graph with vertex set V = V Γ. A subset D of V is called
dominating when each vertex in V \ D has a neighbour in D. The following
theorem answers a question by S. Akbari.

Theorem 1.1 The number of dominating sets of a finite graph is odd.

Proof: Let

A := {(S, T ) | S, T ⊆ V, S ∩ T = ∅, s 6∼ t for all s ∈ S, t ∈ T}.

A subset S of V is dominating precisely when #{T | (S, T ) ∈ A} is odd, and
hence the number of dominating sets equals |A| (mod 2). But (S, T ) ∈ A iff
(T, S) ∈ A, and (S, T ) = (T, S) only if S = T = ∅, so |A| is odd. 2

Along the same lines one can give the actual number of dominating sets.
Given a subset R of V , let c(R) be the number of connected components of the
subgraph of Γ induced by Γ on R.

Proposition 1.1 The number of dominating sets in Γ is equal to
∑

R 2c(R),
where the sum is over all subsets R such that the subgraph induced by Γ on R
has no connected components of odd size.

Proof: Let A be as above. For fixed S, the sum
∑

(S,T )∈A(−1)|T | is 1 when
S is dominating, and 0 otherwise. Hence the number of dominating sets equals∑

(S,T )∈A(−1)|T | =
∑

R

∑
(S,T )∈A,R=S∪T (−1)|T |. The inner sum counts subsets

T of R that are unions of connected components, where unions of even size count
for 1 and unions of odd size for −1. So, given R, the sum is nonzero only when
all connected components of R are even, and in that case the sum equals 2c(R).
2

This reproves the theorem since
∑

R 2c(R) has precisely one odd term.

Proposition 1.2 Let 0 < m < 2n, m odd. Then there exists a graph Γ on n
vertices with precisely m dominating subsets.

Proof: Apply induction on n. If Γ has m dominating subsets, then consider
the graphs Γ′ and Γ′′ on n+ 1 vertices obtained by adding a new vertex that is
isolated (for Γ′) or joined to all old vertices (for Γ′′). Then Γ′ and Γ′′ have m
and 2n +m dominating subsets, respectively. 2
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2 Simplicial complexes

The arguments used fit naturally in the setting of simplicial complexes. A
simplicial complex P here is a finite nonempty collection of finite nonempty sets
such that if ∅ 6= X ⊂ Y ∈ P then X ∈ P . The Euler characteristic χ(P ) is
defined by χ(P ) =

∑
X∈P (−1)|X|.

The barycentric subdivision of a simplicial complex P is the simplicial com-
plex of which the elements are the nonempty chains (subsets totally ordered by
inclusion) in P .

Second proof of the theorem. Let Γ be a graph on n vertices, n > 0, and
look at the simplicial complex P of all nonempty non-dominating sets. The
Euler characteristic χ(P ) is an alternating sum, and mod 2 one has |P | = χ(P ).
The Euler characteristic of a simplicial complex equals that of its barycentric
subdivision.

For any nonempty set S of vertices of Γ, let f(S) be the set of all vertices
of Γ not equal or adjacent to anything in S. If S is non-dominating, then also
f(S) is non-dominating, and f defines a Galois correspondence so that f2 is a
closure operator. (That is, for all S we have S ⊆ f2(S) and f(S) = f3(S). The
set S is called closed if S = f2(S).)

Consider an increasing chain C = (S1, ..., Sm) in P . If all Sj in C are closed,
then pair C with (f(S1), ..., f(Sm)). Otherwise, if Sj is the last non-closed
element in the chain, and f2(Sj) = Sj+1 then pair C with C \ Sj+1, otherwise
pair C with C ∪ f2(Sj).

This pairing shows that the complex of all chains in the poset P has an even
number of vertices, and hence |P | is even. Including the empty set we see that
the total number of non-dominating sets is odd, and therefore the number of
dominating sets is odd. 2

The simplicial complex P used in this proof is related to the neighbourhood
complex N (∆) of a graph ∆ as introduced by Lovász [1]. Indeed, the simplices
of N (∆) are the nonempty subsets with a common neighbour in ∆, so that our
P is N (Γ), the neighbourhood complex of the complementary graph.
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