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Abstract

We investigate locally grid graphs. The main results are (i) a character-
ization of the Johnson graphs (and certain quotients of these) as locally
grid graphs such that two points at distance 2 have precisely four common
neighbors, and (ii) a complete determination of all graphs that are locally
a 4× 4 grid (it turns out that there are four such graphs, with 35, 40, 40,
and 70 vertices).

Introduction

Let us denote by
(
n
m

)
the graph with as vertices the m-subsets of an n-set,

where two m-sets are adjacent when they have an (m − 1)-set in common.
(These graphs are commonly known as Johnson graphs; in the cases m = 2 and
m = 3, also as triangular and tetrahedral graphs.)

Let us denote by p × q the graph with vertex set P × Q where |P | = p,
|Q| = q, and (x1, y1) is adjacent to (x2, y2) if and only if x1 = x2, or y1 = y2

(but not both). The graphs p× q are called grids. A graph Γ is called locally G
if for each vertex x of Γ the graph induced by Γ on the set of neighbors of x is
isomorphic to the graph G.

With this terminology the graph
(
n
m

)
is locally m× (n−m) and one might

want to characterize it as such; without additional hypotheses this seems im-
possible (J. I. Hall has indicated large classes of locally grid graphs), but adding
the hypothesis that the graph induced on the set of common neighbors of two
points at distance 2 is a 4-cycle (which is true in

(
n
m

)
) we do indeed obtain a

characterization of the Johnson graphs and certain quotients .
Let us denote by µ(x, y) (where x and y are two vertices at distance 2 in

a graph Γ) the graph induced on the set of common neighbors of x and y; we
shall call subgraphs of Γ of this form µ-graphs. Characterizing locally p × q
graphs (without hypothesis on the µ-graphs) is trivial for p ≤ 2 and has been
done by J. I. Hall [7,8] for p = 3. Here we settle the �rst unsolved case by
�nding all locally 4×4 graphs. The result is surprising in that there are besides
the expected graphs

(
8
4

)
and 1

2

(
8
4

)
(the quotient of

(
8
4

)
obtained by identifying

complementary 4-sets of the 8-set), two more examples on 40 vertices, one very
regular graph (its automorphism group is transitive on points, edges, triangles,
4-c1iques, and 5-c1iques) described in Section 3, and a twisted version of the
previous, described in Section 4.

It will be clear to those who know the language of Buekenhout-Tits diagrams
that what we consider here are geometries belonging to the diagram

.
⊂
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Related work (characterizing certain classes of locally polar graphs) was done
by Buekenhout and Hubaut [4]. There are two possible ways for a generalized
quadrangle to be thin (and thus di�cult to handle geometrically)�one is the
case with two lines on each point, the case we consider here, and the other is the
case with two points on each line. But in the latter case we have a locally Kp,q

graph, and it is trivial to check that such graphs do not exist for p 6= q while the
only locally Kp,p graph is Kp,p,p. (In contrast to the di�culty of characterizing
locally p× q graphs, it is completely trivial to characterize locally p× q graphs
(where the bar denotes complementation) in all interesting cases�cf. Buset [5].)
We shall use ∼ to denote adjacency.

1 Characterization of the Johnson graphs

Let us �rst state the results we shall prove in this section.

Theorem 1. Let Γ be connected and locally grid, and assume that the connected
components of each µ-graph are 4-cycles. Then there are integers m, n such that
Γ is locally m× (n−m), and either Γ ∼=

(
n
m

)
or n = 2m and Γ is obtained from(

2m
m

)
by identifying each m-set with the image of its complement under σ, where

σ is a permutation of the 2m symbols satisfying σ2 = 1 and having at least 8
�xed points.

Remark. For m ≤ 4 we must have σ = 1 and m = 4 so that the only possible
quotient is 1

2

(
8
4

)
. (The quotients 1

2

(
4
2

)
and 1

2

(
6
3

)
are complete graphs K3 and

K10.) In general, the number of transpositions in the cycle representation of
σ is an invariant of the quotient so that one obtains several nonisomorphic
quotients.

When σ has at least 10 �xed points then each µ-graph of the quotient is a 4-
cycle; when σ has precisely 8 �xed points then each µ-graph is the union of two
4-cycles.

Remark. Some version of the above theorem was communicated by the second
author to J. I. Hall at the Pullman conference in honor of T. G. Ostrom. Hall
subsequently showed (in a letter dated May 21, 1981) that this theorem is
essentially equivalent to Theorem 2 in Sprague [10].

Under the weaker assumption that Γ is locally a graph on m(n−m) vertices
with valency (m−1)+(n−m−1) and each µ-graph has at most 4 vertices, one can
prove that Γ ∼=

(
n
m

)
provided n is large enough. (T. A. Dowling [6] proved this

for n > 2m(m−1)+4 and A. E. Brouwer [2] for n ≥ max(6m−1,m2 +2m−1).)
A. Moon [9] obtains a characterization for n > 4m, characterizing

(
n
m

)
not

as a graph but as an association scheme, where all the parameters pijk of the
association scheme are given.

In all cases the di�cult part of the proof is to �nd cliques of the right size�
thus (the analogue of) Theorem 1 is trivial in these contexts; only when n = 2m
does one have to be a little careful.

Corollary. Let Γ be connected and locally 2×q. Then Γ is the triangular graph(
q+2

2

)
.

Lemma. Let Γ be connected and locally grid. Then there are integers p, q such
that Γ is locally p × q. Each µ-graph is a union of cycles of even length. If C
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is a maximal clique and x 6∈ C, then x is adjacent to either 0 or 2 points of C.
Each edge is in precisely two maximal cliques: one of size p+ 1 and one of size
q + 1. Each triangle is in a unique maximal clique.

Proof of the Lemma. Suppose that the neighborhood of x is isomorphic
to p×q and that x ∼ y. Then the edge xy is in cliques of size (p+1) and (q+1),
and hence the neighborhood of y is also isomorphic to p× q. By connectedness
of Γ, the graph is locally p× q.

If d(u, v) = 2 and a ∈ µ(u, v), then looking at the neighbors of a we �nd that
u, v, a have two common neighbors, so µ(u, v) is regular of valency 2. Since
µ(u, v) ⊂ Γ(u), the edges of a component of µ(u, v) are alternatingly �horizontal�
and �vertical,� i.e., each component of µ(u, v) is an even cycle.

Proof of the Corollary. The only union of cycles of even length that
occurs as subgraph of 2× q is a 4-cycle. Thus the theorem applies.

Proof of the Theorem. By the lemma, Γ is locally m × (n −m) and we
may assume m ≤ n −m. The proof is by induction on m. For m = 0, Γ has
valency zero and hence is a single point, indeed Γ ∼=

(
n
0

)
for all n ≥ 0. Consider

the graph Γ∗ that has the (n −m + 1)-c1iques of Γ as vertices and where two
such cliques are adjacent when they have precisely one point in common. We
want to show that each connected component of Γ∗ satis�es the hypotheses of
the theorem and is locally (m− 1)× (n−m+ 1).

To this end �rst observe that if C = {x0, . . . , xn−m} is a maximal clique of
Γ, then Γ∗(C) has a partition into n−m+ 1 cliques of size m− 1, namely the
sets of points in Γ∗(C) containing some �xed xi (0 ≤ i ≤ n−m).

x0

x1

y1

z1

x2

y2

z2

xn−m

yn−m

zn−m

Next assume that C1 and C2 are points of Γ∗ such that C1 ∩ C2 = {x0},
say C1 = {x0, x1, x2, . . . , xn−m}, C2 = {x0, y1, y2, . . . , yn−m}, where xi ∼ yi
(1 ≤ i ≤ n−m).

Let Di be the maximal clique containing xi, yi but not x0 (1 ≤ i ≤ n−m).
Then {C1, C2, D1, . . . , Dn−m} is a clique in Γ∗.

[For: let i 6= j. The point xi has two neighbors in Dj , one is xj and the
other is a point not in Γ(x0), say a. Now µ(x0, a) contains xi, xj , yj and hence
by our hypothesis on µ-graphs also yi. Thus Di is the clique determined by a,
xi, yi and Di is adjacent to Dj in Γ∗.]

Thus Γ∗ is locally (m− 1)× (n−m+ 1).

Next we check that the µ-graphs in Γ∗ are unions of 4-cycles. Let C1 and C2

be as before, and let D meet C2 in the point y1, where |C1 ∩ D| 6= 1. Then
|C1 ∩ D| = 0. The point x0 has two neighbors on D, y1 and say, z1. Looking
at Γ(x0) we see that x1 ∼ z1, and µ(C1, D) contains the 4-cycle (C2, D(x1, y1),
D(x1, z1), C3), where D(p, q) is the maximal clique on p, q not containing x0,
and C3 = {x0, z1, . . . , zn−m} is the maximal clique on x0, z1 not containing x1,
y1.
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Thus, by induction, each component of Γ∗ is the Johnson graph
(

n
m−1

)
. First

assume that n > 2m; then each edge is in a unique (n −m + 1)-clique and Γ∗

is connected. Label the points of Γ∗ with (m − 1)-sets; next label each point
x of Γ with the union of the labels of the (n −m + 1)-cliques on x. Then x is
labeled with an m-set (since the cliques incident with x form a small maximal
clique in Γ∗) and clearly two points of Γ are adjacent i� they are together in a
clique, i.e., i� their labels have an (m−1)-set in common. Thus Γ ∼=

(
n
m

)
. (Note

that Γ has the right number of vertices and no label can be repeated.) Next
assume n = 2m. Now each edge is in precisely two (m+ 1)-cliques, and Γ∗ has
either one or two components. If Γ∗ has two components, then use the labels
of one of these components to label Γ and we �nd Γ ∼=

(
n
m

)
again. So assume

that Γ∗ is connected. Now each point x of Γ determines two m-cliques in Γ∗,
and taking the union of the labels of the members of each m-clique, we �nd two
labels for x. Both labels are m-sets, and if x ∼ y then each of the labels of x
has an (m − 1)-set in common with a unique label of y. Conversely, if a label
of x and a label of y have an (m− 1)-set in common then x ∼ y and the other
labels also have an (m− 1)-set in common. Thus Γ is a quotient of

(
2m
m

)
under

an automorphism σ of order 2. Now the automorphism group of
(

2m
m

)
is the

direct product Sym(2m)×Z2, where the Z2, sends an m-set to its complement.
Also, if σ interchanges the m-sets, M , N , then the Johnson distance between
M and N is at least 4 (otherwise the quotient will not be locally m×m), i.e.,
|σ(M) ∩M | ≤ m − 4. If σ is an involution in Sym(2m) then there are m-sets
M such that |σ(M)∩M | ≥ m− 1|. Hence σ must be complementation followed
by an involution σ0 in Sym(2m). Now the requirement |σ(M) ∩M | ≤ m − 4
means |σ0(M) ∩M | ≥ 4, i.e., σ0 has at least 8 �xed points.

2 Locally p× q graphs with maximal µ

Lemma. Let Γ be locally p × q and suppose |µ(x, y)| = 2p for vertices x, y of
Γ with d(x, y) = 2. Then no neighbor of y has distance 3 to x. In particular, if
|µ(x, y)| = 2p for all pairs x, y with d(x, y) = 2 then Γ has diameter (at most)
2.

Proof. Obvious.

Assume that Γ is locally m × n with n ≥ m ≥ 2, where each µ-graph has
µ = 2m vertices. Then Γ is strongly regular with diagram and parameters

1
mn

mn
1
n+m− 2

(m− 1)(n− 1) 2m
(n− 2)m

(m− 1)
(
n
2

)

v = 1 +mn+ (m− 1)

(
n

2

)
= (n+ 1)(1 +

1

2
n(m− 1))

vertices, eigenvalues

k = mn , r = n− 2 , s = −m
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with multiplicities

1 , f =
m(m− 1)n(n+ 1)

2(n+m− 2)
, g = v − 1− f .

(For de�nition and properties of strongly regular graphs and partial geometries
see e.g. [3].)

Since f is an integer, we see that for �xed m > 3 only �nitely many n are
possible. For example, when m = 4 then (n+ 2) | 12, so that n = 4 or n = 10.

The Ho�man bound for the maximum size of a clique in a strongly regular
graph with these parameters yields |C| ≤ n+1 and tells us that when |C| = n+1
and x 6∈ C then x is adjacent to precisely two points of C. (It is also easy to
see this directly.)

This means that if n > m we have a partial geometry pg(K = n + 1, R =
m,T = 2), while if n = m we have a Zara graph with parameters K = n + 1,
e = 2. (For de�nition and properties of Zara graphs see F. Zara [11] and A.
Blokhuis [1].) For n > m one easily sees that the line graph of the partial
geometry has the property that each of its µ-graphs is the disjoint union of
1
2 (n+ 1) 4-cycles. It follows that n must be odd. (But it is possible that n = m
for even n.)

This observation immediately eliminates (m,n) = (4, 10). (Another way to
dispose of this parameter set is to observe that the line graph of pg(11, 4, 2)
violates the absolute bound and hence does not exist; in general, the absolute
bound for tbe line graph states

V ≤ 1

2
G(G+ 3) for V = m

(
1 + (m− 1) · 1

2
n

)
and G = m− 1 +

m(m− 1)(m− 3)n

2(n+m− 2)
,

which yields a restriction of the form n ≤ 1
4m

4.)
Thus, when m = 4 then necessarily n = 4, and there is a unique graph in

this case:

Proposition. There is a unique Zara graph with K = 5, e = 2, on v = 35
vertices. It is 1

2

(
8
4

)
.

Proof. Clearly such a graph must be locally 4 × 4. In order to apply the
theorem of the previous section we have to prove that the µ-graphs are unions
of 4-cycles. To this end, consider two disjoint 5-cliques C, D. The edges joining
a point from C to a point from D form a bipartite graph of valency 2, i.e., a
union of (even) cycles; the only possibilities are (i) a union of a 4-cycle and a
6-cycle, and (ii) a 10-cycle. We shall show that the former always is the case.
Suppose C = {a1, a2, a3, a4, a5} and let Cij be the 5-clique on ai, and aj distinct
from C (1 ≤ i < j ≤ 5). Then C12 and C34 are disjoint and we see a 4-cycle
(1324) between C12 and C34 so the pair (C12, C34) is of type (i). Counting all
such pairs we �nd 56 · 10 · 3 ordered pairs (C ′, C ′′) of type (i). On the other
hand, each clique C meets itself in 5 points, 10 others in 2 points, and 15 others
in 1 point, and the remaining (56 − 1 − 10 − 15) = 30 in 0 points. Thus the
number of pairs of disjoint cliques equals the number of such pairs of type (i)
and type (ii) does not occur.
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Now let x, y be two points at distance 2, and let r ∼ p ∼ q be a path
of length 3 in µ(x, y). Let C be the 5-clique on x, r, s, where s is the point
completing the 4-cycle (p q s r) in Γ(x). Let D be the 5-clique on y, p, q.

x

a b r s

p q
y
C

D

s

q

x

y

r

p

a b

Between (the disjoint 5-cliques) C and D we see the path s ∼ q ∼ x ∼ p ∼ r ∼ y
and this must complete to a 6-cycle. Hence y ∼ s so that µ(x, y) contains the
4-cycle (p q s r).

3 An interesting graph on 40 vertices

There exists a unique locally 4× 4 graph Γ with diagram

1
16

16
1

6
6

3

16
6

6

1
3

16
1

6
8 8

−

with respect to each of its points.
It has 40 vertices and 64 blocks (5-cliques). Its group of automorphisms is

26 · S5, of order 7680 acting transitively on j-cliques for 0 ≤ j ≤ 5. Switching
antipodes is an automorphism. If we call two blocks adjacent when they meet
in a unique point then the graph Γ∗ on the blocks has 2 components of size 32.
Each of the components has diagram

1
15

15
1 8

6

15
8

6
1 15

1

and is locally GQ(2, 2). (Uniqueness will be the subject of Section 5. Here
we are concerned with the existence.) The nicest description we know is the
following:

Let ∆01 be the graph with as vertices the 2× 2 matrices with entries in F4,
and trace 0 or 1, where two matrices are adjacent if their di�erence has rank 1.

Let ∆01 be the quotient of ∆01 under identi�cation of A and A + I for all
matrices A. Then ∆01 has 64 vertices and diagram
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1

15

10

15

6
8
2

44
1

15

6
8

1
44

2

1

15

10
10 1

6
3

3 6 6

12

5 5

5

5
5

10
1

6 3 3
6

6

(The subgraph ∆0 of ∆01 consisting of the points with trace 0 has diagram

15 1
6

8 8
6

1 1
1 15 15 1 . )

Let Γ be the graph with as vertices the 8-cliques of ∆01, two cliques being
adjacent when they have nonempty intersection; then Γ has the properties stated
above (and the vertices of ∆01 are the 5-cliques in Γ).

[From the description one immediately sees the group of automorphisms
26 · PΓL(2, 4), but PΓL(2, 4) ∼= S5. The 8-cliques of ∆01 have 4 points with
trace 0 and 4 points with trace 1; in fact, the graph ∆ on all 256 2× 2 matrices
over F4 is strongly regular with diagram

1 75 180
75 1

26
48 20

55

and the maximal cliques meeting the Ho�man bound are the two-dimensional
a�ne subspaces such that any two matrices in such a subspace di�er by a rank 1
matrix. From this it is not di�cult to see that Γ will be locally 4 × 4. The

automorphism switching antipodes is A 7→ A+

(
ω 0
0 ω

)
. The partition of Γ

into 5 cocliques of size 8 corresponds to the parallelism on ∆.]

4 Another graph on 40 vertices

Unfortunately, there is another graph on 40 points that is locally 4× 4. It has
diagram
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1
16

16
1

6
6

3

16
6

6

1
3

16
1

6
8 8

−

with respect to 8 of its points, while it looks as follows around each of the
remaining 32 points:

1 8 1

8 4 8

8

2

8

8

8

8−

8
44

−

2

11

44

2 2

4
2

2
41

2

1 4
4

4

4 −

2

4
22

4

2

4
2

2
4 1

2

1

(thus, its diameter is 3, but for 32 points x one has Γ3(x) = ∅). A direct
description can be given as follows:

Let X = Ω ∪ Y ∪ Z, where Ω = {∞i,∞i | i ∈ Z4}, Y and Z are both copies
of Z4×Z4 �write (i, j) for elements of Y and [i, j] for elements of Z. The graph
will have d(∞i,∞i) = 3 (i ∈ Z4), while Γ3(x) = ∅ for x ∈ X \ Ω. The induced
subgraph on Ω is a coclique, and on Y , Z we have the natural 4× 4 grid. Each
point in Y ∪ Z that is nonadjacent to ∞i is adjacent to ∞i, so we need only
specify the adjacencies of ∞i (i ∈ Z4).

Let Γ(∞0) = Y (so that Γ(∞0) = Z), and Γ(∞i) = {(a, a), (a, a + i), [a, a],
[a, a− i] | a ∈ Z4} for i = ±1, and Γ(∞2) = {(a, a), (a, a+2), [a, a+1], [a, a−1] |
a ∈ Z4}.
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Let the point (ab) ∈ Y be adjacent to the 6 points [a − δ + i, b + δ + j] for
i, j ∈ Z4, |{0, i,−j}| = 3, δ = b− a.

This de�nes a graph Γ, and by inspection it is locally 4×4. Its automorphism
group has order 29, is transitive on the 64 5-cliques, and has two orbits of sizes
8, 32 on the 40 points.

The graph Γ∗ with as vertices the 5-cliques in Γ, where C ∼ C ′ i� |C∩C ′| =
1, has two components of size 32.

5 The locally 4× 4 graphs

Theorem. There are, up to isomorphism, precisely four locally 4 × 4 graphs,
namely

(i)
(

8
4

)
(with v = 70 vertices, all µ-graphs are 4-cycles).

(ii) 1
2

(
8
4

)
) (with v = 35 vertices, all µ-graphs are unions of two 4-cycles).

(iii) G40 the graph described in Section 3 (with v = 40 vertices, each µ-graph
is either a 6-cycle or a union of two 4-cycles).

(iv) G′40, the graph described in Section 4 (with v = 40 vertices, each µ-graph
is eithcr a 4-cycle, a 6-cycle, an 8-cycle, or the union of two 4-cycles).

The proof is split up into a series of lemmas. Let Γ be a locally 4× 4 graph.
Write Γi(x) for the set of vertices at distance i from a vertex x.

Lemma 1.

(i) Γ has valency 16, each edge is in 6 triangles, and the graph λ(p, q) on
the common neighbors of two adjacent points p and q is the union of two
triangles.

(ii) Each edge is in two 5-cliques; each triangle is in a unique 5-clique.

(iii) If Γ has v vertices and b 5-cliques, then b = 8
5v. In particular, 5 | v.

(iv) For d(p, q) = 2, the graph µ(p, q) is either a 4-cycle, a 6-cycle, an 8-cycle,
or the union of two 4-cycles. If |µ(p, q)| = 4, 6, 8, then q has at most 4, 1, 0
neighbors in Γ3(p) (respectively).

Lemma 2. If C is a 5-clique and d(x,C) = 2, then x has distance two from at
least 3 points of C. Consequèntly, if d(x, y) = 3, then the number of neighbors
of y at distance two from x is either 9 or at least 12.

Proof. (i) Let x ∼ p with d(p, C) = 1. Then p has two neighbors on G, say
y and z. µ(x, y) is not a clique so cannot be contained in λ(y, z). It follows that
x ∼ q where q has two neighbors on C but q 6∼ z.

(ii) Now assume d(x, y) = 3. Looking at the 4× 4 grid that is the neighbor-
hood of y we see on each line 0, 3, or 4 points at distance 2 from x.

Lemma 3. Equivalent are (i) v ≥ 70, (ii) diam Γ ≥ 4, and (iii) Γ ∼=
(

8
4

)
.

Proof. Estimating the number of points ki at distance i from a given point
x we �nd
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k0 = 1, k1 = 16, k2 ≤
16 · 9

4
= 36, k3 ≤

36 · 4
9

= 16,

k4 ≤ b
16 · 1

9
c = 1, k5 ≤ b

1 · 1
9
c = 0.

Hence v ≤ 1+16+36+16+1 = 70 with equality i� |µ(x, y)| = 4 for all pairs
x, y with d(x, y) = 2. Also, if diam Γ = 4 then k4 = 1, and the 16 neighbors
of a point at distance 4 from x must have distance 3 from x so that k3 = 16
and we have equality everywhere so that v = 70. Now apply the theorem in
Section 1.

From now on we may assume that diam Γ ≤ 3.

Lemma 4. Let d(x,C) = 2 and |Γ2(x) ∩ C| = 3. Then |µ(x, c)| = 4 for all
c ∈ Γ2(x) ∩ C.

Proof. Follows immediately from Lemma 1(iv).

Remark. In the case of this lemma one necessarily has the following situation:

x

12

13

23

12

13

23 c3

c2

c1

C

Here the points in Γ(x) labeled ij are adjacent to ci and cj . That is, the points
in Γ(x) at distance 1 from C lie on a 2× 3 grid.

Lemma 5. For no point x and 5-clique C do we have C ⊂ Γ3(x).

Proof. Let A = {a | a ∼ x, d(a,C) = 2}, B = {b | b ∈ Γ2(x), d(b, C) = 1}.
Let C = {c1, c2, c3, c4, c5}.

(i) The neighbors of a point ci ∈ C lie on the four cliques Cij on ci, cj ,
(j 6= i) with Cij 6= C. Each ci has at least 9 neighbors in B, i.e there is at most
one clique Cij on ci not meeting B. |C| is odd, so there is a point c ∈ C, say
c = c1, such that all the cliques Cij (j 6= 1) meet B.

(ii) For b ∈ B we have |µ(b, x)| = 4 (cf. Lemma 1(iv)), so
∑
b∼c |µ(b, x)| = 48.

But 48 =
∑
b∼c

|µ(b, x)| =
∑
a∼x

d(a,c)=2

|µ(a, c)|, and |µ(a, c)| ∈ {4, 6} for a ∈ A∩Γ2(c).

If for some a ∈ A ∩ Γ2(c) we have |µ(a, c)| = 6, then |A ∩ Γ2(c)| < 12 so
|A∩Γ2(c)| = 9 and A∩Γ2(c) forms a 3× 3 grid in Γ(x). If D is a 5-clique on a
and x then |D ∩Γ2(c)| = 3 so |µ(a, c)| = 4 by Lemma 4, a contradiction. Hence
always |µ(a, c)| = 4 and |A ∩ Γ2(c)| = 12.

Considering the adjacencies between Γ(c) and A we see that one necessarily
has
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x

12pq

13pr

23qr

1245

1346

2356

4578

4679

5689

78pq

79pr

89qr

1

2

3

4

5

6

7

8

9

p

q

r

c

C

(where points in A ∩ Γ2(c) are labeled with the 4 points of B ∩ Γ(c) they are
adjacent to).

Let a be the point labeled �12pq� and consider the neighborhood of a:

a

x

13pr

23qr

1245

1

2

4578 78pq

p

q

Let D be the clique {7, 8, 9, e, d}. We see that |µ(a, 7)| = |µ(a, 8)| = 6,
|µ(a, 9)| = 0 (since it is impossible to �nd a cycle in Γ(a) avoiding the nonneigh-
bors of the point 9), |µ(a, c)| = 4, and µ(a, d) = 0. But this contradicts the
previous lemma.

Corollary. If d(x, y) = 3 then |Γ(y) ∩ Γ2(x)| ≥ 12.

Lemma 6. Let C be a 5-clique, d(x,C) = 2 and Γ2(x) ∩C| = 4. Then there is
a µ ∈ {4, 6} so that for all c ∈ Γ2(x) ∩ C we have |µ(x, c)| = µ.

Proof. If c, c′ ∈ Γ2(x) ∩C then µ(x, c) ∩ µ(x, c′) is either empty or an edge
(for if d ∈ µ(x, c)∩µ(x, c′) then x has two neighbors on the 5-clique on c, c′, d).
The edges of this form are pairwise disjoint and partition 1

2

∑
c∈Γ2(x)∩C µ(x, c)

points, so this latter number is even. This means that if |µ(x, c)| is not constant
then it is twice 4 and twice 6. But one quickly checks that it is impossible to
�nd two 4-cycles in Γ(x), each having one edge in common with a 6-cycle in
Γ(x) (where these two edges are parallel).

Lemma 7. Suppose d(x, y) = 3, d(x, z) = 2, y ∼ z, |µ(x, z)| = 6. Then
|Γ3(x) = 1 and v = 40 and |µ(x, p)| ∈ {6, 8} for all p ∈ Γ2(x).

Proof. Look at the neighborhood of y. Lemmas 4 and 6 state that if for
one point z of a line in this 4×4 grid we have d(x, z) = 2 and |µ(x, z)| = 6, then
this holds for all points of this line. Thus Γ(y) ⊂ Γ2(x) and for each neighbor z
of y we have |µ(x, z)| = 6. This leads to the situation
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x y
96

Γ(x) Γ(y)

48 48

6�12
points

0�8
points

Z

0�96

From Γ(x) there are 144 edges to Γ2(x); 96 end in Γ(y), 48 in Γ2(x)\Γ(y) =: Z.
[Clearly 6 = 48

8 ≤ |Z| ≤
48
4 = 12.] By Lemma 1(iv), the points in Γ(y) have no

neighbors in Γ3(x)\{y}, so any additional point in Γ3(x) has all its neighbors in
Z ∪ Γ3(x). We show that Z is a coclique: in fact, looking at the neighbors of a
point a ∈ Γ(x)∪Γ(y), we see that the three neighbors of a in Z form a coclique.
Now if we have an edge pq in Z then pq is contained in a 5-clique C ⊂ Z∪Γ3(x).
Let x ∼ r ∼ p. Then r has two neighbors in C ∩ Z, a contradiction.

Now it follows that Γ3(x) = {y}, since any additional point has at least 12
neighbors in Z, and Z could not be a coclique.

Since there emerge precisely 96 edges from Z we have |Z| = 6, v = 40.

Remark. Of course the situation of this lemma will yield conclusion (iii) of the
theorem, but we shall �rst prove that, when we know that the situation is the
same with respect to any point x of Γ.

Lemma 8. Suppose C ⊂ Γ(x) for some 5-clique C. Then |µ(c, x)| = 4 for a
unique point c ∈ C and |µ(c, x)| = 6 for all other points c ∈ C.

Proof. As we saw in the proof of Lemma 6, the sets µ(c, x) ∩ µ(c′, x) are
either empty or an edge (for c, c′ ∈ C), and the edges of this form partition
the 1

2

∑
c∈C |µ(c, x)| points in Γ(x) at distance 1 to C. Thus the vector µ =

(|µ(c, x)|)c∈C takes one of the values (4, 4, 4, 4, 4), (4, 4, 4, 6, 6), or (4, 6, 6, 6, 6).
In the �rst case we have �ve 4-cycles in Γ(x), covering �ve parallel edges�
impossible. In the second case we �nd a 6-cycle having an edge in common with
each of two disjoint 4-cycles (these edges are parallel), and we saw already in
the proof of Lemma 6 that this is impossible. So the third case, µ = (4, 6, 6, 6, 6)
holds.

Lemma 9. If for some pair of points x, z with d(x, z) = 2 we have |µ(x, z)| = 4,
then Γ3(x) = ∅.

Proof. Let A = {a ∈ Γ2(x) | Γ(a) ∩ Γ3(x) = ∅} and B = Γ2(x) \ A. If
for some b ∈ B we have |µ(b, x)| = 6, then we are in the situation of Lemma
7 and |µ(x, z)| = 4 is impossible. Hence we have |µ(b, x)| = 4 for each b ∈ B.
Considering the neighborhood of a point b ∈ B we see at least one point in
Γ3(x), and for each b′ ∈ Γ(b) ∩ Γ(y) we have µ(x, b′)| = 4, so by Lemma 8 no
5-c1ique on b is contained in Γ2(x): 4 of the 5-c1iques on b meet Γ(x) and the
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remaining 4 meet Γ3(x). But this means that no point from B is adjacent to a
point in A. Let C be a 5-c1ique meeting A.

Since A ⊂ Γ3(y) for y ∈ Γ3(x) we have |C ∩ A| ≤ 2. Also |C ∩ Γ(x)| ≤ 2.
But there is nowhere the �fth point of C could go, so there is no such C and
A = ∅. (Now |Γ2(x) = 36.)

Let y ∈ Γ3(x). Counting paths of length 3 between x and y we see that
p := |Γ(y)∩ Γ2(x)| = |Γ(x)∩ Γ2(y)|. If p = 12 then there is no room for a 2× 3
grid in Γ(x) ∩ Γ2(y) so each 5·clique on Y has 4 points in Γ2(x) and p = 16,
a contradiction. Thus p > 12, and estimating Γ3(x) we �nd 5 = d2 · 36e/16 ≤
|Γ3(x)| ≤ 4 · 36/b13c = 11 so that 58 ≤ v ≤ 64, and since 5 | v, we must have
v = 60, |Γ3(x)| = 7.

Now a counting argument will kill this situation: let s be the number of edges
between Γ2(x) and Γ3(x), t the number of edges in Γ3(x), and ai, (2 ≤ i ≤ 4)
the number of points b ∈ Γ2(x) with precisely i neighbors in Γ3(x). Then we
have

a2 + a3 + a4 = 36

2a2 + 3a3 + 4a4 = s

a3 + 2a4 = t

s+ 2t = 7 · 16 = 112,

so that s = t+ 72, 3t = 40, and t is not integral.

Lemma 10. If Γ3(x) = ∅ for some x then Γ ∼= 1
2

(
8
4

)
or Γ ∼= G′40.

Proof. 18 = 144
8 ≤ |Γ2(x)| ≤ 144

4 = 36. If |Γ2(x)| = 18 then v = 35 and
each µ-graph has 8 points, so that Γ is strongly regular. By Lemma 8, Γ is a
Zara graph with K = 5, e = 2, and now the proposition in Section 2 shows that
Γ ∼= 1

2

(
8
4

)
. Now let v > 35, and count c1iques. There are 8 5-c1iques on x, 48

cliques not on x meeting Γ(x) and hence 8
5 (v − 35) cliques contained in Γ2(x).

Let Mµ = {b ∈ Γ2(x) | |µ(x, b)| = µ}. By Lemma 8 each clique C in Γ2(x) has
4 points in M6, and 1 point in M4 so |M6| = 16

5 (v − 35), |M4| = 2
5 (v − 35), and

v = 1+16+ 18
5 (v−35)+|M8|, 144 = 4|M4|+6|M6|+8|M8| = 104

5 (v−35)+8|M8|.
It follows that v < 45, and since 5 | v, we have v = 40, |M8| = 5, |M6| = 16,
|M4| = 2. Now enough information has been gathered to de�ne all adjacencies
without loss of generality (a rather tedious task). One �nds a unique solution,
namely the graph described in Section 4.

Lemma 11. If Γ3(x) 6= ∅ for all x, then Γ ∼= G40, the graph described in
Section 3.

Proof. Clearly it su�ces to show that Γ is determined up to isomorphism.
By Lemmas 1(iv), 7, 9, and 10 we have that for each x ∈ Γ there is a unique

antipode x̄ ∈ Γ with d(x, x̄) = 3. Clearly the antipodes of the points in Γ(x)
are in Γ(x̄), so x 7→ x̄ is an automorphism of Γ.

Fix x ∈ Γ and let Z = Γ2(x) ∩ Γ2(x̄) (= M8, see Lemma 7). Then Z =
{p, q, r, p̄, q̄, r̄}. Thus given x we �nd a clique of size 8 Ox = Z ∪ {x, x̄}, and
starting with another point, say p ∈ Ox, we �nd Op = Ox. (Note that µ(x, p)
and µ(x, p̄) partition Γ(x).) Consequently, we have a partition of Γ in �ve
8-cocliques.

Consider the quotient Γ̄ of Γ under identifying a with ā for each a ∈ Γ. It has
20 points, a partition into �ve 4-cocliques and valency 16, i.e., it is the complete
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multipartite graph K5×4. There are two ways of distributing four 4-cocliques
over Γ(x), corresponding to the two Latin squares of order 4, namely

x x

d

c

b

a

d

c

b

a
1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

.and

In the �rst case, label the 4 rows of Γ(x) with a, b, c, d, and let al be the point
in row a and coclique 1, etc. Let A1 = a1, etc. Now we see locally at a1

a1

d2
B3

c3 B2

b4

x a2 a3 a4

but B2 ∼ B3 contradiction.
Since p 6∼ q, µ(p, q) ∩ Γ(x) is a coclique (and idem with x̄ instead of x) so

|µ(p, q)∩Γ(x)| = 4. Also, this remains a coclique in Γ̄, so µ(p, q)∩Γ(x) consists
of four points labeled with the same digit. Since there are 4 points in Z distinct
from p, p̄ and each point in Γ(x) has three neighbors in Z we see that w.l.o.g.
the points p, p̄, q, q̄, r, r̄ are adjacent to the points in Γ(x) labeled 1 or 2, 3 or
4, 1 or 3, 2 or 4, 2 or 3, 1 or 4, respectively. Taking antipodes we �nd the edges
between Z and Γ(x̄). Also the edges between Γ(x) and Γ(x̄) are determined:
e.g., the point A1 is not adjacent to a point in the same row or column as al
and not adjacent to a point in coclique 1, so its neighbors in Γ(x) must be b4,
b3, e4, e2, d3, d2.

Thus we showed that for diam Γ = 2, 3, 4 we have Γ ∼= 1
2

(
8
4

)
, G40, or G

′
40,
(

8
4

)
,

respectively. Clearly this proves the theorem.
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