4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

A. Blokhuis, A.E. Brouwer

Locally 4-by-4 grid graphs

Department of Pure Mathematics Report PM-R8401 January




The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim-
ing at the promotion of mathematics, computer science, and their applications. It is'Sponsored by

the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam




LOCALLY 4-BY-4 GRID GRAPHS

A. BLOKHUIS, A.E. BROUWER

Centre for Mathematics and Computer Science, Amsterdam

We investigate locally grid graphs. Main results are: (i) a characteriza-
tion of the Johnson graphs (and certain quotients of these) as locally grid
graphs such that two points at distance two have precisely four common
neighbours, and (ii) a complete determination of all graphs that are lo-
cally a 4x4 grid (it turns out that there are four such graphs, with 35,
40, 40 and 70 vertices).

1980 MATHEMATICS SUBJECT CLASSIFICATION: 05C25, 05C30
KEY WORDS & PHRASES: Johnson scheme, locally grid graph.

NOTE: This paper will be submitted for publication elsewhere.

Report PM-R8401

Centre for Mathematics and Computer Science

P.O. ng 4079, 1009 AB Amsterdam, The Netherlands

gibliotheek .
. informatica
Centrum ngsskundeen
atrume Amsterdam -




e
R

i

v

e
B

A




0. INTRODUCTION

Let us denote by (z) the graph with as vertices the m-subsets of an
n-set, where two m-sets are adjacent when they have an (m-1) - set in common.
[These graphs are commonly known as Johnson graphs; in the cases m = 2 and
m = 3 also as triangular and tetrahedral graphs.]

Let us denote by pxq the graph with vertex set PxQ where IP]=;% IQ|=q
and (Xl’yl) adjacent to (X2’y2) if and only if X, =X, 0ry =y, (but not
both). The graphs pxq are called grids. A graph T is called Zocally G if
for each vertex x of T' the graph induced by T on the set of neighbours of x
is isomorphic to the graph G.

With this terminology the graph (zp is locally mx (n-m) and one might
want to characterize it as such; without additional hypotheses this seems

impossible (J.I. Hall has indicated large classes of locally grid graphs),
but adding the hypothesis that the graph induced on the set of common neigh-

bours of two points at distance two is a 4-cycle (which is true in (g)) we

do indeed obtain a characterization of the Johnson graphs and certain




quotients.

Let us denote by u(x,y) (where x and y are two vertices at distance 2
in a graph T') the graph induced on the set of common neighbours of x and y;
we shall call subgraphs of TI' of this form p-graphs. Characterizing locally
pxq graphs (without hypothesis on the u—graphs) is trivial for p < 2 and
has been done by J.I. Hall [7,81 for p = 3. Here we settle the first un-
solved case by finding all locally 4x4 graphs. The result is surprising
in that there are besides the expected graphs gg) and %(2)(the quotient of
(2) obtained by identifying complementary 4-sets of the 8-get), two more
examples on 40 vertices,one very regular graph (its automorphism group is
transitive on points, edges, triangles, 4-cliques and 5-cliques) described

in section 3, and a twisted version of the previous, described in section 4.

It will be clear to those who know the language of Buekenhout-Tits

diagrams that what we consider here are geometries belonging to the diagram

Related work (characterizing certain classes of locally polar graphs) was
done by Buekenhout & Hubaut [4]. There are two possible ways for a general-
ized quadrangle to be thin (and thus difficult to handle geometrically) -
one is the case with two lines on each point, the case we consider here,
and the other is the case with two points on each line. But in the latter
case we have a locally Kp,q graph, and it is trivial to check that such

graphs do not exist for p # q while the only locally K graph is K .
PsP PsP>sP

[In contrast to the difficulty of characterizing locally pxq graphs,
it is completely trivial to characterize locally pxq graphs (where the bar

denotes complementation) in all interesting cases— cf. Buset [5].]
1. CHARACTERIZATION OF THE JOHNSON GRAPHS

Let us first state the results we shall prove in this section.

THEOREM 1. Let T be comnected and locally grid and assume that the comnected

components of each u-graph are 4-cycles. Then there are integers m,n such

that T 28 locally m x(n-m), and either T = (E? or n = 2m and T 78 obtained

&




from (%:S’by identifying each m-set with the image of its complement under

o, where o Zs a permutation of the 2m synbols satisfying 02 = T and having

at least 8 fix points.

REMARK. For m £ 4 we must have ¢ = 1 and m = 4 so that the only possible
quotient is %(2).(The quotients %(g) and %(g) are complete graphs Ky and
Klo.) In general the number of transpositions in the cycle representation
of o is an invariant of the quotient so that one obtains several non-iso-—

morphic quotients.

When o has at least 10 fix points then each u-graph of the quotieht is a
4-cycle; when o has precisely 8 fix points then each pu-graph is the union

of two 4-cycles.

REMARK. Some version of the above theorem was communicated by the second
author to J.I. Hall at the Pullman conference in honour of T.G. Ostrom.
Hall subsequently showed (in a letter dated May 21, 1981) that this theorem
is essentially equivalent to theorem 2 in Sprague [101].

Under the weaker assumption that T' is locally a graph on m(n-m) ver-
tices with valency (m1) + (n~m~1) and each u-graph hast at most 4 vertices
one can prove that T = (;P provided n is iarge enough. (T.A. Dowling [6]
proved this for n > 2m(m-1) + 4 and A.E. Brouwer [2] for n 2> max (6m-1,

m2+2m+1).)

A. Moon [9] obtains a characterization for n > 4m, characterizing (g) not
as a graph but as an association scheme, where all the parameters p;k of

the association scheme are given.

In all cases the difficult part of the proof is to find cliques of the right
size - thus(the analogue of) theorem 1 is trivial in these contexts; only

when n = 2m one has to be a little bit careful.

COROLLARY. Let T be comnected locally 2xq. Then T is the triangular graph

q+2
2.

LEMMA. Let T be connected and locally grid. Then there are integers p,q
such that T is locally pxq. Each w-graph is a union of cycles of even length.

If C i8 a maximal clique and x ¢ C then x is adjacent to either 0 or 2




points of C. Each edge is in precisely two maximal cliques: one of size

p+ 1 and one of size q+ 1. Each triangle 18 in a unique maximal Glique.

PROOF OF THE LEMMA. Suppose that the neiéhbourhood of x is isomorphic to
p*q and that x ~ y. Then the edge xy is in cliques of size (p+1) and (q+1)
and hence the neighbourhood of y is also isomorphic to pxq. By connected-
ness of T the graph is locally pxq.

If d(u,v) = 2 and a € p(u,v) then looking at the neighbours of a we find
that u,v,a have two common neighbours, so u(u,v) is regular of valency 2.
Since u(u,v) < T'(u) the edges of a component of u(u,v) are alternatingly
'horizontal' and 'vertical', i.e., each component of u(u,v) is an even

cycle. . 0

PROOF OF THE COROLLARY. The only union of cycles of even length that occurs

as subgraph of 2xq is a 4-cycle. Thus the theorem applies. B

PROOF OF THE THEOREM. By the lemma, T is locally mx (n-m) and we may assume

m < n-m. The proof is by induction on m. For m = O,T has valency zero and
hence is a single point, indeed T = (3) for all n > 0. Considet the graph

r'" that has the (n-m+1)-cliques of T as vertices, and where two such cliques
are adjacent when they have precisely one point in common. We want to show
that each connected component of F* satisfies the hypotheses of the theorem
and is locally (m~1) x (n-m+1).

To this end first observe that if C = {xo,...,x 1

x  x y is a maximal clique of T' then T*(C) has a partition
] "™ into n-m+ 1 cliques of size m- 1, namely the sets of
%y ¥g ) Yn-m points in F*(C) containing some fixed xi(O <1i<n-m.
z, z, ’n-m Next assume that C1 and C2 are points of r*

such that c,ng, = {XO}, say
C1 = {XO’XI""’Xn-m}’ C2 = {Xo,y],...,yn_m} where
X, "~y (1 <1<n-m.

Let Di be the maximal clique containing XY but not X (1<i<n-m.
Then {CI’CZ’DI""’Dn—m} is a clique in T*. [For: let i # j. The point

X has two neighbours in Dj’ one is Xj and the other is a point not in

P(XO), say a. Now u(x,.,a) contains Xi’xj’yj and hence by our hypothesis

on u—grgphs also v Thus Di is the clique determined by R I and Di is




adjacent to Dj in P*.] Thus T~ is locally (m-1) x (n-m+1).

Next we check that the u—graphs in r* are unions of 4-cycles. L(-;L/C1 and C2
be as before and let D meet C, in the point y,» where ]lewD[ # 1. Then

[C] n DI = 0, The point X, has two neighbours on D, Y, and, say z,. Looking

at F(xo) we see that X ™2, and u(C],D) contains the 4-cycle !
(CZ’D(Xl’yl)’ D(xl,zl),C3), where D(p,q) is the maximal clique on p,q not
containing x., and C3 = {XO’ZI""’Zn—m}iS the maximal clique on X452, not
containing XY

Thus, by induction, each component of r* is the Johnson graph (;i]).
First assume that n > 2m; then each edge is in a unique (n-m+1)-clique and
F* is connected. Label the points of r* with (m-1)-sets; next label each
point x of I' with the union of the labels of the (n-m+l)-cliques on x. Then
x is labeled with an m-set (since the cliques incident with x form a small
maximal ¢lique in P*) and clearly two points of T are
adjacent iff they are together in a clique, i.e., i1ff their labels have an
(m-1)-set in common. Thus T = (g). [Note T has the right number of vertices
and no label can be repeated.] Next assume n = 2m. Now each edge is in
precisely two (m+1)-cliques, and I'" has either one or two components. If
r'" has two components then use the labels of one of these components to
label T and we find T = (;) again. So assume that I" is connected. Now each
point x of T determines two m~cliques in P*, and, taking the union of the
labels of the members of each m—clique we find two labels for x. Both labels
are m-sets, and if x ~ y then each of the labels of x has an (m~1)-set in
common with a unique label of y. Conversely, if a label of x and a label of
y have an (m-1)-set in common then x ~ y and also the other labels have an
(m-1)-set in common. Thus I is a quotient of (%?) under an automorphism
o of order 2. Now the automorphism group of (%?) is the direct product
Sym(2m).x Zz where the Zz sends an m-set to its complement.
Also, if o interchanges the m—sets M,N then the Johnson distance between
M and N is at least 4 (otherwise the quotient will not be locally mxm), i.e.
l[o@) n M| < m-4. If o is an involution in Sym(2m) then there are m-sets
M such that |o(M) n M| > m-1. Hence ¢ must be complementation followed
by an involution % in Sym(2m). Now the requirement |[c(M) n M| < m~-4 means

IOO(M) nM 24, ie., 0y has at least 8 fix points. B

&




2. LOCALLY p*q GRAPHS WITH MAXIMAL y

o

LEMMA. Let T be locally pxq and suppose |u(x,y)| = 2p for vertices x,y of

I with d(x,y) = 2. Then no neighbour of y has distance 3 to x. In particular,
if |u(x,y)| = 2p for all pairs x,y with d(x,y) = 2 then T has diameter

(at most) two.

PROOF. Obvious. O

Assume that I' 1is locally m*n with n 2 m 2 2, where each p—-graph has

u = 2m vertices. Then T is strongly regular with diagram

® (o)
_ mn ]\\_/JZm—l)(n—l) , 2m
2

n¥m= (n-2)m

and parameters

v=1+m + (m-l)(tzl) = (n+1) (1+in(m-1))
vertices, eigenvalues

k=mn, r=n-2, s =-m

with multiplicaties

m(m-1)n(n+l) | - f
2 (n+m-2) ’ ’

1, £

(For definition and properties of strongly regular graphs and partial

geometries see e.g. [3].)

Since f is an integer, we see that for fixed m > 3 only finitely many
n are possible. For example, when m = 4 then (n+2)| 12 so that n=4 or
n = 10.

The Hoffman bound for the maximum size of a clique in a strongly

regular graph with these parameters yields ]C[ < n+1 and tells us that

when |C| = n+1 and x ¢ C then x is adjacent to precisely two points of C.




(It is also easy to see this directly.)

This means that when n > m we have a partial geometry pg(K=n+l,R=m,T=2),
while if n = m we have a Zara graph with parameters K=n + 1, e = 2.
(For definition and properties of Zara graphs see F. Zara [11], A. Blokhuis
[1].) For n > m one easily sees that the line graph of the partial geometry
has the property that each of its u—graphs is the disjoint union of }(n+1)
4-cycles. It follows that n must be odd. (But it is possible that n = m for
even n.)

This observation immediately kills (m,n) = (4,10). (Another way to
dispose of this parameter set is to observe that the line graph of
pg(11,4,2) violates the absolute bound and hence does not exist; in general

the absolute bound for the line graph states

m(m-1) (m=-3)n
2 (n+m-2)

V< } G(G+3) for V = m(l+(m-1) , jn) and G = m-1+

. . . L. 4
which yields a restriction of the formn < jm’.)
Thus, when m=4 then necessarily n=4, and there is a unique graph in

this case:

PROPOSITION. There is a unique Zara graph with K =5, e=2onv=235

vertices. It is %(i).

PROOF. Clearly such a graph must be locally 4x4. In order to apply the

theorem of the previous section we have to prove that the u-graphs are
unions of 4-cycles. To this end, consider two disjoint 5-cliques C,D, The
edges joining a point from C to a point from D form a bipartite graph of
valency 2, i.e., a union of (even) cycles; the only possibilities are (i)
a union of a 4-cycle and a 6-cycle, and (ii) a 10-cycle. We shall show
that the former always is the case. Suppose C = {31’32’33’34’35} and let
Cij be the 5-clique on a; and aj distinct from C (1<£i<j<5). Then C

12

and C are disjoint and we see a 4-cycle (1324) between C12 and C S0

34
the pair (C

34

12,034) is of type (i). Counting all such pairs we find

56.10.3 ordered pairs (C',C") of type (i). On the other hand each clique

C meets itself in 5 points, 10 others in 2 points, 15 others in 1 point

and the remaining (56-1-10-15) = 30 in 0 points. Thus the number of pairs




of disjoiﬁt cliques equals the number of such pairs of type (i) and type

(ii) does not occur. —
N q Cs x r a b Now let x,y be two points at
Ve - distance 2, and let r ~ p~ ¢
a|b| r|s D s be a path of length 3 in
q y p

u(x,y). Let C be the 5-clique

on x,r,s, where s is the point

completing the 4-cycle (pqs r)
in T'(x). Let D be the 5-clique
on y,p,q.

Between (the disjoint 5-cliques) C and D we see the path

s ~q~x~p~rt~yand this must complete to a 6-cycle. Hence y ~ s so

that p(x,y) contains the 4-cycle (pqsr) . O
3. AN INTERESTING GRAPH ON 40 VERTICES

There exists a unique locally 4x4 graph T with diagram

6 6

with respect to each of its points.

It has 40 vertices and 64 blocks (5-cliques). Its group of automorphisms
is 26.35 of order 7680 acting transitively on j-cliques for 0 < j < 5.
Switching antipodes is an automorphism. If we call two blocks adjacent
when they meet in a unique point then the graph I'™ on the blocks has 2

components of size 32. Each of the components has diagram

) (") (7). d is locally GQ(2,2).
@15 1\]5/8 8\1.5/1 15@ e e eemy

6 6




(Unicity will be the subject of section 5. Here we are concerned with the
existence.) The nicest description we know is the following:

Let AOibe the graph with as vertices the 2x2 matrices with entries in

T, and trace 0 or 1 where two matrices are adjacent when their difference

4
has rank 1.

Let A., be the quotient of A,, under identification of A and A + I for

01 01
all matrices A.
Then A,, has 64 vertices and diagram

01

(The subgraph A, of Zb] consisting of the points with trace O has diagram

0
(1) (17)
O—®©—®—0 -

Let T be the graph with as vertices the 8-cliques of Zbl,two cliques being
adjacent when they have nonempty intersection, then T has the properties
stated above fand the vertices of Zbl are the 5~cliques in T,

[From the description one immediately sees the group of automorphisms
26. PrL(2,4) but PTL(2,4) = 55' The 8-cliques of Zbl have 4 points with
trace 0 and 4 points with trace 1; in fact the graph A on all 256 2x2

matrices over F, is strongly regular with diagram

()
@75 1 Zg 48 20180

55
and the maximal cliques meeting the Hoffman bound are the two-dimensional

affine subspaces such that any two matrices in such a subspace differ by

a rank 1 matrix. From this it is not difficult to see that T will be locally

4x4. The automorphism switching antipodes is A > A + (88). The partition

of T into 5 cocliques of size 8 corresponds to the parallelism on A.]
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4, ANOTHER GRAPH ON 40 VERTICES

o
Unfortunately, there is another graph on 40 points which is locally

4x4, Tt has diagram

with respect to 8 of its points, while it looks as follows around each of

the remaining 32 points:

(thus, its diameter is 3, but for 32 points x one has I'B(x) = @),

A direct description can be given as follows.

Let X =QuYuZz, where Q = {mi’;il ie z, }s Y and Z are both copies of
24 ><Z4 -write (i,j) for elements of Y and [i,j] for elements of Z. The
graph will have d(ooi,;i) =3 (1ie le ), while PB(X) =@ for x € X\ Q.

The induced subgraph on © is a coclique, and on Y,Z we have the natural
4x4 grid. Each point in Y u Z that is non-adjacent to ©. is adjacent to

;i s so we need only specify the adjacencies of mi(ie 24 ).

Let I'(=y) =Y (so that I'(=) = Z), and
I‘(ooi) = {(a,a), (a,a+i),[a,al, [a,a-il| a 24} for i = £ 1, and
P(w;) = {(a,a), (a,a+2), [a,a+1], [a,a-1]1] a eZa .
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Let the point (a,b) € Y be adjacent to the 6 points [a-&+i,b+8+j] for
i,jezé,l{o,i,—j}l =3, §=b- a. -

This defines a graph TI', and by inspection it is locally 4x4. Its automor-—
phism group has order 29, is transitive on the 64 5-cliques and has two
orbits of sizes 8,32 on the 40 points.

The graph r* with as vertices the 5-cliques in T, where C~C' iff |CnC'|=1

has two components of size 32.
5. THE LOCALLY 4x4 GRAPHS
THEOREM. There are up to isomorphism precisely four locally 4x4 graphs,

namely
(1) () Withv

70 vertices, all u-graphs are b-cycles),

(ii) (2) (with v = 70 vertices, all u-graphs are unions of two b-cycles),

(iii) GAO’ the graph described in section 3 (with v = 40 vertiices,

each w-graph is either a 6-cycle or a union of two 4-cycles).

(iv) GLO’ the graph described in section &4 (with v =40 vertices, each u-
graph is either a 4-cycle, a 6-¢cycle, an 8-cycle or the uniton of
two 4-cycles).

The proof is split up in a series of lemmas. Let T be a locally 4x4 graph.

Write Fi(x) for the set of vertices at distance i from a vertex x.

LEMMA 1. (i) T has valency 16, each edge is in 6 triangles and the graph

A(p,q) on the common neighbours of two adjacent poimts p and q is the union

of two triangles.

(ii) Each edge is in two 5-cliques; each triangle is in a unique 5-clique.

(iii) If T has v vertices and b 5-cliques then b = %-v. In particular 5|v.

(iv) For d(p,q) = 2 the graph u(p,q) is either a 4-cycle or a 6-cycle or
an 8-cycle or the union of two 4-cycles. If |u(p,q)| = 4,6,8, then

q has at most 4,1,0 neighbours in T3(p) (respectively) . O

LEMMA 2. If C Zs a 5-clique and d(x,C) = 2 then x has distance two to at
least 3 points of C. Consequently, if d(x,y) = 3 then the number of neigh-

bours of y at distance two to x is either 9 or at least 12.
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PROOF. (i) Let x ~ p with d(p,C) 1. Then p has two neighbours on C, say

y and z. p(x,y) is not a clique so cannot be contained in A(y,z). It fol-
lows that x ~ q where q has two neighbours on C but q # z.
(ii) Now assume d(x,y) = 3. Looking at the 4x4 grid that is the neighbour-

hood of y we see on each line 0O, 3 or 4 points at distance 2 to x. [

LEMMA 3. Equivalent are:

(i) v 270, (ii) diam T = 4, (iii) T = (2).

PROOF. Estimating the number of points ki at distance i from a given point
x we find
16.9 36.4 16. 1 1.1

kg =1, k, =16, ky < === = 36, ky < ¢ =16,k4sL9J=1,kssﬁ;o.

Hence v < 1+16 + 36 + 16 + | = 70 with equality 1iff ]u(x,y)] = 4 for all
pairs x,y with d(x,y) = 2. Also, if diam TI' = 4 then k4 = 1 and the 16 neigh-
bours of a point at distance 4 of x must have distance to x so that

k3 = 16 and we have equality everywhere so that v = 70. Now apply the

theorem in section 1. O
From now on we may assume that diam T < 3.

LEMMA 4. Let d(x,C) = 2 and |F2(x) nC| = 3. Then |u(x,c)| =4 for all
c e Fz(x) n C.

PROOF. Follows immediately from lemma 1 (iv). g

REMARK. In the case of this lemma one necessarily has the following situa-

tion: c (Here the points in T' (x)labeled ij are
12 {12 adjacent to c; and cj.)
L] C
x |13 113 c] I.e., the points in I'(x) at distance 1
23 |23 2 from C lie on a 2x3 grid.,
c
3

LEMMA 5. For no point x and 5-clique C do we have C c P3(x).
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PROOF. Let A = {ala ~ %, d(a,C) = 2}, B = {b]b « I,(x), d(b,C) = 1}.

let C = {cl,cz,c3,c4,c5}. —
(i) The neighbours of a point c; € C lie on the four cliques Cij on
ci,cj (j#1i) with Cij # C. Each ey has at least 9 neighbours in B, i.e.,
there is at most onme clique Cij on ¢, not meeting B. But |C| is odd,
so there is a point ¢ ¢ C, say ¢ = ¢y such that all the cliques
Clj (3j#1) meet B.

(ii) For b ¢ B we have ]u(b,x){ =4 (cf.Lemma 1 (iv)), so Zb~c]u(b,x)] = 48.

But 48 = Yo u,x) |= Y |u(a,e)|, and|u(a,c)|e {4,6} for
b~c a~x
d(a,c)=2

ae An Pz(c).

If for some a € A n Pz(c) we have |u(a,c)| = 6, then |A n Fz(c)[< 12 so
!A n Fz(c)] =9 and A n Pz(c) forms a 3x3 grid in T'(x). If D is a 5-clique

on a and x then ]D n Fz(c)l = 3 so lu(a,c)[ = 4 by Lemma 4, contradiction,
Hence always |u(a,c)| = 4 and |A n FZ(C)] = 12.
Considering the adjacencies between TI'(c) and A we see that one necessarily
has

12pq 1245 4578 78pq (where points in ArWTZ(c)

are labeled with the 4

S
~
o

. 13[pr 11346 4679 |79pr
X T C
23[qr 235615689 {89qr

points of B n T(c) they

are adjacent to).,

N
[9,}
(o)
=]

c

Let a be the point labeled "12pq" and consider the neighbourhood of a:

x 1245 4578 78pq Let D be the clique {7,8,9,c,d}. We see that

13 jory 1 P h—l(a,7)l=lu<a’8)l = 6;[11(3’9)l= Os (since it

is impossible to find a cycle in T(a) avoiding

fe

23|gr |2 q

the non-neighbours of the point 9)

luCa,e)| = 4, |u(a,d)| = 0. But this contra-

dicts the previous lemma. O
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COROLLARY. If d(x,y) = 3 then |T(y) n rz(x)[ > 12. 0

LEMMA 6. Let C be a 5-clique, d(x,C) = 2 and Il“z(x) nc| = 4.
Then there is a u € {4,6} so that for all c € Fz(x) n C we have |u(x,c)|=u.

PROOF. If c,c' € Fz(x) n C then u(x,c) n u(x,c"'") is either empty or an edge

(for if d € u(x,c) n u(x,c') then x has two neighbours on the 5-clique on

c,c',d). The edges of this form are pairwise disjoint and partition

i Zce I (x) nC u(x,c) points, so this latter number is even. This means

that if Iu(x,c)l is not constant then it is twice 4 and twice 6. But one
quickly checks that it is impossible to find two 4~cycles in T(x), each

having one edge in common with a 6-cycle in T(x) (where these two edges

are parallel). 0

LEMMA 7. Suppose d(x,y) = 3, d(x,z) =2, y ~ z, Iu(x,z)l = 6.
Then |F3(x)| =1 and v = 40 and lu(x,p)] e 16,8} for all p € Fz(x).

PROOF. Look at the neighbourhood of y. Lemma's 4 and 6 state that if for one
point z of a line in this 4x4 grid we have d(x,z) = 2 and lu(x,z)l =6

then this holds for all points of this line. Thus T(y) c Pz(x) and for each

neighbour z of y we have |u(x,z)| = 6. This leads to the situation
. 96
X o y
r(x) ™

: from I'(x) there are 144 edges to TZ(X); 96 end in T'(y), 48 in
Fz(x) \T(y) =: Z. [Clearly 6 = %;-s [z] < %§-= 12.]1 By Lemma 1(iv), the

points in TI'(y) have no neighbours in TB(X) \ {y}, so any additional point

in F3(X) has all its neighbours in Z u FB(X). We show that Z is a coclique:

in fact looking at the neighbours of a point a € I'(x) u T'(y) we see that
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the three neighbours of a in Z form a coclique. Now if we have an edge pq
in Z then pq is contained in a 5-clique C < Z U T3(x). Let x ~ ¢~p, then r
has two neighbours in C n Z, contradiction.

Now it follows that F3(x) = {y}, since any additional point has at least 12
neighbours in Z, and Z could not be a coclique.

Since there emerge precisely 96 edges from Z we have |z] = 6, v = 40. 0

REMARK. Of course the situation of this lemma will yield conclusion (iii)
of the Theorem, but we shall first prove that when we know that the situa-

tion is the same with respect to any point x of T.

LEMMA 8. Suppose C c Fz(x) for some 5-clique C.
Then |u(c,x)| = & for a unique point ¢ € C and luCe,x)| = 6 for all other

points c € C.

PROOF. As we saw in the proof of lemma 6, the sets p(c,x) n u(c',x) are

either empty or an edge (for c,c' e C), and the edges of this form parti-
tion the %Zceclu(c,x)l points in T(x) at distance 1 to C. Thus the vector

u = (]u(c,X)I)CEC takes one of the values (4,4,4,4,4), (4,4,4,6,6) or
(4,6,6,6,6). In the first case we have five 4-cycles in T(x), covering

five parallel edges, impossible. In the second case we find a 6-cycle having
an edge in common with each of two disjoint 4-cycles (these edges being
parallel), and we saw already in the proof of lemma 6 that this is impossible.
So the third case u = (4,6,6,6,6) holds. 0

LEMMA 9. If for some pair of points x,z with d(x,z) = 2 we have [ux,z)| = 4,
then T4(x) = a.

PROOF. Let A = {a € Pz(x)lr(a) n F3(X) = @} and B = Pz(x)‘\A. I1f for some
b € B we have !u(b,x)] = 6 then we are in the situation of lemma 7 and
lu(x,z)l = 4 is impossible. Hence we have ]u(b,x)l = 4 for each b ¢ B.
Considering the neighbourhood of a point b ¢ B we see at least one point
in P3(x), and for each b' in T'(b) n I'(y) we have |u(x,b")| = 4, so by
lemma 8 no 5-clique on b is contained in Pz(x): 4 of the 5-cliques on b

meet T(x) and the remaining 4 meet f3(x). But this means that no point from

B is adjacent to a point in A. Let C be a 5-clique meeting A.
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Since A C.FB(y) for v € F3(x) we have ]C n A] < 2. Also ]C n F(x)]:;Z.

But there is nowhere the fifth point of C could go, so there is m6 such

C and A = ¢. (Now ]Pz(x)] = 36.)

Let y ¢ F3(X). Counting paths of length 3 between X and Y we see that

p = |T(y) n Fz(x)] = |T(x) n Pz(y)l.If p = 12 then there is no room for a
2x3 grid in T(x) n T (y) so each 5-clique on Y has 4 points in T (x) and

p = 16, contradlctlon. Thus p > 12, and estimating P (x) we flnd

- 2,361 _ 4.36
5 = e IF( )| < Sl 11 so that 58 < v < 64 and since 5|v we must
have v = 60, IF )| = 7.

Now a counting argument will kill this situation: let s be the number of edges
between P (x) and T (x), t the number of edges in F (x) and a; (2<i<4) the

number of points b € Pz(x) with precisely i nelghbours in F3(x). Then we

have
a, + a, + a, = 36
2a2 + 3a3 + 4a4 = g
a3 + 2a4 = t
s + 2t =7.16 = 112
so that s = t + 72, 3t = 40 and t is not integral. . 0

LEMMA 10. If P3(x) = @ for some x then T = %(2) or T = GZO .

PROOF. 18 = 144 IF (x )I - = 36. If [FZ(X)] = 18 then v = 35 and

each y—graph has 8 points, so that T' is strongly regular. By Lemma 8 T is

a Zara graph with K = 5, e = 2, and now the proposition in section 2 shows
that T = 2( ). Now let v > 35, and count cliques. There are 8 5~cliques on x,
48 cliques not on x meeting I'(x) and hence —{v—35) cliques contained in
Pz(x) ‘Let M =1{beT (x)l]u(x b)l = u}. By 1emma 8 each clique C in F (x)
has 4 p01nts in Mg and 1 point in M,, so IM | = (v 35), IM l-——(v—SS)

and v =1+ 16 + _15.8_(v—35) + ugl, 144 = 41144| + 6|M6] + 8|M8|— }Qi(v—35)

+ 8|M8l. It follows that v < 45, and since 5|v we have v = 40,

{MSI =5, IMEI = 16, [Mﬁl = 2. Now enough information has been gathered

to define all adjacencies without loss of generality (a rather tedious task).

One finds a unique solution, namely the graph described in section 4. 0

&
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LEMMA 11. If P3(x) # 0 for all X, then T = G the graph described in

40°
sectron 3. —

PROOF . Clearly it suffices to show that T' is determined up to isomorphism.
By lemma's 1(iv), 7, 9, 10 we have that for each x e T there is a unique

antipode X € T with d(x,g) = 3. Clearly the antipodes of the points in T(x)

are in F(%), SO X b X is an automorphism of T.

Fix x ¢ I and let Z = Tz(x) n Pz(g) (=M8’ see lemma 7). Then

z = {p,q,r,p,q,r}. Thus given x we find a clique of size 8 0X = Zvu {x,x},

and starting wiEh another point, say p ¢ Ox’ we find Op = Ox' (Note that

u(x,p) and u(x,p) partition I'(x).) Consequently, we have a partition of T

in five 8-cocliques.,

Consider the quotient T of T under identifying a with a for each a e T.

It has 20 points, a partition into five 4-cocliques and valency 16, i.e. is

the complete multipartite graph K5X4. There are two ways of distributing

four 4-cocliques over TI'(x), corresponding to the two lating squares of order

4, namely
1 21 3] 4la 1] 2 314 ]a
o 4 1 2] 3ib and . 211 4 3 1b
X 3 7\ Q| c % 314 1 2 Je.
2 3 4 14d 43 2 1 'd

In the first case, label the 4 rows of T'(x) with a, b, ¢, d and let al be
the point in row a and coclique 1, etc. Let Al = al, etc. Now we see

locally at al:

X a2 a3 a4
b4
al ¢3¢ B2 but B2 ~ B3 contradiction.
d2

B3

Since p * q, u(p,q) n I'(x) is a coclique (and idem with x instead of x) so
lu(p,q) n T'(x)| = 4. Also, this remains a coclique in T, so u(p,q) n I'(x)
consists of four points labeled with the same digit. Since there are 4

points in Z distinct from p,p and each point in T'(x) has three neighbours

in Z we see that w.l.o.g. the points p, Ps 9, a, r, T are adjacent to the
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points in T'(x) labeled 1 or 2, 3 or 4, 1 or 3, 2 or 4, 2 or 3, 1 or 4 res—
pectively. Taking antipodes we find the edges between Z and T'(x)« Also the
edges between T'(x) and T(x) are determined: e.g. the point Al is not ad-
jacent to a point in the same row or column as al and not adjacent to a
point in coclique 1 so its neighbours in I'(x) must be b4, b3, c4, c2, d3, d2.

O

Thus we showed that for diam I' = 2, 3, 4 we have T = %(i), GéO or Gzo,(Z),

respectively. Clearly this proves the Theorem.

Acknowledgement. We thank prof. Timmesfeld for suggesting the way 85 could

act on a module 26 and thus providing us with the description of the graph

G40 given in section 3.
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