DIRECTED STRONGLY REGULAR GRAPHS FROM
11-DESIGNS

A. E. BROUWER!, 0. OLMEZ2?, AND S. Y. SONG?2

ABSTRACT. Some families of directed strongly regular graphs with ¢t =
are constructed by using antiflags of lé-designs.

1. INTRODUCTION

A finite incidence structure consists of a finite set P of points, a set B of
blocks, and an incidence relation € between points and blocks. An incident
point-block pair is called a flag, and a non-incident point-block pair is called
an antiflag. A tactical configuration with parameters (v,b,k,r) is a finite
incidence structure 7 = (P, B, €) with |P| = v, |B| = b such that every
block contains k points and every point belongs to exactly r blocks.

A 11-design (Neumaier [14]) or partial geometric design (Bose, Shrikhande
& Singhi [1]) with parameters (v, b, k,r;a,b) is a tactical configuration 7 =
(P, B, €) with parameters (v, b, k, r) satisfying the property:

For every point z € P and every block B € B, the number
of flags (y,C) such that y € B and C 5> z is a if x ¢ B and
bifx € B.

Examples of 1%—designs include 2-designs, complete bipartite graphs K, ;,,
transversal designs, and partial geometries. The dual of a 1%—design is again
a 13-design. (cf. [14])

A directed strongly regular graph (Duval [4]) with parameters (v, k, t, A, i)
is a directed graph I' on v vertices without loops such that (i) every vertex
has in-degree and out-degree k, (ii) every vertex x has ¢ out-neighbors that
are also in-neighbors of z, and (iii) the number of directed paths of length two
from a vertex x to another vertex y is A if there is an edge from z to y, and
is p if there is no edge from x to y. We often denote I' a DSRG(v, k, t, A, 1)
in short.

Let I denote the identity matrix, and J the all-1 matrix (not necessarily
square), with sizes that are clear from the context. The adjacency matrix
of a directed strongly regular graph is a square (0,1)-matrix A with zero
diagonal such that the Z-linear span of I, J and A is closed under matrix
multiplication. Equivalently, a square (0,1)-matrix A with zero diagonal
such that for certain constants k,t, A\, i we have AJ = JA = kJ and A? =
tI + XA+ u(J -1 - A).

Dept. of Math., Eindhoven Univ. of Technology, Eindhoven, The Netherlands—
aeb@cwi.nl
2Dept. of Mathematics, Iowa State University, Ames, Iowa, 50011, U. S. A.—
oolmez@iastate.edu, sysong@iastate.edu
1



The incidence matrix of a 1i-design is a (0,1)-matrix N such that for
certain constants k,r,a,b we have JN = kJ, NJ = rJ, and NN'N =
(b—a)N +aJ.

In this note we observe the following: Given a 1%—design with incidence
matrix N, define a matrix A, with rows and columns indexed by the point-
block pairs (p, B) for which Nyp = 0, by A, By (4,c) = Npc. Then A is a
directed strongly regular graph. This yields directed strongly regular graphs
with previously unknown parameters.

2. CONSTRUCTION

We show that the set of antiflags of a 1%—design gives rise to a directed
strongly regular graph with parameters ¢ = pu.

Theorem 2.1. Let T = (P, B, €) be a tactical configuration with parameters
(v,b,k,r). Let ' =T'(T) be the directed graph defined by
V(I')={(p,B)e PxB:p¢ B}
and
(p, B) = (¢,C) if and only if p € C.
Then I is directed strongly reqular if and only if T is a 1%—design.

Proof: Let I' have adjacency matrix A. Write pB for an antiflag (p, B).
Then

(AQ)PBJJC = Z APBWDATD,qC = Z NpDNrC(l _NTD) =kr— (NNTN)pC-
rD r,.D

If 7 isa 1%—design with parameters (v,b,k,r;a,b), then NN'N = (b —
a)N + aJ, and hence A2 = (kr — a)J — (b — a)A, so that T is a directed
strongly regular graph with parameters

v=b(v—-k), k=r(v-k), t=p=kr—a, A=kr—b.
Conversely, suppose I' is a DSRG(v, k,t, A\, it). Then A% = (t — pu)I + (X —
p)A+pJ and we find ke — (NN " N)po = (t— )0y g0+ (A=) Npc+p for all
antiflags pB, gqC (where 0,p 4c is 1 when pB = ¢C and 0 otherwise). If t #
then d,p 4c is determined by p,C' and independent of ¢, B. This can hold

only forv=k+1,b=r+1,and A = J—1I so that u is undefined. Therefore,
we may assume that t =y, so that NNTN = (u — \)N + (kr — p)J. O

Similarly, the set of flags of a 1%—design gives a directed strongly regular
graph with ¢t = A + 1.

Theorem 2.2. Let T = (P, B, €) be a tactical configuration with parameters
(v,b,k,r). Let T’ be the directed graph defined by

VI)={(p,B) e PxB: pe B}

and
(p, B) = (q,C) if and only if (p, B) # (¢,C) and p € C.

Then T is directed strongly reqular if and only if T is a 1%—desz’gn.
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Proof: This time, write pB for a flag (p, B). Let I' have adjacency matrix
A and put M = A+ I so that M,p ,c = Npc. Then

(MQ)pB,qC = Z MpB,rDMrD,qC = Z NpDNT‘CNT‘D = (NNTN)pC'
rD r,D
If 7T isa 1%—design with parameters (v,b,k,r;a,b), then NN'N = (b —
a)N +aJ, and M? = (b—a)M + aJ, so that A2 = (M —1)? = (b—a —
2)A+ (b—a—1)I + aJ and it follows that I" is a directed strongly regular
graph with parameters

v=vr, k=rk—-1, t=b—-1, A=0b0-2, pu=a.
Conversely, suppose I is a DSRG (v, k,t, A\, t). Then A? = (t — pu)I + (A —
WA+ pJ, so that M? = (A — p+ 2)M + puJ + (t — XA — 1)1, and therefore
(NN 'N)pe = (A= pu+2)Nye +p+ (t = A= 1)0ppqc. If t # X+ 1, then
dpB,qc is determined by p, C' and independent of ¢, B. This can hold only for

k <1, r <1 and X is undefined. Therefore, we may assume that t = XA + 1,
sothat NNTN = (A= pu+2)N + uJ. a

3. EXAMPLES

In this section we give some concrete examples of new directed strongly
regular graphs that are constructed by the Theorem 2.1.

Example 3.1. Let P be the set of 2n vertices, and B the set of n? edges
of the complete bipartite graph K, ,. Then the incidence structure T =
(P,B,€) is a 1%—design with parameters
v=2n, b=n% k=2 r=n a=1, b=n+1.
Therefore the graph I'(T) is a directed strongly reqular graph with parameters
v=2n*(n—-1), k=2nn—-1), t=p=2n-1, A\=n— 1.

For n = 3,4 we obtain directed strongly regular graphs with new param-
eter sets (36,12,5,2,5) and (96,24,7,3,7). By Duval [4], if there exists a
DSRG(v, k,t, A\, u) with ¢ = p, then there also are DSRG(hv, hk, ht, hA, hi)

for all positive integers h. In particular, we also find directed strongly regular
graphs with parameter sets (72,24, 10,4, 10) and (108, 36, 15, 6, 15).

Example 3.2. A partial geometry pg(k,p,T) is a set of points P, a set
of lines L, and an incidence relation between P and L with the following
properties:
(1) BEwvery line is incident with k points (k > 2), and every point is
incident with p lines (p > 2).
(2) Any two points are incident with at most one line.
(3) If a point p and a line L are not incident, then there exists exactly
T (T > 1) lines that are incident with p and meet L.

A partial geometry pg(k, p,T) is an 1%—desz’gn T with parameters
(v,b,k,r;a,b) = (ke, pe, k, p; 7, r+k—1)
where c=1+ (k —1)(p—1)/7.



For example, the partial geometry obtained from an affine plane of order
q by considering all ¢* points and taking the lines of | parallel classes is a
pg(q,1,1—1) and hence yields a lé—design T with parameters (v, b, k,r;a,b) =
(¢%,ql,q,1;1—1,q+1—1) and a directed strongly regular graph T'(T) defined
as in Theorem 2.1 with parameters

For example, for ¢ = | = 3 we find the previously-unknown graph with

parameter set (54,18,7,4,7). Doubling yields the graph with parameter set
(108,36,14, 8, 14).

Remark 3.3. The above characterization theorems may be used to show
non-existence 0f1%-designs with given parameter sets. We give one example.
Suppose there exists a 1%—design with parameters (8,16,5,10;25,35). Then
there is a directed strongly reqular graph with parameters (48, 30,25, 15,25)
according to Theorem 2.1. However, it is known that there is no DSRG
(48m,, 30m, 25m, 15m, 25m) for any positive integer m by Jorgensen [11].
So, although the parameter set (v,b,k,r;a,b) = (8,16, 5,10;25,35) satisfies
all the necessary conditions imposed in Section 3.3 of Neumaier [14], there
s no lé—design with these parameters.
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