Heden's bound on maximal partial spreads

Aart Blokhuis, Andries Brouwer, Henny Wilbrink Eindhoven University of Technology a.blokhuis@tue.nl, aeb@cwi.nl, ha.wilbrink@telfort.nl

24 Nov 1987

Abstract

We prove Heden's result that the deficiency δ of a maximal partial spread in PG(3, q) is greater than $1 + \frac{1}{2}(1 + \sqrt{5})q$ unless $\delta - 1$ is a multiple of p, where $q = p^n$. When q is odd and not a square, we are able to improve this lower bound to roughly $\sqrt{3q}$.

0 Introduction

In this note we translate Heden [5] into geometry and find that the same theory now only takes one-fifth of the space. Having thus decoded [5], we proceed to apply the methods of Blokhuis and Brouwer [1] to improve Heden's result a little. A *spread* in PG(3, q) (the projective geometry of dimension 3 over the field \mathbb{F}_q) is a partition of the set of points into lines. An easy counting argument shows that a spread contains $q^2 + 1$ lines. A *partial spread* is a collection of pairwise disjoint lines that is not a spread. A *maximal partial spread* S is a partial spread such that no projective line is disjoint from each of its lines. Its deficiency δ is the number of lines 'missing' from S, i.e. $q^2 + 1 - |S|$. Let $q = p^n$, where p is prime. Heden's result is:

Theorem 1 For any maximal partial spread in PG(3,q), the deficiency δ satisfies $\delta \geq 1 + \sqrt{q}$. If p does not divide $\delta - 1$ and if $\delta < \frac{1}{2}(q+1)$, then $\delta \geq 1 + \frac{1}{2}(1 + \sqrt{5})\sqrt{q}$.

We show:

Theorem 2 If q is not a square, then for any maximal spread with deficiency δ in PG(3,q), we have

$$\delta \ge \min(1 + \sqrt{3q}, \sqrt{pq} - p + 2)$$

1 Trivialities

Let S be a maximal partial spread with deficiency δ . Then $\delta(q+1)$ points of PG(3,q) are not covered by a line from S. We call these points 'holes'. Dually (note that 'spread', 'partial spread' and 'deficiency' are self-dual concepts), all

planes except for $\delta(q+1)$ contain a line from S. Let us call the planes on a line of S 'rich' and the other planes 'poor'. The $q^2 + 1 - \delta$ lines of S cover $q^2 + 1 - \delta$ points in any poor plane, so that a poor plane has $(q^2+q+1)-(q^2+1-\delta)=q+\delta$ holes. Similarly, a rich plane has δ holes. Let L be any line not in S, and suppose that it has h holes. Then L is hit by q + 1 - h lines of S, and hence L lies in q + 1 - h rich planes, and in h poor planes. In particular, each line in a poor plane contains a hole, so that the set of holes in a poor plane forms a blocking set in that plane.

[Now standard results on blocking sets show $\delta \ge 1 + \sqrt{q}$ (Bruen [3, 4] or even $\delta \ge \sqrt{2q}$ if q is not a square (Blokhuis and Brouwer [1]). Note that it follows that $q \ne 2$ since every blocking set in PG(2, 2) contains a line, i.e. each partial spread in PG(3, 2) can be extended to a spread.]

Also, the intersection of two poor planes is a line containing at least two holes. Finally, remark that a line contains at most δ holes (otherwise it cannot be on a rich plane and hence contains q+1 holes, and S would not be maximal).

2 The number of holes on a line

For a set A of points, let H(A) be the set of holes in A, and let h(A) be the cardinality of H(A).

Lemma 1 (Heden's Lemma 11.1). Let L, M be two skew lines. Then either H(M) meets all rich planes on L, or it meets at most $\delta - h(L)$ of them.

Proof. Suppose Π is a rich plane on L disjoint from H(M). Then $h(H) = \delta$. If all planes on M meet $H(\Pi)$, then $\delta \ge q + 1$ and the statement is trivial. Otherwise, some plane Π' on M meets Π in a line without holes, so that Π' is rich and $h(W) = \delta$. All the h(L) poor planes on L meet $H(\Pi')$, so at most $\delta - h(L)$ rich planes on L can do so, and a forteriori at most $\delta - h(L)$ rich planes on L meet H(M).

Lemma 2 (Heden's Lemma 11.2). Let L be a line such that $h(L) < \delta$ and h(L) < q. Then there is a line M skew to L such that H(M) meets at least $(q+1-h(L))/(\delta-h(L))$ rich planes on L.

Proof. Choose non-holes P, Q on L. Each of these lies on δ poor planes (since dually each rich plane contains δ holes) and therefore on $\delta - h(L)$ poor planes not containing L. Fix such a plane Π on P and let Π' vary over the $\delta - h(L)$ such planes Π' on Q. Then we see $\delta - h(L)$ lines $M := \Pi \cap \Pi'$, all skew to L, and we are done if we show that each of the q + 1 - h(L) rich planes Π'' on L is met by at least one of the lines M. But for each Π'' the line $\Pi'' \cap \Pi$ contains a hole R since Π is poor, and the line (Q, R) is on one of the planes Π' (indeed, it is on a poor plane, and this plane cannot contain L since otherwise it would be the plane Π'' , which is not poor), and we are done.

Proposition (Heden's Proposition 11.1). Let L be Q a line such that $h(L) < \delta$ and $h(L) < q + l - \delta$. Then

$$h(L) \le \delta - \frac{1}{2} - \sqrt{q + \frac{5}{4} - \delta}.$$
(1)

Proof. Let M be a line skew to L as found in Lemma 2. If H(M) meets all q + 1 - h(L) rich planes on L, then $q + 1 - h(L) = \delta = h(M)$; now if Π is any rich plane on M, then $H(\Pi) = H(M)$ also meets all poor planes on L, so that H(M) meets all planes on L, and h(M) = q + 1, contradiction. Now Lemma 1 yields

$$\frac{q+l-h(L)}{\delta-h(L)} \le \delta - h(L)$$

and (1) follows.

3 Application of Rédei's theorem

Let Π be an arbitrary fixed poor plane, and put $S = H(\Pi)$. As we have seen, S is a blocking set in Π of size $q + \delta$. Let x_i be the number of lines in Π meeting S in i + 1 points. By the usual counting arguments we find

$$\sum_{i=1}^{\delta-l} ix_i = \delta(q+1) - 1 \tag{2}$$

(count poor planes distinct from Π) and

$$\sum_{i=1}^{\delta-1} i(i+l)x_i = (\delta+q)(\delta+q-1).$$
(3)

Suppose $x_{\delta-1} > 0$, i.e. suppose that some line L of H has δ holes. Then $\Sigma = \Pi \setminus L$ is an affine plane (with L as line at infinity), $h(\Sigma) = q$, and any line meeting $H(\Sigma)$ in more than one point must meet H(L) (otherwise a parallel line would not meet $H(\Sigma)$ and contradict the fact that $H(\Pi)$ is a blocking set in Π). Now Rédei [7], p. 215 (Hilfssatz 42) proves that if the secants of a subset X of cardinality q of the desarguesian affine plane AG(2, q) have not more than $\frac{1}{2}q$ distinct directions, then each secant meets X in a number of points divisible by p. In our case this means that if $\delta \leq \frac{1}{2}q$, then for any line M on P distinct from L we have $p \mid h(M) - 1$. In particular, either $p \mid \delta - 1$ or $x_{\delta-1} = 1$. Now assume $p \nmid \delta - 1$ and $\delta \leq \frac{1}{2}q$. Then Rédei tells us that $x_{\delta-l} \leq 1$, and in the previous section we saw that $x_i = 0$ for $a < i + 1 < \delta$, where $a = \delta = \frac{1}{2} - \sqrt{q + \frac{5}{4} - \delta}$.

Subtracting (3) from a times (2), we get, using these estimates,

$$(\delta - 1)(a - \delta) \le \sum_{i=1}^{\delta - 1} (a - i - 1)ix_i = a(\delta(q + 1) - 1) - (\delta + q)(\delta + q - 1)$$

and, substituting a,

$$\delta - \tfrac{5}{2} - \frac{q-1}{\delta} - \sqrt{q + \tfrac{5}{4} - \delta} \geq 0$$

the left hand side of this inequality is an increasing function of δ . For $\delta = 1 + \frac{1}{2}(1 + \sqrt{5})\sqrt{q}$, the left hand side is negative, and hence Heden's theorem follows.

4 An improvement

Another result by Rédei states that the secants of a subset X of cardinality q of the desarguesian affine plane AG(2, q) have at least $1+(q-1)/(p^{[n/2]}+1)$ distinct directions (Rédei [7], p. 237). Thus, if $x_{\delta-1} > 0$, then $\delta \ge 1 + (q-1)/(p^{[n/2]}+1)$. If q is not a square, this implies that $\delta > \sqrt{pq} - p + 1$, and hence

$$\delta \ge \sqrt{pq} - p + 2. \tag{4}$$

Now suppose that $x_{\delta-l} = 0$. If $\delta < \sqrt{4q+1}$, then $2a - 1 < \delta$, and it follows that in each poor plane Π each non-hole is on at most q - 2 tangents. On the other hand, since a blocking set in AG(2, q) has size at least 2q - 1 (Brouwer and Schrijver [2], Jamison [6]) it follows that any point in $\Pi \setminus S$ lies on at most $q - \delta + 1$ tangents to S. Counting incident pairs (tangent to S, point in $\Pi \setminus S$) in two ways, one gets

$$q(q+\delta)(q-\delta+1) \le (q^2-\delta+1)(q-2)$$

and it follows that

$$\delta \ge \sqrt{3q} + 1. \tag{5}$$

Thus we have proved Theorem 2 (for $q \leq 11$ a few ad hoc arguments are required).

Note that we have the additional geometric information that if $\delta < \sqrt{3q} + 1$, then each poor plane contains a line with δ holes, and dually each hole lies on such a line.

5 Groups

We needed Rédei in order to show that $x_{\delta-1}$ is small, but this required some unfortunate hypotheses (q not a square, or p does not divide $\delta-1$). Now suppose that we cannot find a plane in which $x_{\delta-1} = 0$, i.e. suppose that each plane contains a line with δ holes—let us call such a line a δ -line. Using the geometry of PG(3,q) and the classification of subgroups of PSL(2,q), we can say a little about the number δ .

Lemma. Let K be a δ -line. The δ -set H(K) is an orbit of some subgroup H of the PSL(2,q) acting on K.

Proof. If M is a δ -line, and p is a hole not on M, then the plane $\langle M, P \rangle$ is poor. Consequently, if M, N are two skew δ -lines, then the δ poor planes on M are the δ planes $\langle M, P \rangle$, where P runs over H(N). Thus, if L, M, N are three mutually skew δ -lines, and we define a map $\pi_{LMN} : M \to N$ by $\pi_{LMN}(P) = \langle L, P \rangle \cap N$ for P on M, then π_{LMN} maps H(M) onto H(N). In this way, any point of H(M) can be mapped to any point of H(N): if $P \in H(M)$ and $Q \in H(N)$, then as we saw in Section 3 the number of holes on the line $\langle P, Q \rangle$ is congruent to 1 (mod p), so this line is on at least three poor planes, and hence is on a poor plane Π not containing M or N. Let L be a δ -line in Π . Then $\pi_{LMN}(P) = Q$. Now let K, L be two skew δ -lines, and let M, N be δ -lines skew to both K and L. Composing two maps π_{MKL} and π_{NLK} we find a map from K to K; the subgroup H generated by all such maps is a subgroup of the PSL(2, q) acting on K, and has H(K) as orbit.

References

- A. Blokhuis and A.E. Brouwer, *Blocking sets in desarguesian projective planes*, Bull. London Math. Soc. 18 (1986) 132–134.
- [2] A.E. Brouwer and A. Schrijver, *The blocking number of an affine space*, J. Combinatorial Th. (A) 24 (1978) 251–253.
- [3] A.A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc. 76 (1970) 342–344.
- [4] A.A. Bruen, Blocking sets in finite projective planes, SIAM J. Appl. Math. 21 (1971) 380–392.
- [5] O. Heden, Maximal partial spreads and two-weight codes, Discrete Math. 62 (1986) 277–293.
- [6] R. Jamison, Covering finite fields with cosets of subspaces, J. Combinatorial Th. (A) 22 (1977) 253–266.
- [7] L. Rédei, Lückenhafte Polynome über endlichen Körpern, (Birkhäuser Verlag, Basel, 1970).