
Triple intersection numbers for the Paley graphs

Andries E. Brouwer
aeb@cwi.nl

William J. Martin∗

martin@wpi.edu

2021-09-05

Abstract
We give a tight bound for the triple intersection numbers of Paley graphs.

In particular, we show that any three vertices have a common neighbor
in Paley graphs of order larger than 25.

Let q = 4t+ 1 be a prime power, and let Γ be Paley(q), the Paley graph on
q vertices, with as vertex set the finite field Fq of size q, where two vertices are
adjacent when their difference belongs to F∗2

q , the set of nonzero squares in Fq.
This graph is connected with diameter 2, and self-complementary.

In [5], the authors needed the fact that any function ψ : F∗2
q ∪ {0} → C∗

satisfying (i) ψ(0) = 1 and (ii) ψ(a)ψ(b) = ψ(c)ψ(d) whenever a + b = c + d

must be the restriction of some additive character of Fq if q > 5. The present
note provides a short proof of that fact.

Following the notation of [2] §3, define generalized intersection numbers
[ a1 a2 ··· a`
i1 i2 ··· i` ] for a1, . . . , a` ∈ Fq and i1, . . . , i` ∈ {0, 1, 2} by [ a1 a2 ··· a`

i1 i2 ··· i` ] :=

|Γi1(a1) ∩ · · · ∩ Γi`(a`)|, where Γi(a) denotes the set of vertices at distance i
from a. Note that

∑
i`

[ a1 ··· a`
i1 ··· i` ] = [ a1 ··· a`−1

i1 ··· i`−1
] and [ ai ] = q−1

2 and [ a bi j ] =
q−1
4 − δhiδhjδij for distinct a, b and h, i, j = 1, 2 where h is the distance from a

to b. It follows that all [ a b ch i j ] are known if one knows [ a b c1 1 1 ].

Proposition 0.1
∣∣[ a b c1 1 1 ]− q−9

8

∣∣ ≤ 1
4

√
q + 3

4 for any three distinct a, b, c.

Proof. Let χ be the quadratic character. If a, b, c are distinct, then∑
x

(1 + χ(x− a))(1 + χ(x− b))(1 + χ(x− c)) = 8 [ a b c1 1 1 ] + 4R

where R = [ a b c0 1 1 ] + [ a b c1 0 1 ] + [ a b c1 1 0 ], so that R ∈ {0, 1, 3}. Let S =
∑
x χ((x −

a)(x− b)(x− c)). Since
∑
x 1 = q and

∑
x χ(x) = 0 and

∑
x χ(x(x− a)) = −1

for nonzero a, we see that q − 3 + S = 8 [ a b c1 1 1 ] + 4R.
By Hasse [4], the number of points N on an elliptic curve over Fq satisfies

|N − (q + 1)| ≤ 2
√
q. Consider the curve y2 = (x − a)(x − b)(x − c). The

homogeneous form is Y 2Z = (X − aZ)(X − bZ)(X − cZ) with a single point
(0, 1, 0) at infinity. If (x − a)(x − b)(x − c) is zero for 3 values of x, a nonzero
square for m values of x, and a nonsquare for the remaining q − 3 −m values
of x, then N = 1 + 3 + 2m and S = m − (q − 3 − m) = 2m + 3 − q. Hence
|S| = |N − (q + 1)| ≤ 2

√
q. It follows that

∣∣[ a b c1 1 1 ]− q−9
8

∣∣ ≤ 1
4

√
q + 3

4 . 2
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Corollary 0.2 If q > 25 then any three distinct vertices in Γ have a common
neighbor. 2

The table below gives for small q the values of [h i j] := [ a b c
h i j ] that occur. For each q, the

first line is for triangles abc, the second line for paths of length 2. The remaining cases follow
by complementation.

q [1 1 1] [1 1 2] [1 2 2] [2 2 2]

5 - - - -
0 0 2 0

9 0 0 6 0
0 3 2 1

13 0 3 6 1
0–1 3–6 2–5 1–2

q [1 1 1] [1 1 2] [1 2 2] [2 2 2]

17 0 6 6 2
1–2 3–6 5–8 1–2

25 0–2 6–12 6–12 2–4
2–3 6–9 8–11 2–3

29 2 9 12 3
2–4 6–12 8–14 2–4

Returning to the problem in the second paragraph, if ψ : F∗2
q ∪ {0} → C∗

satisfies conditions (i) and (ii), then ψ(−a) = ψ(a)−1 for each a and the exten-
sion of ψ to ψ̂ : Fq → C∗ via ψ̂(a+ b) = ψ(a)ψ(b) for a, b ∈ F∗2

q , is well-defined.
Given a, b ∈ Fq, we locate c with c ∼ 0, a,−b so that c, a− c, b+ c ∈ F∗2

q . Now
ψ̂(a+ b) = ψ(a− c)ψ(b+ c) = ψ(a− c)ψ(c)ψ(−c)ψ(b+ c) = ψ̂(a)ψ̂(b), showing
for q > 25 that ψ̂ is an additive character. The cases 5 < q ≤ 25 can be done
by hand.

In the above, we gave bounds for [ a b c1 1 1 ], in particular for the number of K4’s
on a given triangle abc. In case q = p is prime, a closed formula for the total
number of K4’s on a given edge was given by Evans, Pulham & Sheehan [3]. If
p = m2 + n2 where n is odd, this number is 1

64 ((p− 9)2 − 4m2).

The bounds of Proposition 0.1 are best possible:

Proposition 0.3 If q = (4s+ 1)2 for some integer s ≥ 1, then
(i) For a suitable triangle abc one has [ a b c1 1 1 ] = q−9

8 −
1
4

√
q − 3

4 = 2(s2 − 1).
(ii) For a suitable cotriangle abc one has [ a b c1 1 1 ] = q−9

8 + 1
4

√
q+ 3

4 = 2s(s+1).

Proof. If abc is a triangle or a cotriangle, then [ a b c1 1 1 ] + [ a b c2 2 2 ] = q−9
4 . Also,

[ a b c2 2 2 ] = [ ea eb ec1 1 1 ] for any nonsquare e. So (i) and (ii) are equivalent. Let
us prove (i), that is, prove that N = q − 2

√
q + 1 occurs for a suitable curve

y2 = (x− a)(x− b)(x− c) where abc is a triangle.
By Waterhouse [6] there are elliptic curves with N = q±2

√
q+1 points when

q is a square. A curve y2 = (x− a)(x− b)(x− c) has three points of order 2, so
2-torsion subgroup Z2×Z2, so that its number of points is 0 mod 4. Conversely,
by Auer & Top [1], given an elliptic curve E with 0 mod 4 points, there is one
with the same number of points in Legendre form y2 = x(x−1)(x−λ), except in
case q = r2 for a (possibly negative) integer r ≡ 1 (mod 4) when |E| = (r+ 1)2.
Consequently, there is a curve y2 = x(x − 1)(x − λ) with N = (r − 1)2 points.
Then S = N−(q+1) = −2r and 8 [ 0 1 λ

1 1 1 ]+4R = N−4 = (r−1)2−1 = 16s2−4

and [ 0 1 λ
1 1 1 ] = 2s2 − R+1

2 . In the extreme cases, E is supersingular (e.g. because
N ≡ 1 (mod p)) and according to [1] (§3) λ is a square in Fp2 , and then also
1− λ is a square in Fp2 , so that {0, 1, λ} is a triangle and R = 3. 2
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