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Abstract. We show that the kernel I of the ring homomorphism R[yij | i, j ∈
N, i > j]→ R[si, ti | i ∈ N] determined by yij 7→ sisj +titj is generated by two
types of polynomials: off-diagonal 3 × 3-minors and pentads. This confirms

a conjecture by Drton, Sturmfels, and Sullivant on the Gaussian two-factor

model. Our proof is computational: inspired by work of Aschenbrenner and
Hillar we introduce the concept of G-Gröbner basis, where G is a monoid acting

on an infinite set of variables, and we report on a computation that yielded

a finite G-Gröbner basis of I relative to the monoid G of strictly increasing
functions N→ N.

1. Introduction and results

The Gaussian k-factor model with n observed variables consists of all covariance
matrices of n jointly Gaussian random variables X1, . . . , Xn, the observed variables,
consistent with the hypothesis that there exist k further variables Z1, . . . , Zk, the
hidden variables, such that the joint distribution of the Xi and the Zj is Gaussian
and such that the Xi are pairwise independent given all Zj . This set of covariance
matrices turns out to be

Fk,n := {D+ SST | D ∈Mn(R) diagonal and positive definite, and S ∈Mn,k(R)},
where Mn,k(R) is the space of real n× k-matrices, and Mn(R) is the space of real
n × n-matrices. In [7] this model is studied from an algebraic point of view. In
particular, the ideal of polynomials vanishing on Fk,n is determined for k = 2, 3
and n ≤ 9. The case where k = 1 had already been done in [4]. The authors of [7]
pose some very intriguing finiteness questions. In particular, one might hope that
for fixed k the ideal of Fk,n stabilises, as n grows, modulo its natural symmetries
coming from simultaneously permuting rows and columns. For k = 1 this is indeed
the case, and for arbitrary k it is true in a weaker, set-theoretic sense [5]. In this
paper we prove that the ideals of F2,n stabilise at n = 6. To state our theorem we
denote by yij the coordinates on the space of symmetric n × n-matrices; we will
identify yji with yij . Recall from [7] that the ideal of F2,5 is generated by a single
polynomial

P :=
1
10

∑
π∈Sym(5)

sgn (π)yπ(1),π(2)yπ(2),π(3)yπ(3),π(4)yπ(4),π(5)yπ(5),π(1),

called the pentad. The normalisation factor is important only because it ensures
that all coefficients are ±1—indeed, the stabiliser in Sym(5) of each monomial in the
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pentad is the dihedral group of order 10. We consider P an element of Z[yij | i ≥ j].
The ideal of F2,6 contains another type of equation: the off-diagonal minor

M := det(y[{4, 5, 6}, {1, 2, 3}]) ∈ Z[yij | i ≥ j]
the determinant of the square submatrix of y sitting in the lower left corner of y.
If f is any polynomial in R[yij | i ≥ j] that vanishes on F2,n and if we regard f
as an element of R[yij | i > j][y11, . . . , ynn], then each of the coefficients of the
monomials in the diagonal variables yii is a polynomial in the off-diagonal variables
that vanishes on F2,n, as well. Therefore the following theorem settles the conjecture
of Drton, Sturmfels, and Sullivant, that pentads and off-diagonal minors generate
the ideal of F2,n for all n; see [7, Conjecture 26].

Theorem 1.1 (Main Theorem). For any field K and any natural number n ≥ 6 the
kernel In(K) of the homomorphism K[yij | 1 ≤ j ≤ i ≤ n]→ K[s1, . . . , sn, t1, . . . , tn]
determined by yij 7→ sisj + titj is generated, as an ideal, by the orbits of P and M
under the symmetric group Sym(n).

Remark 1.2. In [8] it is proved that F2,n equals the set of all positive definite
matrices with the property that every principal 6× 6-minor lies in F2,6. Our Main
Theorem implies an analogous statement for the Zariski closures of F2,n and F2,6.

We sketch the proof of the Main Theorem along with the organisation of the
paper. In Section 3 we introduce equivariant Gröbner bases, which are a generali-
sation of Gröbner bases to a setting where a monoid G acts on the set of variables
preserving the term order. Finite equivariant Gröbner bases do not always exist,
even for ideals that are finitely generated modulo the action of G. Nevertheless,
one can generalise the usual S-polynomial criterion to a finite test whether a given
finite set of polynomials is an equivariant Gröbner basis. In Section 4 we put a
suitable elimination order on the monomials in yij , i, j ∈ N, i ≥ j, and report
on a computation that yields a finite G-Gröbner basis for the determinantal ideal
generated by all 3× 3-minors of y. Intersecting this G-Gröbner basis with the ring
in the off-diagonal matrix entries gives the Main Theorem.

2. Acknowledgments

We thank Jan Willem Knopper and Rudi Pendavingh for motivating discussions
on alternative computations that would prove Theorem 4.1.

3. Equivariant Gröbner bases

Consider a potentially infinite set X of variables. The free commutative monoid
generated by X is denoted Mon; its elements are called monomials. Suppose that
we have

(1) a monomial order, i.e., a well-order ≤ on Mon such that m ≤ m′ ⇒ xm ≤
xm′ for all x ∈ X, m,m′ ∈ Mon; and

(2) a monoid G (i.e., a semigroup with identity) acting on X such that the
induced action of G by homomorphisms on Mon preserves the strict order:
m < m′ ⇒ gm < gm′ for all g ∈ G, m,m′ ∈ Mon.

Example 3.1. The setting that Aschenbrenner and Hillar study in [1] fits into
this framework, and indeed inspired our set-up. There X = {x1, x2, . . .} and G is
the monoid Inc(N) of all increasing maps π : N → N acting on X by πxi = xπ(i).
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As a monomial order one can choose the lexicographic order with xi > xj if i >
j. Aschenbrenner and Hillar have also turned their proof of finite generation of
Sym(N)-stable ideals in K[x1, x2, . . .] into an algorithm; see [2].

Remark 3.2. Note that G acts by injective maps on X (and on Mon) by the
second requirement. It is essential that we allow G to be a monoid rather than a
group. Indeed, the image of G in the monoid of injective maps X → X contains
no other invertible elements than the identity: If π : X → X is an element in the
image of G and if π(x) 6= x, then π(x) > x since otherwise x > π(x) > π2(x) > . . .
would be an infinite strictly decreasing chain. But then, if π is invertible, we have
π(x) > x > π−1(x) > π−2(x) > . . ., another infinite decreasing chain.

Let K be a field and let K[X] = KMon be the polynomial K-algebra in the
variables X, or, equivalently, the monoid K-algebra of Mon. Then G acts naturally
on K[X] by means of homomorphisms. A G-orbit is a set of the form Gz = {gz | g ∈
G}, where z is in a set on which G acts. Note that the ideal generated by the union
of G-orbits in K[X] is automatically G-stable, that is, closed under multiplication
with elements from G.

We use the notation lm(f) for the leading monomial of f , i.e., the ≤-largest
monomial having non-zero coefficient in f . The coeffient in f of that monomial,
the leading coefficient, is denoted lc(f), and lt(f) = lc(f)lm(f) is the leading term
of f . By the requirement that G preserve the order, we have lm(gf) = g lm(f).
Given an ideal I of K[X], lm(I) is an ideal in the monoid Mon. If I is G-stable,
then so is lm(I).

Definition 3.3 (Equivariant Gröbner basis). Let I be a G-stable ideal in K[X].
A G-Gröbner basis of I ⊆ K[X] is a subset B of I for which lm(GB)(= {lm(gb) |
b ∈ B, g ∈ G}) generates the ideal lm(I) in Mon. If G is fixed in the context, we
also call B an equivariant Gröbner basis.

Remark 3.4. At MEGA 2009, Viktor Levandovskyy pointed out to the second
author that our equivariant Gröbner bases are in fact a special case of Gröbner S-
bases in the sense of [6], which were invented for analysing certain two-sided ideals
in free associative algebras.

Lemma 3.5. If I is G-stable and B is a G-Gröbner basis of I, then GB = {gb |
b ∈ B, g ∈ G} generates the ideal I.

Proof. If not, then take an f ∈ I \〈GB〉 with lm(f) minimal. Take b ∈ B and g ∈ G
with lm(gb)|lm(f). Subtracting a suitable multiple of gb from f yields an element
in I \ 〈GB〉 with leading term strictly smaller than that of f , a contradiction. �

Algorithm 3.6 (Equivariant remainder). Given f ∈ K[X] and B ⊆ K[X], proceed
as follows: if glm(b)|lm(f) for some g ∈ G and b ∈ B, then subtract the multiple
of gb from f that lowers the latter’s leading monomial. Do this until no such pair
(g, b) exists anymore. The resulting polynomial is called a G-remainder (or an
equivariant remainder, if G is fixed) of f modulo B.

This procedure is non-deterministic, but necessarily finishes after a finite number
of steps, since ≤ is a well-order. Any potential outcome is called an equivariant
remainder of f modulo B.

Definition 3.7 (Equivariant S-polynomials). Consider two polynomials b0, b1 with
leading monomials m0,m1, respectively. Let H be a set of pairs (h0, h1) ∈ G × G
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for which Gb0 × Gb1 =
⋃

(h0,h1)∈H{(gh0b0, gh1b1) | g ∈ G}. For every element
(h0, h1) ∈ H we consider the ordinary S-polynomial

S(h0b0, h1b1) := lc(b1)
lcm(h0m0, h1m1)

h0m0
h0b0 − lc(b0)

lcm(h0m0, h1m1)
h1m1

h1b1.

The set {S(h0b0, h1b1) | (h0, h1) ∈ H} is called a complete set of equivariant S-
polynomials for b0, b1. It depends on the choice of H. In our applications, H can
be chosen finite.

Theorem 3.8 (Equivariant Buchberger criterion). Let B be a subset of K[X].
Assume that for all b0, b1 ∈ B there exists a complete set of S-polynomials, each of
which has 0 as a G-remainder modulo B. Then B is a G-Gröbner basis of the ideal
generated by GB.

Proof. We may and will assume that all elements of B are monic. Let I denote the
ideal generated by GB. If lm(GB) does not generate the ideal lm(I) in Mon then
there exists a polynomial of the form

f =
∑

g∈G,b∈B

fg,bgb

with only finitely many of the fg,b non-zero, whose leading monomial is not in the
ideal generated by lm(B). We may choose the expression above such that first,
the maximum m of lm(fg,bgb) = lm(fg,b) g lm(b) over all (g, b) for which fg,b is
non-zero is minimal and second, the number of pairs (g, b) with lm(fg,bgb) = m is
also minimal. The maximum is then attained for at least two pairs (g0, b0), (g1, b1),
because otherwise m would be the leading monomial of f . Write mi := lm(bi) for
i = 0, 1. We have

m = lm(fg0,b0)g0m0 = lm(fg1,b1)g1m1.

Now let H be a set of pairs (h0, h1) ∈ G × G giving rise to a complete set of S-
polynomials for b0 and b1 that G-reduce to zero; such a set exists by assumption.
Then we may write g0m0 = g2h0m0, g1m1 = g2h1m1 for some (h0, h1) ∈ H and
g2 ∈ G. Let lcm(h0m0, h1m1) = t0h0m0 = t1h1m1, so that

S := S(h0b0, h1b1) = t0h0b0 − t1h1b1;

where we have used that b0 and b1 are monic. We have

lm(fg0,b0)g2h0m0 = lm(fg1,b1)g2h1m1.

This implies that the left-hand side is a multiple of lcm(g2h0m0, g2h1m1), which
equals g2 lcm(h0m0, h1m1). Hence lm(fg0,b0) is divisible by g2t0; set

A :=
lt(fg0,b0)
g2t0

.

Now 0 is a G-remainder of S modulo B, which implies that we can write S as a
sum ∑

g∈G,b∈B

sg,bgb

with only finitely many non-zero terms that moreover satisfy lm(sg,bgb) ≤ lm(S) <
lcm(h0m0, h1m1) for all g, b. Then we may rewrite f as

f = f −Ag2(S −
∑
g,b

sg,bgb) =
∑
g,b

(fg,b + f ′g,b + f ′′g,b)gb
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where
f ′g,b =

∑
g′∈G,g2g′=g

Ag2sg′,b

and

f ′′g,b =


−lt(fg0,b0) if (g, b) = (g0, b0),
lc(fg0,b0)lm(fg1,b1) if (g, b) = (g1, b1),
0 otherwise.

If g2g′ = g then for all b we have

lm((Ag2sg′,b)(gb)) = lm(Ag2(sg′,bg
′b)) <

lm(fg0,b0)
g2t0

g2 lcm(h0m0, h1m1)

= lm(fg0,b0)g0m0 = m,

so for all pairs (g, b) we have lm(f ′g,bgb) < m. Moreover, lm((fg0,b0 + f ′′g0,b0)g0b0)
is strictly smaller than m. Finally, lm(f ′′g1,b1g1b1) = m. We conclude that either
maxg,b lm((fg,b + f ′g,b + f ′′g,b)gb) is strictly smaller than m, or else the number of
pairs (g, b) for which it equals m is smaller than the number of pairs (g, b) for which
lm(fg,bgb) equals m. This contradicts the minimality of the expression chosen
above. �

In addition to our set-up so far—a monomial order on monomials in the variables
in X and an action of a monoid G on X preserving the strict order—we make the
following finiteness assumption:

(*) ∀b0, b1 ∈ K[X] the set Gb0 ×Gb1 is the union of a finite number of G-orbits.

This ensures that a finite, complete set of equivariant S-polynomials exists for any
pair b0, b1. We then have the following theoretical algorithm. We do not claim that
it terminates, but if it does, then it returns a finite equivariant Gröbner basis by
Theorem 3.8.

Algorithm 3.9 (Equivariant Buchberger algorithm).
Input: a finite subset B of K[X].
Output (assuming termination): a finite equivariant Gröbner basis of the

ideal generated by GB.
Procedure: (1) P := B ×B;

(2) while P 6= ∅ do
(a) choose (b0, b1) ∈ P and set P := P \ {(b0, b1)};
(b) let S be a finite complete set of equivariant S-polynomials for

(b0, b1);
(c) for all f ∈ S compute a G-remainder r of f modulo B; if r 6= 0

then set B := B ∪ {r} and P := P ∪ (B × r);
(3) return B.

Note the order in which B and P are updated: one needs to add (r, r) to P , as
well.

4. A G-Gröbner basis for the 2-factor model

Our main theorem will follow from the following result. Let X = {yij | i, j ∈
N, i ≥ j} be a set of variables representing the entries of a symmetric matrix. We
consider the lexicographic monomial order on Mon in which the diagonal variables
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l(p) 3 4 5 6 7 8 9
#p ∈ B 1 6 11 10 8 5 1
degrees 31 36 31051 3555 58 55 51

#p ∈ B ∩K[yij | i > j] 1 5 8 5 1
degrees 51 3555 58 55 51

Table 1. Largest indices and degrees of the Inc(N)-Gröbner basis
of IN(K); multiplicities written as exponents.

yii are larger than all variables yij with i > j, and apart from that yij ≥ yi′j′ if
and only if i > i′ or i = i′ and j ≥ j′. So for instance we have

y2,2 > y1,1 > y5,2 > y4,3.

Note that this monomial order is compatible with the action of the monoid Inc(N)
of all increasing maps N → N. For any polynomial p ∈ K[X] let l(p) denote the
largest index of p, i.e., the largest index appearing in any of the variables in any of
the monomials of p.

Theorem 4.1. For any field K, let IN(K) be the ideal in K[X] generated by all
3×3-minors of the matrix y (recall that we identify yji for j < i with yij). Relative
to the monomial order ≤ the ideal IN(K) has an Inc(N)-Gröbner basis B consisting
of 42 polynomials. The intersection B ∩K[yij | i > j] is an Inc(N)-Gröbner basis
of IN(K) ∩K[yij | i > j] consisting of 20 polynomials. The largest indices and the
degrees of the elements in these bases are summarised in Table 4.1.

Remark 4.2. The polynomial with largest index 5 in the Inc(N)-Gröbner basis
B∩K[yij | i > j] is the pentad P . The five degree-3 polynomials with largest index
6 in that Gröbner basis form the Sym(N)-orbit of the off-diagonal minor M . All
14 remaining polynomials are already in the Inc(N)-stable ideal generated by these
polynomials; this latter statement also follows from the result in [7] that at least up
to n = 9 the ideal of the two-factor model is generated by pentads and off-diagonal
minors.

Remark 4.3. A Gröbner basis of the ideal of the two-factor model F2,n relative to
circular term orders was already found in [10]. The proof involves general techniques
for determining the ideal of secant varieties, especially of toric varieties; see also
[9]. The Gröbner basis found there, however, does not stabilise as n grows—and
indeed, circular term orders are not compatible with the action of Inc(N). It would
be interesting to find a direct translation between Sullivant’s Gröbner basis and
ours.

Theorem 4.1 implies our Main Theorem.

Proof of the Main Theorem. It is well known that the (k + 1) × (k + 1)-minors of
the symmetric matrix (yij)i,j=1,...,n generate the ideal of all polynomials vanishing
on all rank-k matrices (for a recent combinatorial proof of this fact, see [9, Example
4.12]; in characteristic 0 this fact is known as the Second Fundamental Theorem
for the orthogonal group). Hence the ideal In(K) is the intersection of the ideal Jn
generated by the 3 × 3-minors of (yij)i,j=1,...,n with the ring K[yij | i > j]. Theo-
rem 4.1 implies that one obtains a Gröbner basis of Jn, relative to the restriction of
the monomial order on K[yij | i, j ∈ N, i ≥ j] to K[yij | 1 ≤ j < i ≤ n] by applying
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all increasing maps {1, . . . , l(p)} → {1, . . . , n} to all p ∈ B ∩ K[yij | i > j] with
l(p) ≤ n. Such an increasing map can be extended to an element of Sym(n), and
Remark 4.2 concludes the proof. �

We conclude with some remarks on the computation that proved Theorem 4.1.
First we need to verify Condition (*).

Lemma 4.4. For all b0, b1 ∈ K[yij | i, j ∈ N, i ≥ j] the set (Inc(N)b0)× (Inc(N)b1)
is the union of a finite number of Inc(N)-orbits.

Proof. Consider all pairs (S0, S1) of sets S0, S1 ⊆ N with |Si| = l(bi) for which
S0 ∪ S1 is an interval of the form {1, . . . , k} for some k, which is then at most
l(b0) + l(b1). Note that there are only finitely many such pairs (S0, S1). For each
such pair let (π0, π1) be a pair of elements of Inc(N) such that πi maps {1, . . . , l(bi)}
onto Si; it is irrelevant how π acts on the rest of N. Then we have

Inc(N)b0 × Inc(N)b1 =
⋃

(S0,S1)

Inc(N)(π0b0, π1b1),

where the union is over all pairs (S0, S1) as above. �

Computational proof of Theorem 4.1. The 42 polynomials of B were constructed
by computing a Gröbner basis for I9(Q) with Singular and retaining only those
polynomials p for which the set of indices occurring in their variables form an
interval of the form {1, . . . , k} with k ≤ 9. All elements of B are monic and have
integral coefficients (in fact, equal to ±1 except for the 3 × 3-minor with largest
index 3, which has a coefficient 2). By the equivariant Buchberger criterion and
the proof of Lemma 4.4, we need only Inc(N)-reduce modulo B all S-polynomials
of pairs (π0b0, π1b1) with b0, b1 ∈ B and πi : {1, . . . , l(bi)} → N increasing and such
that imπ0 ∪ imπ1 = {1, . . . , k} for some k. For instance, for b0 = b1 = b equal to
the polynomial in B with largest index 9, we having to Inc(N)-reduce S(π0b, π1b)
modulo B for all increasing maps π0, π1 : {1, . . . , 9} → {1, . . . , 18} whose image
union is an interval {1, . . . , k}. However, if k = 17 or k = 18, then π0b and π1b
turn out to have leading monomials with gcd 1, so these cases can be skipped. This
reduces the theorem to a finite computation involving polynomials with largest
indices up to 16, which we have implemented directly in C. Finally, to deduce the
result for all base fields—and to speed up the computation—we used the following
trick. Since Inc(N)B∩K[yij | 1 ≤ j ≤ i ≤ n] is a subset of the ideal of 3×3-minors,
it is a Gröbner basis if and only if the ideal generated by lm(B) has the same Hilbert
series as the ideal generated by 3×3-minors. Since this Hilbert series is known and
does not depend on the field [3], we may do all our computations over one field and
conclude that it holds over all fields. We have verified the equivariant Buchberger
criterion over F2, which made the computation slightly faster than working over
Q. �
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Appendix: the basis B

Below is the complete equivariant Gröbner basis of Theorem 4.1. To distinguish
the diagonal entries yii from the off-diagonal entries, we have denoted them ai. We
precede the polynomials by graphs representing their leading monomials; here the
variable yij is depicted as an undirected edge between i and j. For larger indices,
the edges have been given different shades; this is only to make the pictures more
readable. Ideally, one would hope to prove Theorem 4.1 by hand by giving a
bijection between the standard monomials relative to B and the known standard
monomials relative to the Gröbner basis of [3], but we have not yet found such a
bijection so far.

Largest index 3.

1 2 3

a3 ∗ a2 ∗ a1 − a3 ∗ y2
21 − a2 ∗ y2

31 − a1 ∗ y2
32 + 2 ∗ y32 ∗ y31 ∗ y21

Largest index 4.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

a2 ∗ a1 ∗ y43 − a2 ∗ y41 ∗ y31 − a1 ∗ y42 ∗ y32 − y43 ∗ y2
21 + y42 ∗ y31 ∗ y21 + y41 ∗ y32 ∗ y21

a3 ∗ a1 ∗ y42 − a3 ∗ y41 ∗ y21 − a1 ∗ y43 ∗ y32 + y43 ∗ y31 ∗ y21 − y42 ∗ y2
31 + y41 ∗ y32 ∗ y31

a3 ∗ a2 ∗ y41 − a3 ∗ y42 ∗ y21 − a2 ∗ y43 ∗ y31 + y43 ∗ y32 ∗ y21 + y42 ∗ y32 ∗ y31 − y41 ∗ y2
32

a4 ∗ a1 ∗ y32 − a4 ∗ y31 ∗ y21 − a1 ∗ y43 ∗ y42 + y43 ∗ y41 ∗ y21 + y42 ∗ y41 ∗ y31 − y2
41 ∗ y32

a4 ∗ a2 ∗ y31 − a4 ∗ y32 ∗ y21 − a2 ∗ y43 ∗ y41 + y43 ∗ y42 ∗ y21 − y2
42 ∗ y31 + y42 ∗ y41 ∗ y32

a4 ∗ a3 ∗ y21 − a4 ∗ y32 ∗ y31 − a3 ∗ y42 ∗ y41 − y2
43 ∗ y21 + y43 ∗ y42 ∗ y31 + y43 ∗ y41 ∗ y32
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Largest index 5, degree 3.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

a1 ∗ y53 ∗ y42 − a1 ∗ y52 ∗ y43 − y53 ∗ y41 ∗ y21 + y52 ∗ y41 ∗ y31 + y51 ∗ y43 ∗ y21 − y51 ∗ y42 ∗ y31

a1 ∗ y54 ∗ y32 − a1 ∗ y52 ∗ y43 − y54 ∗ y31 ∗ y21 + y52 ∗ y41 ∗ y31 + y51 ∗ y43 ∗ y21 − y51 ∗ y41 ∗ y32

a2 ∗ y53 ∗ y41 − a2 ∗ y51 ∗ y43 − y53 ∗ y42 ∗ y21 + y52 ∗ y43 ∗ y21 − y52 ∗ y41 ∗ y32 + y51 ∗ y42 ∗ y32

a2 ∗ y54 ∗ y31 − a2 ∗ y51 ∗ y43 − y54 ∗ y32 ∗ y21 + y52 ∗ y43 ∗ y21 − y52 ∗ y42 ∗ y31 + y51 ∗ y42 ∗ y32

a3 ∗ y52 ∗ y41 − a3 ∗ y51 ∗ y42 + y53 ∗ y42 ∗ y31 − y53 ∗ y41 ∗ y32 − y52 ∗ y43 ∗ y31 + y51 ∗ y43 ∗ y32

a3 ∗ y54 ∗ y21 − a3 ∗ y51 ∗ y42 − y54 ∗ y32 ∗ y31 − y53 ∗ y43 ∗ y21 + y53 ∗ y42 ∗ y31 + y51 ∗ y43 ∗ y32

a4 ∗ y52 ∗ y31 − a4 ∗ y51 ∗ y32 − y54 ∗ y42 ∗ y31 + y54 ∗ y41 ∗ y32 − y52 ∗ y43 ∗ y41 + y51 ∗ y43 ∗ y42

a4 ∗ y53 ∗ y21 − a4 ∗ y51 ∗ y32 − y54 ∗ y43 ∗ y21 + y54 ∗ y41 ∗ y32 − y53 ∗ y42 ∗ y41 + y51 ∗ y43 ∗ y42

a5 ∗ y42 ∗ y31 − a5 ∗ y41 ∗ y32 − y54 ∗ y52 ∗ y31 + y54 ∗ y51 ∗ y32 + y53 ∗ y52 ∗ y41 − y53 ∗ y51 ∗ y42

a5 ∗ y43 ∗ y21 − a5 ∗ y41 ∗ y32 − y54 ∗ y53 ∗ y21 + y54 ∗ y51 ∗ y32 + y53 ∗ y52 ∗ y41 − y52 ∗ y51 ∗ y43

Largest index 5, degree 5.

1 2 3 4 5

y54 ∗ y53 ∗ y42 ∗ y31 ∗ y21 − y54 ∗ y53 ∗ y41 ∗ y32 ∗ y21 − y54 ∗ y52 ∗ y43 ∗ y31 ∗ y21

+ y54 ∗ y52 ∗ y41 ∗ y32 ∗ y31 + y54 ∗ y51 ∗ y43 ∗ y32 ∗ y21 − y54 ∗ y51 ∗ y42 ∗ y32 ∗ y31

+ y53 ∗ y52 ∗ y43 ∗ y41 ∗ y21 − y53 ∗ y52 ∗ y42 ∗ y41 ∗ y31 − y53 ∗ y51 ∗ y43 ∗ y42 ∗ y21

+ y53 ∗ y51 ∗ y42 ∗ y41 ∗ y32 + y52 ∗ y51 ∗ y43 ∗ y42 ∗ y31 − y52 ∗ y51 ∗ y43 ∗ y41 ∗ y32

Largest index 6, degree 3.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

y63 ∗ y52 ∗ y41 − y63 ∗ y51 ∗ y42 − y62 ∗ y53 ∗ y41 + y62 ∗ y51 ∗ y43 + y61 ∗ y53 ∗ y42 − y61 ∗ y52 ∗ y43

y64 ∗ y52 ∗ y31 − y64 ∗ y51 ∗ y32 − y62 ∗ y54 ∗ y31 + y62 ∗ y51 ∗ y43 + y61 ∗ y54 ∗ y32 − y61 ∗ y52 ∗ y43

y64 ∗ y53 ∗ y21 − y64 ∗ y51 ∗ y32 − y63 ∗ y54 ∗ y21 + y63 ∗ y51 ∗ y42 + y61 ∗ y54 ∗ y32 − y61 ∗ y53 ∗ y42

y65 ∗ y42 ∗ y31 − y65 ∗ y41 ∗ y32 − y62 ∗ y54 ∗ y31 + y62 ∗ y53 ∗ y41 + y61 ∗ y54 ∗ y32 − y61 ∗ y53 ∗ y42

y65 ∗ y43 ∗ y21 − y65 ∗ y41 ∗ y32 − y63 ∗ y54 ∗ y21 + y63 ∗ y51 ∗ y42 + y62 ∗ y53 ∗ y41 − y62 ∗ y51 ∗ y43

+ y61 ∗ y54 ∗ y32 − y61 ∗ y53 ∗ y42
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Largest index 6, degree 5.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

y63 ∗ y54 ∗ y42 ∗ y31 ∗ y21 − y63 ∗ y54 ∗ y41 ∗ y32 ∗ y21 − y63 ∗ y51 ∗ y2
42 ∗ y31

+ y63 ∗ y51 ∗ y42 ∗ y41 ∗ y32 − y62 ∗ y54 ∗ y43 ∗ y31 ∗ y21 + y62 ∗ y54 ∗ y41 ∗ y32 ∗ y31

+ y62 ∗ y53 ∗ y43 ∗ y41 ∗ y21 − y62 ∗ y53 ∗ y42 ∗ y41 ∗ y31 + y62 ∗ y51 ∗ y43 ∗ y42 ∗ y31

− y62 ∗ y51 ∗ y43 ∗ y41 ∗ y32 + y61 ∗ y54 ∗ y43 ∗ y32 ∗ y21 − y61 ∗ y54 ∗ y42 ∗ y32 ∗ y31

− y61 ∗ y53 ∗ y43 ∗ y42 ∗ y21 + y61 ∗ y53 ∗ y2
42 ∗ y31

y63 ∗ y54 ∗ y52 ∗ y31 ∗ y21 − y63 ∗ y54 ∗ y51 ∗ y32 ∗ y21 − y63 ∗ y52 ∗ y51 ∗ y42 ∗ y31

+ y63 ∗ y2
51 ∗ y42 ∗ y32 − y62 ∗ y54 ∗ y53 ∗ y31 ∗ y21 + y62 ∗ y54 ∗ y51 ∗ y32 ∗ y31

+ y62 ∗ y53 ∗ y51 ∗ y43 ∗ y21 − y62 ∗ y2
51 ∗ y43 ∗ y32 + y61 ∗ y54 ∗ y53 ∗ y32 ∗ y21

− y61 ∗ y54 ∗ y52 ∗ y32 ∗ y31 − y61 ∗ y53 ∗ y52 ∗ y43 ∗ y21 + y61 ∗ y53 ∗ y52 ∗ y42 ∗ y31

− y61 ∗ y53 ∗ y51 ∗ y42 ∗ y32 + y61 ∗ y52 ∗ y51 ∗ y43 ∗ y32

y64 ∗ y63 ∗ y51 ∗ y42 ∗ y31 − y64 ∗ y63 ∗ y51 ∗ y41 ∗ y32 + y64 ∗ y62 ∗ y53 ∗ y41 ∗ y31

− y64 ∗ y62 ∗ y51 ∗ y43 ∗ y31 − y64 ∗ y61 ∗ y53 ∗ y42 ∗ y31 + y64 ∗ y61 ∗ y51 ∗ y43 ∗ y32

− y63 ∗ y62 ∗ y54 ∗ y41 ∗ y31 + y63 ∗ y62 ∗ y51 ∗ y43 ∗ y41 + y63 ∗ y61 ∗ y54 ∗ y41 ∗ y32

− y63 ∗ y61 ∗ y51 ∗ y43 ∗ y42 + y62 ∗ y61 ∗ y54 ∗ y43 ∗ y31 − y62 ∗ y61 ∗ y53 ∗ y43 ∗ y41

− y2
61 ∗ y54 ∗ y43 ∗ y32 + y2

61 ∗ y53 ∗ y43 ∗ y42

y65 ∗ y64 ∗ y52 ∗ y41 ∗ y32 − y65 ∗ y64 ∗ y51 ∗ y42 ∗ y32 − y65 ∗ y62 ∗ y54 ∗ y41 ∗ y32

+ y65 ∗ y62 ∗ y51 ∗ y43 ∗ y42 + y65 ∗ y61 ∗ y54 ∗ y42 ∗ y32 − y65 ∗ y61 ∗ y52 ∗ y43 ∗ y42

+ y64 ∗ y62 ∗ y54 ∗ y51 ∗ y32 − y64 ∗ y62 ∗ y53 ∗ y52 ∗ y41 − y64 ∗ y61 ∗ y54 ∗ y52 ∗ y32

+ y64 ∗ y61 ∗ y53 ∗ y52 ∗ y42 + y2
62 ∗ y54 ∗ y53 ∗ y41 − y2

62 ∗ y54 ∗ y51 ∗ y43

− y62 ∗ y61 ∗ y54 ∗ y53 ∗ y42 + y62 ∗ y61 ∗ y54 ∗ y52 ∗ y43

y65 ∗ y64 ∗ y53 ∗ y41 ∗ y32 − y65 ∗ y64 ∗ y51 ∗ y43 ∗ y32 − y65 ∗ y63 ∗ y54 ∗ y41 ∗ y32

+ y65 ∗ y63 ∗ y51 ∗ y43 ∗ y42 + y65 ∗ y61 ∗ y54 ∗ y43 ∗ y32 − y65 ∗ y61 ∗ y53 ∗ y43 ∗ y42

+ y64 ∗ y63 ∗ y54 ∗ y51 ∗ y32 − y64 ∗ y63 ∗ y53 ∗ y51 ∗ y42 − y64 ∗ y62 ∗ y2
53 ∗ y41

+ y64 ∗ y62 ∗ y53 ∗ y51 ∗ y43 − y64 ∗ y61 ∗ y54 ∗ y53 ∗ y32 + y64 ∗ y61 ∗ y2
53 ∗ y42

+ y63 ∗ y62 ∗ y54 ∗ y53 ∗ y41 − y63 ∗ y62 ∗ y54 ∗ y51 ∗ y43
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Largest index 7, first half.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

y73 ∗ y62 ∗ y54 ∗ y31 ∗ y21 − y73 ∗ y61 ∗ y54 ∗ y32 ∗ y21 − y73 ∗ y61 ∗ y52 ∗ y42 ∗ y31

+ y73 ∗ y61 ∗ y51 ∗ y42 ∗ y32 − y72 ∗ y63 ∗ y54 ∗ y31 ∗ y21 + y72 ∗ y61 ∗ y54 ∗ y32 ∗ y31

+ y72 ∗ y61 ∗ y53 ∗ y43 ∗ y21 − y72 ∗ y61 ∗ y51 ∗ y43 ∗ y32 + y71 ∗ y63 ∗ y54 ∗ y32 ∗ y21

+ y71 ∗ y63 ∗ y52 ∗ y42 ∗ y31 − y71 ∗ y63 ∗ y51 ∗ y42 ∗ y32 − y71 ∗ y62 ∗ y54 ∗ y32 ∗ y31

− y71 ∗ y62 ∗ y53 ∗ y43 ∗ y21 + y71 ∗ y62 ∗ y51 ∗ y43 ∗ y32

y73 ∗ y64 ∗ y51 ∗ y42 ∗ y31 − y73 ∗ y64 ∗ y51 ∗ y41 ∗ y32 − y73 ∗ y61 ∗ y54 ∗ y42 ∗ y31

+ y73 ∗ y61 ∗ y54 ∗ y41 ∗ y32 + y72 ∗ y64 ∗ y53 ∗ y41 ∗ y31 − y72 ∗ y64 ∗ y51 ∗ y43 ∗ y31

− y72 ∗ y63 ∗ y54 ∗ y41 ∗ y31 + y72 ∗ y63 ∗ y51 ∗ y43 ∗ y41 + y72 ∗ y61 ∗ y54 ∗ y43 ∗ y31

− y72 ∗ y61 ∗ y53 ∗ y43 ∗ y41 − y71 ∗ y64 ∗ y53 ∗ y42 ∗ y31 + y71 ∗ y64 ∗ y51 ∗ y43 ∗ y32

+ y71 ∗ y63 ∗ y54 ∗ y42 ∗ y31 − y71 ∗ y63 ∗ y51 ∗ y43 ∗ y42 − y71 ∗ y61 ∗ y54 ∗ y43 ∗ y32

+ y71 ∗ y61 ∗ y53 ∗ y43 ∗ y42

y74 ∗ y65 ∗ y52 ∗ y41 ∗ y32 − y74 ∗ y65 ∗ y51 ∗ y42 ∗ y32 − y74 ∗ y62 ∗ y53 ∗ y52 ∗ y41

+ y74 ∗ y61 ∗ y53 ∗ y52 ∗ y42 − y72 ∗ y65 ∗ y54 ∗ y41 ∗ y32 + y72 ∗ y65 ∗ y51 ∗ y43 ∗ y42

+ y72 ∗ y64 ∗ y54 ∗ y51 ∗ y32 + y72 ∗ y62 ∗ y54 ∗ y53 ∗ y41 − y72 ∗ y62 ∗ y54 ∗ y51 ∗ y43

− y72 ∗ y61 ∗ y54 ∗ y53 ∗ y42 + y71 ∗ y65 ∗ y54 ∗ y42 ∗ y32 − y71 ∗ y65 ∗ y52 ∗ y43 ∗ y42

− y71 ∗ y64 ∗ y54 ∗ y52 ∗ y32 + y71 ∗ y62 ∗ y54 ∗ y52 ∗ y43

y74 ∗ y65 ∗ y53 ∗ y41 ∗ y32 − y74 ∗ y65 ∗ y51 ∗ y43 ∗ y32 − y74 ∗ y62 ∗ y2
53 ∗ y41

+ y74 ∗ y61 ∗ y53 ∗ y52 ∗ y43 − y73 ∗ y65 ∗ y54 ∗ y41 ∗ y32 + y73 ∗ y65 ∗ y51 ∗ y43 ∗ y42

+ y73 ∗ y64 ∗ y54 ∗ y51 ∗ y32 − y73 ∗ y64 ∗ y53 ∗ y51 ∗ y42 + y73 ∗ y61 ∗ y54 ∗ y53 ∗ y42

− y73 ∗ y61 ∗ y54 ∗ y52 ∗ y43 + y72 ∗ y64 ∗ y53 ∗ y51 ∗ y43 + y72 ∗ y63 ∗ y54 ∗ y53 ∗ y41

− y72 ∗ y63 ∗ y54 ∗ y51 ∗ y43 − y72 ∗ y61 ∗ y54 ∗ y53 ∗ y43 + y71 ∗ y65 ∗ y54 ∗ y43 ∗ y32

− y71 ∗ y65 ∗ y53 ∗ y43 ∗ y42 − y71 ∗ y64 ∗ y54 ∗ y53 ∗ y32 + y71 ∗ y64 ∗ y2
53 ∗ y42

− y71 ∗ y64 ∗ y53 ∗ y52 ∗ y43 − y71 ∗ y63 ∗ y54 ∗ y53 ∗ y42 + y71 ∗ y63 ∗ y54 ∗ y52 ∗ y43

+ y71 ∗ y62 ∗ y54 ∗ y53 ∗ y43
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Largest index 7, second half.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

y73 ∗ y62 ∗ y54 ∗ y31 ∗ y21 − y73 ∗ y61 ∗ y54 ∗ y32 ∗ y21 − y73 ∗ y61 ∗ y52 ∗ y42 ∗ y31

+ y73 ∗ y61 ∗ y51 ∗ y42 ∗ y32 − y72 ∗ y63 ∗ y54 ∗ y31 ∗ y21 + y72 ∗ y61 ∗ y54 ∗ y32 ∗ y31

+ y72 ∗ y61 ∗ y53 ∗ y43 ∗ y21 − y72 ∗ y61 ∗ y51 ∗ y43 ∗ y32 + y71 ∗ y63 ∗ y54 ∗ y32 ∗ y21

+ y71 ∗ y63 ∗ y52 ∗ y42 ∗ y31 − y71 ∗ y63 ∗ y51 ∗ y42 ∗ y32 − y71 ∗ y62 ∗ y54 ∗ y32 ∗ y31

− y71 ∗ y62 ∗ y53 ∗ y43 ∗ y21 + y71 ∗ y62 ∗ y51 ∗ y43 ∗ y32

y73 ∗ y64 ∗ y51 ∗ y42 ∗ y31 − y73 ∗ y64 ∗ y51 ∗ y41 ∗ y32 − y73 ∗ y61 ∗ y54 ∗ y42 ∗ y31

+ y73 ∗ y61 ∗ y54 ∗ y41 ∗ y32 + y72 ∗ y64 ∗ y53 ∗ y41 ∗ y31 − y72 ∗ y64 ∗ y51 ∗ y43 ∗ y31

− y72 ∗ y63 ∗ y54 ∗ y41 ∗ y31 + y72 ∗ y63 ∗ y51 ∗ y43 ∗ y41 + y72 ∗ y61 ∗ y54 ∗ y43 ∗ y31

− y72 ∗ y61 ∗ y53 ∗ y43 ∗ y41 − y71 ∗ y64 ∗ y53 ∗ y42 ∗ y31 + y71 ∗ y64 ∗ y51 ∗ y43 ∗ y32

+ y71 ∗ y63 ∗ y54 ∗ y42 ∗ y31 − y71 ∗ y63 ∗ y51 ∗ y43 ∗ y42 − y71 ∗ y61 ∗ y54 ∗ y43 ∗ y32

+ y71 ∗ y61 ∗ y53 ∗ y43 ∗ y42

y74 ∗ y65 ∗ y52 ∗ y41 ∗ y32 − y74 ∗ y65 ∗ y51 ∗ y42 ∗ y32 − y74 ∗ y62 ∗ y53 ∗ y52 ∗ y41

+ y74 ∗ y61 ∗ y53 ∗ y52 ∗ y42 − y72 ∗ y65 ∗ y54 ∗ y41 ∗ y32 + y72 ∗ y65 ∗ y51 ∗ y43 ∗ y42

+ y72 ∗ y64 ∗ y54 ∗ y51 ∗ y32 + y72 ∗ y62 ∗ y54 ∗ y53 ∗ y41 − y72 ∗ y62 ∗ y54 ∗ y51 ∗ y43

− y72 ∗ y61 ∗ y54 ∗ y53 ∗ y42 + y71 ∗ y65 ∗ y54 ∗ y42 ∗ y32 − y71 ∗ y65 ∗ y52 ∗ y43 ∗ y42

− y71 ∗ y64 ∗ y54 ∗ y52 ∗ y32 + y71 ∗ y62 ∗ y54 ∗ y52 ∗ y43

y74 ∗ y65 ∗ y53 ∗ y41 ∗ y32 − y74 ∗ y65 ∗ y51 ∗ y43 ∗ y32 − y74 ∗ y62 ∗ y2
53 ∗ y41

+ y74 ∗ y61 ∗ y53 ∗ y52 ∗ y43 − y73 ∗ y65 ∗ y54 ∗ y41 ∗ y32 + y73 ∗ y65 ∗ y51 ∗ y43 ∗ y42

+ y73 ∗ y64 ∗ y54 ∗ y51 ∗ y32 − y73 ∗ y64 ∗ y53 ∗ y51 ∗ y42 + y73 ∗ y61 ∗ y54 ∗ y53 ∗ y42

− y73 ∗ y61 ∗ y54 ∗ y52 ∗ y43 + y72 ∗ y64 ∗ y53 ∗ y51 ∗ y43 + y72 ∗ y63 ∗ y54 ∗ y53 ∗ y41

− y72 ∗ y63 ∗ y54 ∗ y51 ∗ y43 − y72 ∗ y61 ∗ y54 ∗ y53 ∗ y43 + y71 ∗ y65 ∗ y54 ∗ y43 ∗ y32

− y71 ∗ y65 ∗ y53 ∗ y43 ∗ y42 − y71 ∗ y64 ∗ y54 ∗ y53 ∗ y32 + y71 ∗ y64 ∗ y2
53 ∗ y42

− y71 ∗ y64 ∗ y53 ∗ y52 ∗ y43 − y71 ∗ y63 ∗ y54 ∗ y53 ∗ y42 + y71 ∗ y63 ∗ y54 ∗ y52 ∗ y43

+ y71 ∗ y62 ∗ y54 ∗ y53 ∗ y43
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Largest index 8.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

y84 ∗ y72 ∗ y65 ∗ y41 ∗ y32 − y84 ∗ y72 ∗ y62 ∗ y53 ∗ y41 − y84 ∗ y71 ∗ y65 ∗ y42 ∗ y32

+ y84 ∗ y71 ∗ y62 ∗ y53 ∗ y42 − y82 ∗ y74 ∗ y65 ∗ y41 ∗ y32 + y82 ∗ y74 ∗ y62 ∗ y53 ∗ y41

+ y82 ∗ y71 ∗ y65 ∗ y43 ∗ y42 + y82 ∗ y71 ∗ y64 ∗ y54 ∗ y32 − y82 ∗ y71 ∗ y64 ∗ y53 ∗ y42

− y82 ∗ y71 ∗ y62 ∗ y54 ∗ y43 + y81 ∗ y74 ∗ y65 ∗ y42 ∗ y32 − y81 ∗ y74 ∗ y62 ∗ y53 ∗ y42

− y81 ∗ y72 ∗ y65 ∗ y43 ∗ y42 − y81 ∗ y72 ∗ y64 ∗ y54 ∗ y32 + y81 ∗ y72 ∗ y64 ∗ y53 ∗ y42

+ y81 ∗ y72 ∗ y62 ∗ y54 ∗ y43

y84 ∗ y73 ∗ y65 ∗ y41 ∗ y32 − y84 ∗ y72 ∗ y63 ∗ y53 ∗ y41 − y84 ∗ y71 ∗ y65 ∗ y43 ∗ y32

+ y84 ∗ y71 ∗ y62 ∗ y53 ∗ y43 − y83 ∗ y74 ∗ y65 ∗ y41 ∗ y32 + y83 ∗ y71 ∗ y65 ∗ y43 ∗ y42

+ y83 ∗ y71 ∗ y64 ∗ y54 ∗ y32 − y83 ∗ y71 ∗ y62 ∗ y54 ∗ y43 + y82 ∗ y74 ∗ y63 ∗ y53 ∗ y41

− y82 ∗ y71 ∗ y64 ∗ y53 ∗ y43 + y81 ∗ y74 ∗ y65 ∗ y43 ∗ y32 − y81 ∗ y74 ∗ y62 ∗ y53 ∗ y43

− y81 ∗ y73 ∗ y65 ∗ y43 ∗ y42 − y81 ∗ y73 ∗ y64 ∗ y54 ∗ y32 + y81 ∗ y73 ∗ y62 ∗ y54 ∗ y43

+ y81 ∗ y72 ∗ y64 ∗ y53 ∗ y43

y84 ∗ y75 ∗ y61 ∗ y53 ∗ y42 − y84 ∗ y75 ∗ y61 ∗ y52 ∗ y43 − y84 ∗ y71 ∗ y65 ∗ y53 ∗ y42

+ y84 ∗ y71 ∗ y65 ∗ y52 ∗ y43 + y83 ∗ y75 ∗ y64 ∗ y51 ∗ y42 − y83 ∗ y75 ∗ y61 ∗ y54 ∗ y42

− y83 ∗ y74 ∗ y65 ∗ y51 ∗ y42 + y83 ∗ y74 ∗ y61 ∗ y54 ∗ y52 + y83 ∗ y71 ∗ y65 ∗ y54 ∗ y42

− y83 ∗ y71 ∗ y64 ∗ y54 ∗ y52 − y82 ∗ y75 ∗ y64 ∗ y51 ∗ y43 + y82 ∗ y75 ∗ y61 ∗ y54 ∗ y43

+ y82 ∗ y74 ∗ y65 ∗ y51 ∗ y43 − y82 ∗ y74 ∗ y61 ∗ y54 ∗ y53 − y82 ∗ y71 ∗ y65 ∗ y54 ∗ y43

+ y82 ∗ y71 ∗ y64 ∗ y54 ∗ y53 − y81 ∗ y75 ∗ y64 ∗ y53 ∗ y42 + y81 ∗ y75 ∗ y64 ∗ y52 ∗ y43

+ y81 ∗ y74 ∗ y65 ∗ y53 ∗ y42 − y81 ∗ y74 ∗ y65 ∗ y52 ∗ y43

y85 ∗ y76 ∗ y62 ∗ y51 ∗ y43 − y85 ∗ y76 ∗ y61 ∗ y52 ∗ y43

− y85 ∗ y72 ∗ y64 ∗ y63 ∗ y51 + y85 ∗ y71 ∗ y64 ∗ y63 ∗ y52 − y82 ∗ y76 ∗ y65 ∗ y51 ∗ y43

+ y82 ∗ y76 ∗ y61 ∗ y54 ∗ y53 + y82 ∗ y75 ∗ y65 ∗ y61 ∗ y43 + y82 ∗ y73 ∗ y65 ∗ y64 ∗ y51

− y82 ∗ y73 ∗ y65 ∗ y61 ∗ y54 − y82 ∗ y71 ∗ y65 ∗ y64 ∗ y53 + y81 ∗ y76 ∗ y65 ∗ y52 ∗ y43

− y81 ∗ y76 ∗ y62 ∗ y54 ∗ y53 − y81 ∗ y75 ∗ y65 ∗ y62 ∗ y43 − y81 ∗ y73 ∗ y65 ∗ y64 ∗ y52

+ y81 ∗ y73 ∗ y65 ∗ y62 ∗ y54 + y81 ∗ y72 ∗ y65 ∗ y64 ∗ y53

y85 ∗ y76 ∗ y72 ∗ y51 ∗ y43 − y85 ∗ y76 ∗ y71 ∗ y52 ∗ y43 − y85 ∗ y73 ∗ y72 ∗ y64 ∗ y51

+ y85 ∗ y73 ∗ y71 ∗ y64 ∗ y52 − y82 ∗ y76 ∗ y75 ∗ y51 ∗ y43 + y82 ∗ y76 ∗ y71 ∗ y54 ∗ y53

+ y82 ∗ y75 ∗ y73 ∗ y64 ∗ y51 + y82 ∗ y75 ∗ y71 ∗ y65 ∗ y43 − y82 ∗ y75 ∗ y71 ∗ y64 ∗ y53

− y82 ∗ y73 ∗ y71 ∗ y65 ∗ y54 + y81 ∗ y76 ∗ y75 ∗ y52 ∗ y43 − y81 ∗ y76 ∗ y72 ∗ y54 ∗ y53

− y81 ∗ y75 ∗ y73 ∗ y64 ∗ y52 − y81 ∗ y75 ∗ y72 ∗ y65 ∗ y43 + y81 ∗ y75 ∗ y72 ∗ y64 ∗ y53

+ y81 ∗ y73 ∗ y72 ∗ y65 ∗ y54
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Largest index 9.

1 2 3 4 5 6 7 8 9

y95 ∗ y82 ∗ y76 ∗ y51 ∗ y43 − y95 ∗ y82 ∗ y73 ∗ y64 ∗ y51 − y95 ∗ y81 ∗ y76 ∗ y52 ∗ y43

+ y95 ∗ y81 ∗ y73 ∗ y64 ∗ y52 − y92 ∗ y85 ∗ y76 ∗ y51 ∗ y43 + y92 ∗ y85 ∗ y73 ∗ y64 ∗ y51

+ y92 ∗ y81 ∗ y76 ∗ y54 ∗ y53 + y92 ∗ y81 ∗ y75 ∗ y65 ∗ y43 − y92 ∗ y81 ∗ y75 ∗ y64 ∗ y53

− y92 ∗ y81 ∗ y73 ∗ y65 ∗ y54 + y91 ∗ y85 ∗ y76 ∗ y52 ∗ y43 − y91 ∗ y85 ∗ y73 ∗ y64 ∗ y52

− y91 ∗ y82 ∗ y76 ∗ y54 ∗ y53 − y91 ∗ y82 ∗ y75 ∗ y65 ∗ y43 + y91 ∗ y82 ∗ y75 ∗ y64 ∗ y53

+ y91 ∗ y82 ∗ y73 ∗ y65 ∗ y54
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