Triple intersection numbers for the Paley graphs

Andries E. Brouwer aeb@cwi.nl William J. Martin* martin@wpi.edu

2021-09-05

Abstract

We give a tight bound for the triple intersection numbers of Paley graphs. In particular, we show that any three vertices have a common neighbor in Paley graphs of order larger than 25.

Let q = 4t + 1 be a prime power, and let Γ be Paley(q), the Paley graph on q vertices, with as vertex set the finite field \mathbb{F}_q of size q, where two vertices are adjacent when their difference belongs to \mathbb{F}_q^{*2} , the set of nonzero squares in \mathbb{F}_q . This graph is connected with diameter 2, and self-complementary.

In [5], the authors needed the fact that any function $\psi : \mathbb{F}_q^{*2} \cup \{0\} \to \mathbb{C}^*$ satisfying (i) $\psi(0) = 1$ and (ii) $\psi(a)\psi(b) = \psi(c)\psi(d)$ whenever a + b = c + dmust be the restriction of some additive character of \mathbb{F}_q if q > 5. The present note provides a short proof of that fact.

Following the notation of [2] §3, define generalized intersection numbers $\begin{bmatrix} a_1 & a_2 & \cdots & a_\ell \\ i_1 & i_2 & \cdots & i_\ell \end{bmatrix}$ for $a_1, \ldots, a_\ell \in \mathbb{F}_q$ and $i_1, \ldots, i_\ell \in \{0, 1, 2\}$ by $\begin{bmatrix} a_1 & a_2 & \cdots & a_\ell \\ i_1 & i_2 & \cdots & i_\ell \end{bmatrix}$:= $|\Gamma_{i_1}(a_1) \cap \cdots \cap \Gamma_{i_\ell}(a_\ell)|$, where $\Gamma_i(a)$ denotes the set of vertices at distance i from a. Note that $\sum_{i_\ell} \begin{bmatrix} a_1 & \cdots & a_\ell \\ i_1 & \cdots & i_\ell \end{bmatrix} = \begin{bmatrix} a_1 & \cdots & a_{\ell-1} \\ i_1 & \cdots & i_{\ell-1} \end{bmatrix}$ and $\begin{bmatrix} a \\ i \end{bmatrix} = \frac{q-1}{2}$ and $\begin{bmatrix} a & b \\ i & j \end{bmatrix} = \frac{q-1}{4} - \delta_{hi}\delta_{hj}\delta_{ij}$ for distinct a, b and h, i, j = 1, 2 where h is the distance from a to b. It follows that all $\begin{bmatrix} a & b & c \\ h & i & j \end{bmatrix}$ are known if one knows $\begin{bmatrix} a & b & c \\ 1 & b & 1 \end{bmatrix}$.

Proposition 0.1 $\left| \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} - \frac{q-9}{8} \right| \leq \frac{1}{4}\sqrt{q} + \frac{3}{4}$ for any three distinct a, b, c.

Proof. Let χ be the quadratic character. If a, b, c are distinct, then

$$\sum_{x} (1 + \chi(x - a))(1 + \chi(x - b))(1 + \chi(x - c)) = 8 \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} + 4R$$

where $R \stackrel{x}{=} \begin{bmatrix} a & b & c \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} a & b & c \\ 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \end{bmatrix}$, so that $R \in \{0, 1, 3\}$. Let $S = \sum_{x} \chi((x - a)(x - b)(x - c))$. Since $\sum_{x} 1 = q$ and $\sum_{x} \chi(x) = 0$ and $\sum_{x} \chi(x(x - a)) = -1$ for nonzero a, we see that $q - 3 + S = 8 \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} + 4R$.

By Hasse [4], the number of points N on an elliptic curve over \mathbb{F}_q satisfies $|N - (q+1)| \leq 2\sqrt{q}$. Consider the curve $y^2 = (x-a)(x-b)(x-c)$. The homogeneous form is $Y^2Z = (X-aZ)(X-bZ)(X-cZ)$ with a single point (0,1,0) at infinity. If (x-a)(x-b)(x-c) is zero for 3 values of x, a nonzero square for m values of x, and a nonsquare for the remaining q-3-m values of x, then N = 1+3+2m and S = m - (q-3-m) = 2m+3-q. Hence $|S| = |N - (q+1)| \leq 2\sqrt{q}$. It follows that $\left| \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} - \frac{q-9}{8} \right| \leq \frac{1}{4}\sqrt{q} + \frac{3}{4}$.

^{*}Worcester Polytechnic Institute, Dept. of Mathematical Sciences, Worcester, MA USA

Corollary 0.2 If q > 25 then any three distinct vertices in Γ have a common neighbor.

The table below gives for small q the values of $[h i j] := \begin{bmatrix} a & b & c \\ h & i & j \end{bmatrix}$ that occur. For each q, the first line is for triangles *abc*, the second line for paths of length 2. The remaining cases follow by complementation.

q	[111]	[112]	[122]	[222]	q	[111]	[112]	[122]	[222]
5	-	-	-	-	 17	0	6	6	2
	0	0	2	0		1 - 2	3–6	5 - 8	1 - 2
9	0	0	6	0	25	0-2	6 - 12	6 - 12	2-4
	0	3	2	1		2 - 3	6 - 9	8 - 11	2 - 3
13	0	3	6	1	29	2	9	12	3
	0 - 1	3-6	2 - 5	1 - 2		2 - 4	6 - 12	8 - 14	2 - 4

Returning to the problem in the second paragraph, if $\psi \colon \mathbb{F}_q^{*2} \cup \{0\} \to \mathbb{C}^*$ satisfies conditions (i) and (ii), then $\psi(-a) = \psi(a)^{-1}$ for each a and the extension of ψ to $\hat{\psi} \colon \mathbb{F}_q \to \mathbb{C}^*$ via $\hat{\psi}(a+b) = \psi(a)\psi(b)$ for $a, b \in \mathbb{F}_q^{*2}$, is well-defined. Given $a, b \in \mathbb{F}_q$, we locate c with $c \sim 0, a, -b$ so that $c, a - c, b + c \in \mathbb{F}_q^{*2}$. Now $\hat{\psi}(a+b) = \psi(a-c)\psi(b+c) = \psi(a-c)\psi(c)\psi(-c)\psi(b+c) = \hat{\psi}(a)\hat{\psi}(b),$ showing for q > 25 that ψ is an additive character. The cases $5 < q \leq 25$ can be done by hand.

In the above, we gave bounds for $\begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix}$, in particular for the number of K_4 's on a given triangle *abc*. In case q = p is prime, a closed formula for the total number of K_4 's on a given edge was given by Evans, Pulham & Sheehan [3]. If $p = m^2 + n^2$ where n is odd, this number is $\frac{1}{64}((p-9)^2 - 4m^2)$.

The bounds of Proposition 0.1 are best possible:

Proposition 0.3 If $q = (4s+1)^2$ for some integer $s \ge 1$, then (i) For a suitable triangle abc one has $\begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} = \frac{q-9}{8} - \frac{1}{4}\sqrt{q} - \frac{3}{4} = 2(s^2 - 1)$. (ii) For a suitable cotriangle abc one has $\begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} = \frac{q-9}{8} + \frac{1}{4}\sqrt{q} + \frac{3}{4} = 2s(s+1)$.

Proof. If *abc* is a triangle or a cotriangle, then $\begin{bmatrix} a & b & c \\ 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} a & b & c \\ 2 & 2 & 2 \end{bmatrix} = \frac{q-9}{4}$. Also, $\begin{bmatrix} a & b & c \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} ea & eb & ec \\ 1 & 1 & 1 \end{bmatrix}$ for any nonsquare e. So (i) and (ii) are equivalent. Let us prove (i), that is, prove that $N = q - 2\sqrt{q} + 1$ occurs for a suitable curve $y^2 = (x-a)(x-b)(x-c)$ where *abc* is a triangle.

By Waterhouse [6] there are elliptic curves with $N = q \pm 2\sqrt{q} + 1$ points when q is a square. A curve $y^2 = (x-a)(x-b)(x-c)$ has three points of order 2, so 2-torsion subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2$, so that its number of points is 0 mod 4. Conversely, by Auer & Top [1], given an elliptic curve E with 0 mod 4 points, there is one with the same number of points in Legendre form $y^2 = x(x-1)(x-\lambda)$, except in case $q = r^2$ for a (possibly negative) integer $r \equiv 1 \pmod{4}$ when $|E| = (r+1)^2$. Consequently, there is a curve $y^2 = x(x-1)(x-\lambda)$ with $N = (r-1)^2$ points. Then S = N - (q+1) = -2r and $8 \begin{bmatrix} 0 & 1 & \lambda \\ 1 & 1 & 1 \end{bmatrix} + 4R = N - 4 = (r-1)^2 - 1 = 16s^2 - 4$ and $\begin{bmatrix} 0 & 1 & \lambda \\ 1 & 1 & 1 \end{bmatrix} = 2s^2 - \frac{R+1}{2}$. In the extreme cases, E is supersingular (e.g. because $N \equiv 1 \pmod{p}$ and according to [1] (§3) λ is a square in \mathbb{F}_{p^2} , and then also $1 - \lambda$ is a square in \mathbb{F}_{p^2} , so that $\{0, 1, \lambda\}$ is a triangle and R = 3.

Acknowledgments

The second author thanks Bill Kantor for helpful remarks. The work of the second author was supported, in part, through a grant from the National Science Foundation (DMS Award #1808376) which is gratefully acknowledged.

References

- R. Auer & J. Top, Legendre curves over finite fields, J. Number Th. 95 (2002) 303–312.
- [2] K. Coolsaet & A. Jurišić, Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs, J. Combin. Th. (A) 115 (2008) 1086–1095.
- [3] R. J. Evans, J.R. Pulham & J. Sheehan, On the number of complete subgraphs contained in certain graphs, J. Combin. Th. (B) 30 (1981) 364–371.
- [4] H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. K. (1933) 253–262.
- [5] W. J. Martin and E. Washock, On ideals of the eigenpolytopes of Paley graphs and related equiangular lines, In preparation, 2021.
- [6] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969) 521–560.