Strongly regular graphs from hyperovals

aeb

11 Feb 2016

Abstract

We give a construction of a family of graphs found by Huang, Huang and Lin.

In Huang-Huang-Lin [2] the authors constructed various families of designs and graphs. We give a simplified description of one family.

1 Construction

Let q be a power of 2 , and let V be a 3 -dimensional vector space over \mathbb{F}_{q}. Let $H=\left\{P_{1}, \ldots, P_{q+2}\right\}$ be a hyperoval (that is, a $(q+2)$-arc) in the projective plane $P V$, and let x_{i} be a representative vector of P_{i}, so that $x_{i} \in V$ with $P_{i}=\left\langle x_{i}\right\rangle,(i=1, \ldots, q+2)$. Let C be the linear q-ary $[q+2,3, q]$-code obtained by evaluating all linear forms $c \in V^{*}$ at the x_{i}, so that $c_{i}=c\left(x_{i}\right)$. There are precisely q^{3-i} code words with i specified coordinate positions ($i=0,1,2,3$). Any two code words have Hamming distance q or $q+2$ (since any projective line meets H in 2 or 0 points).

Construct a graph Γ with as vertex set C, where two code words are adjacent when they have Hamming distance $q+2$.
Proposition 1.1 The graph Γ is strongly regular with parameters $(v, k, \lambda, \mu)=$ $\left(q^{3}, \frac{1}{2} q(q-1)^{2}, \frac{1}{4} q(q-2)(q-3), \frac{1}{4} q(q-1)(q-2)\right)$. Its spectrum is $k^{1} r^{f} s^{g}$ (with exponents denoting multiplicities), where $r=\frac{1}{2} q, s=-\frac{1}{2} q(q-1)$ and $f=(q-1)\left(q^{2}-1\right), g=(q-1)(q+2)$.

Proof. This is well-known, a special case of the similar construction (due to Delsarte [1]) for a set X in projective space such that the size of the intersection $|X \cap Z|$ for hyperplanes Z takes only two values. In our case the set X is the dual hyperoval consisting of the $q(q-1) / 2$ exterior lines of the hyperoval H.

The graph Γ is invariant under the transitive translation group. Let Δ be its local graph: the graph on all code words of weight $q+2$, adjacent when they have Hamming distance $q+2$.

Proposition 1.2 The graph Δ is strongly regular with parameters $(v, k, \lambda, \mu)=$ $\left(\frac{1}{2} q(q-1)^{2}, \frac{1}{4} q(q-2)(q-3), \frac{1}{8} q\left(q^{2}-9 q+22\right), \frac{1}{8} q(q-3)(q-4)\right)$. Its spectrum is $k^{1} r^{f} s^{g}$, where $r=\frac{1}{2} q$, $s=-\frac{1}{4} q(q-3)$ and $f=\frac{1}{2}(q+1)(q-2)(q-3)$, $g=q^{2}-4$.
Proof. Direct counting, via inclusion-exclusion.
These graphs are the complements of those that follow from [2], Cor. 4.1. The special case $q=8$ was mentioned explicitly in [2], Cor. 4.2.

References

[1] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discr. Math. 3 (1972) 47-64.
[2] Tayuan Huang, Lingling Huang \& Miaow-Ing Lin, On a class of strongly regular designs and quasi-semisymmetric designs, Recent developments in algebra and related areas, Chongying Dong et al. eds., Proc. Internat. Conference on Algebra and Related Areas, Tsinghua University, Beijing, China, August 18-20, 2007. Advanced Lectures in Mathematics (ALM) 8 (2009) 129-153.

