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Abstract

We prove Heden’s result that the deficiency δ of a maximal partial
spread in PG(3, q) is greater than 1+ 1

2
(1+
√

5)q unless δ−1 is a multiple
of p, where q = pn. When q is odd and not a square, we are able to
improve this lower bound to roughly

√
3q.

0 Introduction

In this note we translate Heden [5] into geometry and find that the same theory
now only takes one-fifth of the space. Having thus decoded [5], we proceed to
apply the methods of Blokhuis and Brouwer [1] to improve Heden’s result a
little. A spread in PG(3, q) (the projective geometry of dimension 3 over the
field Fq) is a partition of the set of points into lines. An easy counting argument
shows that a spread contains q2 + 1 lines. A partial spread is a collection of
pairwise disjoint lines that is not a spread. A maximal partial spread S is a
partial spread such that no projective line is disjoint from each of its lines. Its
deficiency δ is the number of lines ‘missing’ from S, i.e. q2 +1−|S|. Let q = pn,
where p is prime. Heden’s result is:

Theorem 1 For any maximal partial spread in PG(3, q), the deficiency δ sat-
isfies δ ≥ 1 +

√
q. If p does not divide δ − 1 and if δ < 1

2 (q + 1), then
δ ≥ 1 + 1

2 (1 +
√

5)
√
q.

We show:

Theorem 2 If q is not a square, then for any maximal spread with deficiency
δ in PG(3, q), we have

δ ≥ min(1 +
√

3q,
√
pq − p+ 2)

1 Trivialities

Let S be a maximal partial spread with deficiency δ. Then δ(q + 1) points of
PG(3, q) are not covered by a line from S. We call these points ‘holes’. Dually
(note that ‘spread’, ‘partial spread’ and ‘deficiency’ are self-dual concepts), all
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planes except for δ(q+ 1) contain a line from S. Let us call the planes on a line
of S ‘rich’ and the other planes ‘poor’. The q2 + 1− δ lines of S cover q2 + 1− δ
points in any poor plane, so that a poor plane has (q2+q+1)−(q2+1−δ) = q+δ
holes. Similarly, a rich plane has δ holes. Let L be any line not in S, and suppose
that it has h holes. Then L is hit by q + 1 − h lines of S, and hence L lies in
q + 1 − h rich planes, and in h poor planes. In particular, each line in a poor
plane contains a hole, so that the set of holes in a poor plane forms a blocking
set in that plane.

[Now standard results on blocking sets show δ ≥ 1+
√
q (Bruen [3, 4] or even

δ ≥
√

2q if q is not a square (Blokhuis and Brouwer [1]). Note that it follows
that q 6= 2 since every blocking set in PG(2, 2) contains a line, i.e. each partial
spread in PG(3, 2) can be extended to a spread.]

Also, the intersection of two poor planes is a line containing at least two
holes. Finally, remark that a line contains at most δ holes (otherwise it cannot
be on a rich plane and hence contains q+1 holes, and S would not be maximal).

2 The number of holes on a line

For a set A of points, let H(A) be the set of holes in A, and let h(A) be the
cardinality of H(A).

Lemma 1 (Heden’s Lemma 11.1). Let L, M be two skew lines. Then either
H(M) meets all rich planes on L, or it meets at most δ − h(L) of them.

Proof. Suppose Π is a rich plane on L disjoint from H(M). Then h(H) = δ.
If all planes on M meet H(Π), then δ ≥ q + 1 and the statement is trivial.
Otherwise, some plane Π′ on M meets Π in a line without holes, so that Π′ is
rich and h(W ) = δ. All the h(L) poor planes on L meet H(Π′), so at most
δ−h(L) rich planes on L can do so, and a forteriori at most δ−h(L) rich planes
on L meet H(M). 2

Lemma 2 (Heden’s Lemma 11.2). Let L be a line such that h(L) < δ and
h(L) < q. Then there is a line M skew to L such that H(M) meets at least
(q + 1− h(L))/(δ − h(L)) rich planes on L.

Proof. Choose non-holes P , Q on L. Each of these lies on δ poor planes (since
dually each rich plane contains δ holes) and therefore on δ − h(L) poor planes
not containing L. Fix such a plane Π on P and let Π′ vary over the δ − h(L)
such planes Π′ on Q. Then we see δ − h(L) lines M := Π ∩ Π′, all skew to L,
and we are done if we show that each of the q+ 1−h(L) rich planes Π′′ on L is
met by at least one of the lines M . But for each Π′′ the line Π′′ ∩Π contains a
hole R since Π is poor, and the line (Q,R) is on one of the planes Π′ (indeed,
it is on a poor plane, and this plane cannot contain L since otherwise it would
be the plane Π′′, which is not poor), and we are done. 2

Proposition (Heden’s Proposition 11.1). Let L be Q a line such that h(L) < δ
and h(L) < q + l − δ. Then

h(L) ≤ δ − 1
2 −

√
q + 5

4 − δ. (1)
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Proof. Let M be a line skew to L as found in Lemma 2. If H(M) meets all
q + 1 − h(L) rich planes on L, then q + 1 − h(L) = δ = h(M); now if Π is any
rich plane on M , then H(Π) = H(M) also meets all poor planes on L, so that
H(M) meets all planes on L, and h(M) = q + 1, contradiction. Now Lemma 1
yields

q + l − h(L)

δ − h(L)
≤ δ − h(L)

and (1) follows. 2

3 Application of Rédei’s theorem

Let Π be an arbitrary fixed poor plane, and put S = H(Π). As we have seen, S
is a blocking set in Π of size q + δ. Let xi be the number of lines in Π meeting
S in i+ 1 points. By the usual counting arguments we find

δ−l∑
i=1

ixi = δ(q + 1)− 1 (2)

(count poor planes distinct from Π) and

δ−1∑
i=1

i(i+ l)xi = (δ + q)(δ + q − 1). (3)

Suppose xδ−1 > 0, i.e. suppose that some line L of H has δ holes. Then
Σ = Π \ L is an affine plane (with L as line at infinity), h(Σ) = q, and any line
meeting H(Σ) in more than one point must meet H(L) (otherwise a parallel
line would not meet H(Σ) and contradict the fact that H(Π) is a blocking set in
Π). Now Rédei [7], p. 215 (Hilfssatz 42) proves that if the secants of a subset X
of cardinality q of the desarguesian affine plane AG(2, q) have not more than 1

2q
distinct directions, then each secant meets X in a number of points divisible by
p. In our case this means that if δ ≤ 1

2q, then for any line M on P distinct from
L we have p | h(M)− 1. In particular, either p | δ− 1 or xδ−1 = 1. Now assume
p - δ − 1 and δ ≤ 1

2q. Then Rédei tells us that xδ−l ≤ 1, and in the previous

section we saw that xi = 0 for a < i+ 1 < δ, where a = δ = 1
2 −

√
q + 5

4 − δ.
Subtracting (3) from a times (2), we get, using these estimates,

(δ − 1)(a− δ) ≤
δ−1∑
i=1

(a− i− 1)ixi = a(δ(q + 1)− 1)− (δ + q)(δ + q − 1)

and, substituting a,

δ − 5
2 −

q − 1

δ
−

√
q + 5

4 − δ ≥ 0

the left hand side of this inequality is an increasing function of δ. For δ =
1 + 1

2 (1 +
√

5)
√
q, the left hand side is negative, and hence Heden’s theorem

follows.
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4 An improvement

Another result by Rédei states that the secants of a subset X of cardinality q of
the desarguesian affine plane AG(2, q) have at least 1+(q−1)/(p[n/2]+1) distinct
directions (Rédei [7], p. 237). Thus, if xδ−1 > 0, then δ ≥ 1 + (q − 1)/(p[n/2] + 1).
If q is not a square, this implies that δ >

√
pq − p+ 1, and hence

δ ≥
√
pq − p+ 2. (4)

Now suppose that xδ−l = 0. If δ <
√

4q + 1, then 2a − 1 < δ, and it follows
that in each poor plane Π each non-hole is on at most q − 2 tangents. On the
other hand, since a blocking set in AG(2, q) has size at least 2q − 1 (Brouwer
and Schrijver [2], Jamison [6]) it follows that any point in Π \ S lies on at most
q − δ + 1 tangents to S. Counting incident pairs (tangent to S, point in Π \ S)
in two ways, one gets

q(q + δ)(q − δ + 1) ≤ (q2 − δ + 1)(q − 2)

and it follows that
δ ≥

√
3q + 1. (5)

Thus we have proved Theorem 2 (for q ≤ 11 a few ad hoc arguments are
required).

Note that we have the additional geometric information that if δ <
√

3q + 1,
then each poor plane contains a line with δ holes, and dually each hole lies on
such a line.

5 Groups

We needed Rédei in order to show that xδ−1 is small, but this required some
unfortunate hypotheses (q not a square, or p does not divide δ−1). Now suppose
that we cannot find a plane in which xδ−1 = 0, i.e. suppose that each plane
contains a line with δ holes—let us call such a line a δ-line. Using the geometry
of PG(3, q) and the classification of subgroups of PSL(2, q), we can say a little
about the number δ.

Lemma. Let K be a δ-line. The δ-set H(K) is an orbit of some subgroup H
of the PSL(2, q) acting on K.

Proof. If M is a δ-line, and p is a hole not on M , then the plane 〈M,P 〉 is poor.
Consequently, if M , N are two skew δ-lines, then the δ poor planes on M are the
δ planes 〈M,P 〉, where P runs over H(N). Thus, if L, M , N are three mutually
skew δ-lines, and we define a map πLMN : M → N by πLMN (P ) = 〈L,P 〉 ∩N
for P on M , then πLMN maps H(M) onto H(N). In this way, any point of
H(M) can be mapped to any point of H(N): if P ∈ H(M) and Q ∈ H(N),
then as we saw in Section 3 the number of holes on the line 〈P,Q〉 is congruent
to 1 (mod p), so this line is on at least three poor planes, and hence is on a poor
plane Π not containing M or N . Let L be a δ-line in Π. Then πLMN (P ) = Q.
Now let K, L be two skew δ-lines, and let M , N be δ-lines skew to both K and
L. Composing two maps πMKL and πNLK we find a map from K to K; the
subgroup H generated by all such maps is a subgroup of the PSL(2, q) acting
on K, and has H(K) as orbit. 2
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