A family of 2-arc transitive pentagraphs with unbounded valency

A.E. Brouwer & J. Huizinga

April 1992 / May 2012

Abstract

We construct polygonal graphs on the points of a generalized polygon in general position with respect to a polarity.

1 Polygonal graphs

Let (X, L, I) be a generalized *n*-gon with polarity σ . Let Z be the set of points in general position with respect to σ , i.e., $Z = \{x \in X \mid d(x, x^{\sigma}) \geq n-1\}$, with distances measured in the point-line incidence graph Σ of (X, L, I). (Thus, if *n* is even then $d(x, x^{\sigma}) = n-1$ and if *n* is odd then $d(x, x^{\sigma}) = n$ for $x \in Z$.) Define a graph Γ with vertex set Z by letting distinct vertices $x, y \in Z$ be adjacent (notation $x \sim y$) when $x I y^{\sigma}$.

Theorem 1.1 If n is odd, then Γ has girth $g \ge n$ and each edge is contained in a unique n-gon. If n is even, then Γ has girth $g \ge n+1$ and each 2-path is contained in a unique (n+1)-gon.

Proof. Let us first collect information about the vertex set Z.

Step 1. If $x_0Ix_1^{\sigma}Ix_2I \dots Ix_{l-1}Ix_0^{\sigma}Ix_1I \dots Ix_{l-1}^{\sigma}Ix_0$ is a self-polar 2*l*-circuit in Σ , and $l \leq n+1$, then $x_i \in \mathbb{Z}$ $(0 \leq i \leq l-1)$.

(Indeed, if $d_{\Sigma}(x_i, x_i^{\sigma}) = m$, then we find an (m+l)-circuit in Σ , so that $m+l \geq 2n$.)

Step 2. If n is even, and $x \in Z$, and $xIx_1^{\sigma}I \dots Ix_{n-2}Ix^{\sigma}$ is the unique path of length n-1 joining x to x^{σ} in Σ , then $x_i \notin Z$ $(1 \le i \le n-2)$.

(Indeed, applying σ to this path, we find another path that must coincide with this path, so that $x_i^{\sigma} = x_{n-1-i}$ $(1 \le i \le n-2)$.)

Now look at the graph Γ . Note that if $x \sim y \sim z$ in Γ , then $xIy^{\sigma}Iz$ in Σ .

Step 3. Γ does not have even circuits of length less than 2n and no odd circuits of length less than n. In particular, if two vertices have distance less than n in Γ , then there is a unique shortest path in Γ joining them.

(Indeed, if $x_0 \sim x_1 \sim \ldots \sim x_{l-1} \sim x_0$ is an *l*-circuit in Γ , and *l* is even, then $x_0 I x_1^{\sigma} I x_2 I \ldots I x_{l-1}^{\sigma} I x_0$ is an *l*-circuit in Σ , and it follows that $l \geq 2n$. If *l* is odd, then $x_0 I x_1^{\sigma} I x_2 I \ldots I x_{l-1} I x_0^{\sigma}$ is an *l*-path in Σ , and by Step 2 we have $l \geq n$.) **Step 4.** If n is odd, then each edge is contained in a unique n-gon.

(Indeed, if n is odd, and xy is an edge in Γ , then $d_{\Sigma}(x, y) = n - 1$ and in Σ there is a unique geodesic $x = x_0 I x_1^{\sigma} I x_2 I \dots I x_{n-1} = y$ joining x and y. This geodesic is part of the self-polar 2n-circuit

$$x_0 I x_1^{\sigma} I x_2 I \dots I x_{n-1} I x_0^{\sigma} I x_1 I x_2^{\sigma} I \dots I x_{n-1}^{\sigma} I x_0$$

in Σ . Thus, by Step 1, $x_0 \sim x_1 \sim \ldots \sim x_{n-1} \sim x_0$ is the unique *n*-gon on the edge xy in Γ .)

Step 5. If n is even, then each 2-path is contained in a unique (n + 1)-gon.

(Indeed, if $x \sim y \sim z$ in Γ , then $d_{\Sigma}(x,y) = d_{\Sigma}(y,z) = n$ (since by Step 2 the unique point on y^{σ} that has distance n-2 to y is not in Z). Let x = $x_0 I x_1^{\sigma} I x_2 I \dots I x_{n-1}^{\sigma} = z^{\sigma}$ be the unique path of length n-1 in Σ joining x to z^{σ} . Then

$$x_0 I x_1^{\sigma} I x_2 I \dots I x_{n-1}^{\sigma} I y I x_0^{\sigma} I x_1 I \dots I x_{n-1} I y^{\sigma} I x_0$$

is a self-polar (2n+2)-circuit in Σ . Thus, by Step 1, $x_0 \sim x_1 \sim \ldots \sim x_{n-1} =$ $z \sim y \sim x$ is the unique (n+1)-gon on the path $x \sim y \sim z$ in Γ .)

This completes the proof.

If (X, L, I) is a 2m-gon, then Γ is a single edge. If (X, L, I) is a (2m+1)-gon, then there are two possible polarities σ ; for one choice of σ the graph Γ consists of a single vertex; for the other choice it is a (2m + 1)-gon itself.

$\mathbf{2}$ Pentagraphs

Now let us specialize to the finite case n = 4, i.e., let (X, L, I) be a generalized quadrangle of order q with a polarity σ . Then 2q is a square, cf. Payne [4]. Examples exist when q is an odd power of 2, cf. Tits [9]. We define the graph Γ as before. As we shall see, Γ is a *pentagraph*, that is, any 2-path in Γ is contained in a unique pentagon. (For this concept, and other examples, and some theory, see Perkel [5, 6, 7, 8] and Ivanov [3].)

Theorem 2.1 Γ is a pentagraph of valency q on q^3+q vertices, and has distance distribution diagram

Proof. Recall that a point or line is called *absolute* (for σ) if it is incident with its image (under σ). We shall use ~ for adjacency in Γ , and \perp for collinearity in (X, L).

Step 1. Each line contains a unique absolute point, and, dually, each point is on a unique absolute line.

(Indeed, if x is absolute, then x^{σ} is the only absolute line on x, and if x is not absolute then the unique line on x meeting x^{σ} is the only absolute line on x.)

Step 2. The set A of absolute points under σ is an ovoid in (X, L). The graph Γ has $v = q(q^2 + 1)$ vertices.

(Indeed, each $l \in L$ meets A in a unique point. It follows that $|A| = q^2 + 1$. But $|X| = (q+1)(q^2+1)$.)

Step 3. Γ is regular of valency q, and does not contain triangles. Adjacent vertices are non-collinear.

(Indeed, the neighbours of x are the q nonabsolute points of x^{σ} .)

Step 4. Γ does not have quadrangles, and any two vertices at distance 2 determine a unique pentagon. Two vertices have distance 2 if and only if they are collinear and the line joining them is non-absolute.

(Indeed, if $x \sim y \sim z$, then x and z are joined by the line y^{σ} . In particular, y is the only common neighbour of x and z. Let $z \perp p \in x^{\sigma}$. Then $p \notin A$ because the unique absolute point on x^{σ} is collinear to x. Also the line l = zp is not absolute because z^{σ} passes through y and $p \neq y$. It follows that $x \sim y \sim z \sim l^{\sigma} \sim p \sim x$ is the unique pentagon on x and z.)

Let us describe the distribution of vertices in Γ around a vertex x. Let m be the absolute line on x, and let $x' = m^{\sigma} = x^{\sigma} \cap A$ be its absolute point. The vertex set of Γ is partitioned into the following seven parts: $X_0 = \{x\}$, $X_1 = x^{\sigma} \setminus A, X_2 = x^{\perp} \setminus (A \cup m), X_5 = m \setminus (A \cup \{x\}), X_{4a} = \{x'\}^{\perp} \setminus (A \cup m \cup x^{\sigma}), X_{4b} = \{y \in X \setminus A \mid y \sim z \in X_1 \text{ and } yz \text{ is absolute }\}$, and X_3 , consisting of the remaining points. Our aim is to show that X_i consists of the vertices at distance i from x in Γ , where X_{4a} and X_{4b} are distinguished by the fact that points in X_{4a} have neighbours in X_5 . (Note however that for q = 2 we have $X_3 = \emptyset$, and the graph Γ is the disjoint union of two pentagons. If p is in the relation 4a to x, then x is in relation 4b to p, i.e., relations 4a and 4b are paired, while the remaining relations are self-paired.)

Step 5. We have $|X_0| = 1$, $|X_1| = q$, $|X_2| = q(q-1)$, $|X_3| = q(q-1)(q-2)$, $|X_{4a}| = |X_{4b}| = q(q-1)$, $|X_5| = q-1$.

(Indeed, the claims are clear for X_i with $i \leq 2$. The only vertices that do not have distance 2 to some vertex of X_1 , are the vertices that either are collinear to the point $x' = x^{\sigma} \cap A$ (i.e., are in $X_{4a} \cup X_5$), or are joined to a vertex on x^{σ} by an absolute line (i.e., are in X_{4b}). The absolute line m on x contains q vertices, q-1 other than x, and none of them is collinear to a point in $X_0 \cup X_1 \cup X_2$, so these vertices have distance at least 5 to x. The vertices adjacent to some vertex in X_5 are the q(q-1) vertices of X_{4a} . The vertices of X_3 are collinear to a unique vertex of x^{σ} , so this determines $|X_3|$.)

Step 6. Each vertex in $X_3 \cup X_{4b}$ has a unique neighbour in X_{4a} .

(Indeed, let $p \in X_3 \cup X_{4a}$. Then p^{σ} does not pass through x' (since $p \notin m$, i.e., $p \notin X_0 \cup X_5$), so x' is collinear with a unique point $z \in p^{\sigma}$. The line x'z is not absolute (since $z \notin m$ because $p \notin X_{4a} \cup X_1$) and the point z is not absolute (since the line x'z contains only one absolute point), so z is the unique neighbour of p in $X_1 \cup X_{4a}$. Clearly $z \in X_1$ iff $p \in X_2$.)

This proves everything claimed in the diagram.

Now let us look at the special case where $q = 2^{2e} + 1$ and (X, L) is the Sp(4, q) generalized quadrangle. The centralizer in Sp(4, q) of the polarity σ is the Suzuki group Sz(q) of order $(q^2 + 1)q^2(q - 1)$. This group is 2-transitive on the set A of absolute points, and 2-arc transitive on the graph Γ (cf. Tits [9], Th. 6.1). In this case we can be more precise about the stars in the diagram above.

Theorem 2.2 The graph Γ is a 2-arc transitive pentagraph with distance distribution diagram

Proof. If p and x are two non-collinear points, then $\{p, x\}^{\perp}$ is a hyperbolic line that meets A in either 0 or 2 points (since A is an ovoid, and all tangents to A are totally isotropic lines). We shall talk about *secant* and *exterior* hyperbolic lines.

Step 1. Each vertex in $X_{4a} \cup X_{4b}$ has a unique neighbour in X_{4b} .

(Indeed, if $p \in X_{4a}$ or $p \in X_{4b}$, then $\{p, x\}^{\perp} \cap A$ contains the point x' (or p', respectively), so this hyperbolic line is a secant, and there are precisely q-2 points in Γ at distance 2 from both p and x.)

If $p \in X_3$, then $\{p, x\}^{\perp} \cap A$ contains either 0 or 2 points, so that p has either 0 or 2 neighbours in X_{4b} . Let us call the set of vertices of the former (latter) kind X_{3a} (X_{3b} , respectively).

Step 2. X_{3a} is the set of vertices p such that the line xp is exterior. We have $|X_{3a}| = |X_{3b}| = \frac{1}{2}q(q-1)(q-2).$

(Indeed, the lines joining x to a point of $X_2 \cup X_5$ are the tangents (totally isotropic lines) on x, the lines joining x to a point of $X_1 \cup X_{3b} \cup X_4$ are the exterior lines on x, and the lines joining x to a point of X_{3a} are the secants on x. But A has $\frac{1}{2}q^2(q^2+1)$ secants, and the same number of exterior lines. (In fact, l is secant iff l^{\perp} is exterior.))

The planes meet the set A either in one point: *tangent* planes, or in an oval (having q + 1 points): *secant* planes.

Step 3. If $p \in X_2 \cup X_3 \cup X_{4a}$ then p has $\frac{1}{2}q - 1$ neighbours in X_{3a} .

(Indeed, if $p \in X_2 \cup X_3 \cup X_{4a}$, then $x \notin p^{\sigma}$, and the plane $\langle x, p^{\sigma} \rangle$ is a secant plane. In this plane, the point x is on one tangent, and on $\frac{1}{2}q$ secants. One of these secants contains p'; the remaining $\frac{1}{2}q - 1$ contain each one neighbour of p.)

4

This determines the entire diagram.

Remark. The graph Γ , and the fact that it is 2-arc transitive for Sz(q), was found independently by Fang Xin Gui, a student of Cheryl Praeger.

Remark. Aut Γ is not primitive: the spread $\{a^{\sigma} \mid a \in A\}$ is a system of blocks of imprimitivity. However, Aut Γ acts 2-transitively on the set of blocks, so that we do not find a nontrivial graph structure on the quotient.

Remark. Of course we also get finite heptagraphs (of valency $q = 3^{2e} + 1$) starting from a generalized hexagon (of type $G_2(q)$) with a polarity.

3 Addendum

The above was written in April 1992. In the mean time, Xin Gui Fang & C. E. Praeger [1, 2] appeared where the above graphs are found in the classification of certain 2-arc transitive graphs (and they refer to this work). As far as we know, the relation to generalized polygons with polarity still does not appear in the literature.

References

- Xin Gui Fang & C. E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Alg. 27 (1999) 3727–3754.
- [2] Xin Gui Fang & C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Alg. 27 (1999) 3755–3769.
- [3] A. A. Ivanov, On 2-transitive graphs of girth 5, Europ. J. Comb. 8 (1987) 393-420.
- [4] S. E. Payne, Symmetric representations of nondegenerate generalized ngons, Proc. Amer. Math. Soc. 19 (1968) 1321–1326.
- [5] M. Perkel, Bounding the valency of polygonal graphs with odd girth, Canad. J. Math. **31** (1979) 1307–1321.
- [6] M. Perkel, A characterization of PSL(2,31) and its geometry, Canad. J. Math. 32 (1980) 155–164.
- [7] M. Perkel, A characterization of J₁ in terms of its geometry, Geom. Dedicata 9 (1980) 291–298.
- [8] M. Perkel, Near-polygonal graphs, Ars Comb. 26A (1988) 149–170.
- [9] J. Tits, Ovoides et groupes de Suzuki, Arch. Math. 13 (1962) 187–198.