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Abstract

We show that the q-Kneser graph qK2k:k (the graph on the k-
subspaces of a 2k-space over GF (q), where two k-spaces are adjacent
when they intersect trivially), has chromatic number qk + qk−1 for
k = 3 and for k < q log q − q. We obtain detailed results on maximal
cocliques for k = 3.

1 Introduction

Let qKn:k denote the q-analog of the Kneser graph. The vertices of this
graph are the k-dimensional subspaces of an n-dimensional vector space V
over GF (q), two vertices are adjacent if the corresponding subspaces intersect
trivially. In what follows a d-dimensional subspace will be simply called a
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d-space or just a [d]. We use projective terminology, so a point is a [1], a line
a [2], a plane a [3], a solid a [4] and a hyperplane an [n−1] in V . Two [k]’s are
adjacent in the Kneser graph if their intersection is [0]. We are interested in
the chromatic number, and hence in the size of large cocliques (intersecting
families of k-spaces), in particular for the extremal case n = 2k (for n < 2k
the graph itself is a coclique). The case n > 2k is studied in [1, 5]. For
n = 2k, the case k ≤ 3 is considered in Tim Mussche’s thesis [6], but will be
treated in much greater detail here.

From now on, let n = 2k. The largest cocliques in the q-Kneser graph
are the Erdős-Ko-Rado families and their duals. An EKR-family P ∗ is the
point pencil consisting of the [k]’s on the point P . A dual EKR-family H∗

consists of the [k]’s contained in the hyperplane H. Both have size
[
2k−1
k−1

]
.

The bound on the size comes from Frankl and Wilson [3], the classification
is due to Godsil and Newman [4].

The second largest cocliques are conjectured to be the Hilton-Milner fam-
ilies and their duals. An HM-family (P, S)∗ is defined by an incident pair
(P, S), where P is a point and S a [k+1] containing P . It consists of the [k]’s
contained in S together with the [k]’s on P intersecting S in at least a [2].
The dual (L,H)∗ of this is defined by an incident pair (L,H), where H is a
hyperplane, and L a [k−1] contained in H, and consists of the [k]’s containing
L together with the [k]’s contained in H that have a nontrivial intersection
with L. The size of an HM-family or its dual equals

[
2k−1
k−1

]
− qk(k−1) + qk,

which is slightly more than qk
2−k−1. More information on q-Kneser graphs

can be found in [6].

Acknowledgement
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2 Very small k

Let us consider the case that k is very small first. For k = 1 the Kneser
graph qK2:1 is a clique of size q + 1, maximal cocliques are singletons which
are of EKR type as well as dual EKR type. Its chromatic number is q + 1.
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For k = 2 the situation is slightly more interesting. Cocliques in the
Kneser graph qK4:2 consist of mutually intersecting lines and such a family
either consists of concurrent lines, and then it is contained in an EKR-family,
or consists of coplanar lines, and then is contained in a dual EKR-family.
From this it follows, as we will see later, that the chromatic number of qK4:2

is q2 + q, a result due to Eisfeld, Storme and Sziklai [2].
The case k = 3 is treated in detail in Section 6.

3 A weak Hilton-Milner bound for n = 2k, q

large enough

Our aim is to show that, for sufficiently large q, cocliques not contained in
a point pencil or its dual have size less than 1

2
qk

2−k < 1
2

[
2k−1
k−1

]
, in fact at

most c qk
2−k−1 where c is a constant slightly larger than 1. We’ll then use

this bound to determine the chromatic number of the Kneser graph qK2k:k

for k < q log q − q.

Theorem 3.1 Let F be a maximal coclique in qK2k:k of size

|F| > (1 +
1

q
)

[
k

1

]k−1[
k − 1

1

]
.

Then F is an EKR family P ∗ or a dual EKR family H∗.

In this section we prove this theorem for k > 3. The case k < 3 is trivial
(every coclique is contained in an EKR or dual EKR family), and a much
stronger result for k = 3 is proved in Theorem 6.1 below. For k >> q log q the
statement in the theorem is empty, since then the right hand side is larger
than the size of an EKR-family.

In the proof below we use the concept of covering number τ(F) of a family
F . This is the minimal dimension of a covering subspace, that is, a subspace
intersecting every F -set nontrivially. Families with covering number 1 are
precisely the Erdős-Ko-Rado families. Hilton-Milner families have covering
number 2. The dual EKR and HM families both have covering number k.

Proof. Since every F -set is a covering subspace of dimension k, we have
τ(F) ≤ k. Let τ(F) = `, and let L be a covering [`]. For any subspace
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M we denote by FM the collection of F -sets containing M . Let fi denote
the maximum cardinality of FM over all i-dimensional M , so that f0 = |F|.
Since L meets every F -set, some 1-space L1 (in L) is contained in |F|/

[
`
1

]
(or more) F -sets, so f1 ≥ f0/

[
`
1

]
. If ` > 1 then there is an F -set disjoint

from L1, and we find a 2-space L2 containing L1 and a point of this F -set
contained in |F|/(

[
`
1

][
k
1

]
) sets. Continuing like this we find for every i ≤ `

that fi ≥ f0/(
[
`
1

][
k
1

]i−1
).

We first consider the case τ(F) = k. As above we find a [k − 1], say
M = Lk−1 with |FM | = fk−1 >

[
k−1
1

]
. Take an F -set not meeting M . Then

F and M generate a hyperplane H and the elements of FM are all contained
in H and since there are more than

[
k−1
1

]
they generate H. Therefore H

contains all F -sets not meeting M . One possibility is that F is contained
in the dual Erdős-Ko-Rado-family

[
H
k

]
. If this is not the case then there is

an F1 ∈ F such that F1 ∩ H = M1 is (k − 1)-dimensional. As F and F1

intersect we have that M1 \M is non-empty and all F -sets not meeting M
must meet M1. Now dim(M1) < τ(F), so there is an F -set F2 disjoint from
it. This F2 can not be contained in H, because then F1 and F2 would be
disjoint. So we find M2 in H disjoint from M1 and all elements of F not
meeting M must also meet M2. Hence the number of F -sets not meeting M

is at most f :=
[
k−1
1

]2
f2. It follows that the number of F -sets meeting M

is at least f0 − f , hence some point of M is contained in a lot of them, so
f1 ≥ (f0 − f)/

[
k−1
1

]
. From f2 ≥ f1/

[
k
1

]
we now get:

f2

(
1 +

qk−1 − 1

qk − 1

)
≥ f0

/([
k − 1

1

][
k

1

])
,

from which it follows that fk > 1, which is a contradiction.
We conclude that τ(F) = ` < k. As before we find an [` − 1], say again

M = L`−1 with |FM | > f0/(
[
`
1

][
k
1

]`−2
). Since dim(M) < τ(F), we find as

before an F -set F disjoint from M . For every point P in this F , either
〈M,P 〉 is a covering space for F , or it is contained in at most

[
k
1

][
2k−`−1
k−`−1

]
F -sets. Let N be the number of covering subspaces among the 〈M,P 〉, then[
k

1

]2[
2k − `− 1

k − `− 1

]
+N

([
2k − `
k − `

]
−
[
k

1

][
2k − `− 1

k − `− 1

])
≥ f0

/([
`

1

][
k

1

]`−2)
.

We’ll show that this implies that N >
[
k−2
1

]
, so that we can find at least

k − 1 M -independent points P determining a covering subspace, so that
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there are at most q(`−1)(k−1)
[
k+1
1

]
F -sets not meeting M . We first note that

for ` ≤ k − 1:[
2k − `
k − `

]
=
q2k−` − 1

qk−` − 1

[
2k − `− 1

k − `− 1

]
≤
[
k + 1

1

][
2k − `− 1

k − `− 1

]
.

Now using
[
k+1
1

]
−
[
k
1

]
= qk we conclude that N satisfies:

h(`) :=

([
k

1

]2
+ qkN

)[
2k − `− 1

k − `− 1

][
`

1

][
k

1

]`−2
≥ f0.

Now for fixed N and ` ≤ k− 1 the left hand side is maximal if ` = k− 1. To
see this we show that h(`+ 1)/h(`) ≥ 1 if 1 ≤ ` ≤ k − 2:

h(`+ 1)

h(`)
=

(qk−`−1 − 1)(q`+1 − 1)(qk − 1)

(q2k−`−1 − 1)(q` − 1)(q − 1)
> 1.

So, since ` ≤ k − 1 we have:([
k

1

]2
+ qkN

)[
k − 1

1

][
k

1

]k−3
> (1 +

1

q
)

[
k

1

]k−1[
k − 1

1

]
.

From this we quickly get that N >
[
k−2
1

]
and there are at most q(`−1)(k−1)

[
k+1
1

]
F -sets not meeting M .
As before we get new estimates for f1 and f`−1:

f1 ≥
f0 − q(`−1)(k−1)

[
k+1
1

][
`−1
1

] ,

and

f`−1 ≥
f0 − q(`−1)(k−1)

[
k+1
1

][
`−1
1

][
k
1

]`−2 >

[
k

1

][
2k − `
k − `

]
,

contradicting the fact that τ(F) = `. The last inequality can be seen as
follows: First rewrite it as[
k

1

]`−1(
(1 +

1

q
)

[
k − 1

1

][
k

1

]k−`
−
[
`− 1

1

][
2k − `
k − `

])
> q(`−1)(k−1)

[
k + 1

1

]
.
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Since
[
k
1

]
> qk−1 and

[
2k−`
k−`

]
<
[
k+1
1

]k−`
it suffices to show[

k − 1

1

][
k

1

]k−`
>

[
`− 1

1

][
k + 1

1

]k−`
,

and
1

q

[
k − 1

1

][
k

1

]k−`
>

[
k + 1

1

]
.

The last inequality is obvious, except for the case k = 4, ` = 3, but also then
it is easy to verify. (Recall that we are assuming k > 3.) The first inequality
is proved by (repeatedly) using that if a ≤ b, then

[
a−1
1

][
b+1
1

]
<
[
a
1

][
b
1

]
. �

Corollary 3.2 Let k < q log q−q and let F be a maximal coclique in qK2k:k

of size
|F| > qk(k−1)/2.

Then F is contained in an Erdős-Ko-Rado family or its dual.

Proof. By the theorem it suffices to have q/2 > (1 + 1/q)(1 − 1/q)−k to
get the desired conclusion. This is implied by k < q log q − q. Note that
qk(k−1) <

[
2k−1
k−1

]
. �

4 The chromatic number of qK2k:k

We conjecture that the chromatic number χ of qK2k:k equals qk +qk−1, for all
q and k. This is certainly an upper bound. For example, fix a (k+1)-subspace
T and a cover of T with points and k-subspaces. A proper coloring of qK2k:k

is obtained by taking all families P ∗ where P is one of the points in this cover,
and all families H∗ where H is a hyperplane that contains some k-subspace
in this cover. If we fix a (k−1)-subspace S in T and take s k-subspaces on S,
where 1 ≤ s ≤ q, and cover the rest with points, then we have (q+1−s)qk−1
colors of type P ∗ and sqk−1 colors of type H∗ where H does not contain T ,
and these suffice, so that χ ≤ (q + 1− s)qk−1 + sqk−1 = qk + qk−1.

Unfortunately we will only be able to prove that χ ≥ qk + qk−1 when k is
not large compared to q.

Theorem 4.1 If k < q log q− q then the chromatic number of qK2k:k equals
qk + qk−1.
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Proof. Suppose we have colored part of the [k]’s using a set P of point
pencils and a set H of hyperplanes. Suppose |P|+ |H| = qk + qk−1− ε where
ε > 0. Let K be a [k] not contained in a hyperplane from H, and containing
a unique P ∈ P . Count [k]’s intersecting K in a [k − 1] not containing
P : qk−1

([
k+1
1

]
− 1
)
. A point Q (not in K) is contained in qk−1 of them, a

hyperplane contains
[
k
1

]
, a second (or third) hyperplane on the same [k − 1]

an additional qk−1, so we find that at most

(|P| − 1) qk−1 + |H|qk−1 + qk−1
[
k − 1

1

]
[k]’s (intersecting K in a [k − 1] not containing P ) are colored by point or
hyperplane colors. From |P| + |H| = qk + qk−1 − ε we get that at least
ε qk−1 of these [k]’s are uncolored. In particular this finishes the proof of the
conjecture for k = 2, because in that case every coclique is necessarily of
point or hyperplane type, so there are no uncolored [k]’s. Define a bipartite
graph on A ∪ B, where A is the set of uniquely colored [k]’s and B the set
of uncolored [k]’s, joining them if they intersect in a [k − 1]. Let b = |B|
be the number of uncolored [k]’s. The size of a non-EKR coclique is at
most f = f(k, q), so we may assume b < εf . We start with an estimate for
a = |A|: The total number of colored [k]’s equals

[
2k
k

]
− b, we have a multiset

of (qk +qk−1−ε)
[
2k−1
k−1

]
colored [k]’s, so the number of uniquely colored spaces

is at least 2(.)− (.), therefore:

a ≥ 2

[
2k

k

]
− 2b− (qk + qk−1 − ε)

[
2k − 1

k − 1

]
.

Counting in two ways the number of edges in this graph we get(
2

[
2k

k

]
− 2b− (qk + qk−1 − ε)

[
2k − 1

k − 1

])
ε qk−1 ≤ |E| ≤ b

[
k

k − 1

][
k + 1

1

]
.

Using our bound for b in terms of f and simplifying the left hand side:

(qk − qk−1 + ε)

[
2k − 1

k − 1

]
qk−1 < f

([
k

1

][
k + 1

1

]
+ 2ε qk−1

)
.

Reordering terms we get:

(qk − qk−1)
[
2k − 1

k − 1

]
qk−1 − f

[
k

1

][
k + 1

1

]
≤ ε

(
2f −

[
2k − 1

k − 1

])
qk−1.
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Since k < q log q − q we have f < qk(k−1)/2 and the left hand side is positive
(since q ≥ 5) while the right hand side is negative, so we get a contradiction.
�

5 Using only point and hyperplane cocliques

We show that a minimal coloring of qK2k:k that only uses color classes of type
P ∗ and H∗, must be one of the examples given at the start of the previous
section. For k = 2 this was shown already in [2].

Proposition 5.1 Let P be a set of points and H a set of hyperplanes such
that {P ∗ | P ∈ P}∪{H∗ | H ∈ H} is a coloring of qK2k:k where k ≥ 2. Then
|P| + |H| ≥ qk + qk−1. If equality holds, then P and H are nonempty, no
H ∈ H contains a P ∈ P , and there are a (k−1)-space S and a (k+1)-space
T containing S, such that P ⊂ T \ S and

⋂
H ⊇ S.

Proof. Consider a minimal coloring as described. Let us call a point P ∈ P
a c-point, and a hyperplane H ∈ H a c-hyper. By point/hyperplane duality
we may assume that there is a c-point. Since every c-point P is needed,
there is always at least one uniquely colored [k] containing it. We repeat the
counting argument from the previous section in some more detail. Let K
be a uniquely colored [k] with c-point P , and count [k]’s intersecting K in a
[k− 1] not on P . If there are h c-hypers not on P , and m [k− 1]’s in K, not
on P , that are contained in a c-hyper, then

qk−1(

[
k + 1

1

]
− 1) ≤ (|P| − 1) qk−1 + hqk−1 +m

[
k − 1

1

]
and h ≤ |H| and m ≤ qk−1 so that |P| + |H| ≥ qk + qk−1. Suppose equality
holds. Then H 6= ∅, and h = |H| so that no c-hyper contains P .

We see: If a [k−1], say S, is in a uniquely colored [k], with c-point P 6∈ S,
then all [k]’s containing S and a c-point Q are uniquely colored. There is at
least one c-hyper that contains S, and all c-hypers on S contain a fixed (as
soon as there are at least two) [2k− 2], say M . If there are s c-hypers on S,
then |P| = (q + 1− s)qk−1, so that s is independent of the choice of S.

In this situation, consider the hyperplane H0 on M containing P . Then
H0 6∈ H, and every [k] on S contained in H0 but not in M contains a (unique)
point of P . So P has exactly qk−1 points in H0 \M . If S ′ is a [k − 1] in M ,

8



and P ′ a c-point in H0 \M such that 〈S ′, P ′〉 is uniquely colored, then also
S ′ together with any of the qk−1 c-points in H0 is uniquely colored. The role
played by any of the qk−1 c-points in H0 is the same as that of the original
P .

Now consider T , a [k+1] contained in H0 and containing K = 〈S, P 〉. All
[k]’s containing a [k− 1] in K not containing P contain at most one c-point,
hence the c-points in T are on a line through P . The number of choices for
T is

[
k−1
1

]
, and each line on P has at most q − 1 c-points distinct from P

since its intersection with M is not a c-point, so that H0 contains at most
(q − 1)

[
k−1
1

]
+ 1 = qk−1 c-points. Since equality holds, every line in H0 that

contains at least two c-points, contains precisely q c-points. Since P plays
the same role as the other c-points in H0, it follows that every line joining
two c-points in H0 contains exactly q, and the c-points in H0 form the affine
part of a (k− 1)-dimensional projective space A, intersecting M in a [k− 1],
say D. Let H ∈ H. Since no c-hyper contains a c-point, we have H ∩A = D,
so that

⋂
H ⊇ D. Dually, there is a [k + 1]-space E containing all c-points,

and then of course also D. �

6 The case k = 3

The case k = 3 is a bit like the general case, but has to be investigated
separately. Here it is possible to examine the situation in much more detail
and describe all large cocliques. We’ll conclude later that the chromatic
number of qK6:3 is q3 + q2.

Theorem 6.1 Let V = V (6, q) be a 6-dimensional vector space over GF (q).
Let F be a maximal intersecting family of planes in V . Then we have one of
the following four cases:

(i) |F| =
[
5
2

]
= q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1, and F is either the

collection P ∗ of all planes on a fixed point P , or the collection H∗ of all
planes in a fixed hyperplane H of V .

(ii) |F| = 1 + q(q2 + q+ 1)2 = q5 + 2q4 + 3q3 + 2q2 + q+ 1, and F is either
the collection π∗ of all planes that meet a fixed plane π in at least a line, or
the collection (P, S)∗ of all planes that are either contained in the solid S,
or contain the point P and meet S in at least a line (where P ⊂ S), or F
is the collection (L,H)∗ of all planes that either contain the line L, or are
contained in the hyperplane H and meet L (where L ⊂ H).
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(iii) |F| = 3q4 + 3q3 + 2q2 + q+ 1 and F is the collection (P, π,H)∗ of all
planes on P that meet π in a line, and all planes in H that meet π in a line,
and all planes on P in H (where P ⊂ π ⊂ H).

(iv) F is smaller.

Proof.
The six examples P ∗, H∗, π∗, (P, S)∗, (L,H)∗, (P, π,H)∗ are indeed max-

imal collections of mutually intersecting planes with the stated sizes. Assume
that we have none of these. We show that |F| < 3q4 + 3q3 + 2q2 + q + 1.

The planes in F will be called F -planes. The F -planes on a line L form
a subspace in the local space: if an F -plane intersects two planes π1 and π2
on L it intersects the q + 1 planes containing L and contained in 〈π1, π2〉.
We say the line is red, orange, yellow or white if this subspace is all of V
(q3 + q2 + q+ 1 planes), or a hyperplane (q2 + q+ 1 planes), or a solid (q+ 1
planes), or a single plane.

Note that a red line intersects all F -planes, and conversely, a line inter-
secting all F -planes is red. Two red lines necessarily intersect, and the red
lines on a point form a subspace in the local space.

Case A. At least two red lines.
Suppose we do not have P ∗.
If there is a triangle of red lines, this triangle spans a plane π and each

plane in F meets π in at least a line, so we have π∗.
If there is a tripod (concurrent, not coplanar) of red lines, then we have

(P, S)∗.
If all red lines pass through a point P and are contained in a plane π then

we have (P, π,H)∗. Indeed, since we do not have π∗ there is an F -plane π′

that meets π in P only. Put H = π + π′. Every F -plane not on P meets π
in a line, and also meets π′ so lies in H. Every F -plane not in H meets H
in a line on P . This line must meet all F -planes, hence is red. This shows
that we have (P, π,H)∗.

So, if we do not have P ∗, π∗, (P, S)∗, or (P, π,H)∗, there is at most one
red line.

Case B. Precisely one red line.
Now consider the case of precisely one red line, L. The family F contains

all q3 + q2 + q + 1 planes on L. Let F ′ be the collection of planes in F not
containing L. Our aim is to show that |F ′| < 3q4 + 2q3 + q2 unless we have
(L,H)∗. In fact we show |F ′| ≤ 2q4 + 3q3 + q2.
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Suppose that |F ′| > 2q4 + 3q3 + q2. There are at most (q2 + q)2 F ′-planes
on any given point P on L. If all orange lines meeting L do meet it in the
same point P , then there are not more than q ·q · (q2 +q) F ′-planes not on P ,
a contradiction. If all orange lines meeting L are contained in the same plane
π0 on L, then |F ′| ≤ (q+ 1)(q(q2 + q) + q2 · q) = 2q4 + 3q3 + q2, contradiction
again. So, there exist two disjoint orange lines meeting L.

The hyperplanes belonging to disjoint orange lines coincide.
Let S be the solid spanned by two disjoint orange lines M,N meeting

L in the points P and Q, respectively. If the line K intersects both orange
lines, then we already see two planes on K, but then the whole pencil of
planes on K in S is there. So all planes in S are in F . Now any other plane
will hit S in a line, which is then automatically orange (unless it was L),
moreover, this line must intersect L, and if this happens in a point different
from P and Q, then it will be disjoint from one of the two original orange
lines, and hence it will determine the same hyperplane.

So now the situation is such that we have a pair of points P,Q contained
in a line L contained in a solid S contained in a hyperplane H and F consists
of all planes on L, a set of planes contained in H and intersecting L, and
maybe some exceptional planes, that are not contained in H and intersect L
in P or in Q. Such an exceptional plane on P meets H in an orange line M ′

contained in S. Since M ′ is not red, there is a disjoint F -plane, necessarily
an exceptional plane on Q that meets H in an orange line N ′ contained
in S. Now M ′ and N ′ determine the same hyperplane H ′ and H ′ 6= H.
If K is an orange line meeting L in a point different from P and Q, then
K must determine both H and H ′, contradiction. So all orange lines pass
through P or Q and lie in two planes. Every plane not in S is exceptional
w.r.t. H or H ′, hence meets S in an orange line on P or Q, and we find
|F ′| ≤ (q3 + q2) + 2q(q2 + q), contradiction.

Hence we have (L,H)∗.
That finishes the case of one red line. Now we may assume that there are

no red lines, and dually that for every solid there is an F -plane meeting it
in a single point only.

Case C. An orange line but no red lines or red solids.
(A red solid is the dual of a red line, a solid S such that 〈S, π〉 is contained

in a hyperplane, i.e., such that S∩π contains a line, for every F -plane π. We
assume that there is no red solid, so for each solid S there is a plane π ∈ F
meeting it in a single point only.)
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Suppose there is an orange line L. Since L is not red, there is a disjoint
F -plane π0. Let H = 〈L, π0〉, then H is a hyperplane containing every plane
disjoint from L, i.e., every π ∈ F not in H meets H in a line intersecting L.

If L′ is another orange line, disjoint from L, then L′ determines the same
hyperplane (because the q2 planes on L′ disjoint from L are in the hyperplane
of L). Let S = 〈L,L′〉. Every π ∈ F not in H meets both L and L′ and
hence meets S in a line. And every π ⊂ H meets S in at least a line. So S is
a red solid, contrary to assumption. Hence, no two orange lines are disjoint.

We do not have H∗, so there is a plane π1 ∈ F intersecting H in a line
M1. Such a line M1 intersects all F -planes contained in H, and hence meets
L and all F -planes disjoint from L. Take π2 disjoint from M1, then also π2
intersects H in a line, M2.

Every F -plane disjoint from L is contained in H and meets both M1 and
M2. A line intersecting M1 and M2 but not L is not orange (since orange
lines are not disjoint), and if it is yellow and its solid is in H then its solid
intersects L. It follows that the number of F -planes disjoint from L is at
most q3.

If L is the only orange line then on every point of L there are at most
(q + 1)(q2 + q) planes not containing L, so |F| ≤ (q2 + q + 1) + (q + 1)2(q2 +
q) + q3 = q4 + 4q3 + 4q2 + 2q + 1.

If there are more orange lines, all going through the same point P , then
we have |F| ≤ 2q3 + q2(q + 1) + (q2 + q + 1)2 = q4 + 5q3 + 4q2 + 2q + 1
(consider two intersecting orange lines L and L′ and count planes disjoint
from L, planes disjoint from L′, planes not containing P and intersecting
both L and L′, and planes containing P ).

If not all orange lines go through a point, then they are contained in a
plane π. Let π contain q2+q+1−k orange lines, then the number of F -planes
intersecting π in at least a line is at most (q2 +q+1−k)(q2 +q+1)+k(q+1)
and if the number of planes intersecting π in at most a point is N , then
on the one hand N ≤ 3q3 because there are three lines forming a triangle,
and a plane intersecting π in a single point is disjoint from at least one of
them. On the other hand, counting pairs (orange line, disjoint plane) we
have N(q2 − k) ≤ (q2 + q + 1− k)q3. It follows that N − kq2 ≤ (q2 + q + 1)q
(if k ≥ 2q − 1 then N − kq2 ≤ 3q3 − kq2 ≤ (q2 + q)q, and if k ≤ 2q − 2

then q2 − k > 0 and N − kq2 ≤ q3 + (q+1)q3

q2−k − kq
2 ≤ (q2 + q + 1)q), so that

|F| ≤ (q2 + q + 1)2 + (q2 + q + 1)q = q4 + 3q3 + 4q2 + 3q + 1.

Case D. No orange lines or solids.
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(An orange (yellow) solid is the dual of an orange (yellow) line, a solid S
containing q2 + q + 1 (resp. q + 1) F -planes.)

Yellow lines and yellow solids are paired: each yellow line L is on q + 1
F -planes of which the union is a yellow solid SL, and conversely each yellow
solid contains q + 1 F -planes of which the intersection is a yellow line LS.

If the lines L and M are yellow, and L is disjoint from the solid SM , then
M ⊂ SL (for otherwise some F -plane on L is disjoint from M , hence must
have a line in SM , and L would meet SM). Write L→ M if M is contained
in SL and disjoint from L, that is, if L is disjoint from SM .

If L → M1 and L → M2 then M1 and M2 intersect, because otherwise
they are both outside the others solid. So the number of yellow M disjoint
from L inside SL is at most q2.

Every F -plane disjoint from L intersects SL in a line, and there are q4

lines in SL disjoint from L, at most q2 of which are yellow, so there are at
most q4 + q3 F -planes disjoint from L.

Suppose there are disjoint yellow lines L and M . The number of F -planes
disjoint from at least one of them is at most 2q4+2q3, the number intersecting
both at most (q + 1)3, so |F| ≤ 2q4 + 3q3 + 3q2 + 3q + 1.

If every two yellow lines intersect then fix a yellow line L and a disjoint
plane π. There are at most q4 F -planes disjoint from L, q + 1 contain L, at
most q2+q+1 yellow lines intersect both L and π, so the number of F -planes
intersecting L in a point is at most (q+ 1)(q2 + q+ 1) + (q2 + q+ 1)q. Hence
|F| ≤ q4 + 2q3 + 3q2 + 4q + 2.

Case E. Only white lines
A point is now on at most q2+q+1 planes, so |F| ≤ 1+(q2+q+1)(q2+q) =

q4 + 2q3 + 2q2 + q + 1. It is of independent interest to determine a (much)
better bound in this case. �

7 Chromatic number in case k = 3

Theorem 4.1 above shows that the chromatic number of qK6:3 equals q3 + q2

for q ≥ 5. In fact the restriction on q is superfluous.

Theorem 7.1 The chromatic number of the graph qK6:3 equals q3 + q2.

Proof. Let us redo the earlier proof and use slightly sharper estimates. The
main improvement is that in a coloring with fewer than qk + qk−1 colors the
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number of bad colors is less than ε, and hence at most ε − 1. That means
that the estimate b < εf can be replaced by b ≤ (ε− 1)f . This yields

(qk − qk−1 + 2 + ε)

[
2k − 1

k − 1

]
qk−1 < f

([
k

1

][
k + 1

1

]
+ 2ε qk−1

)
(1− 1

ε
).

Using f = 1 + q(q2 + q + 1)2 we find for k = 3, q = 4:

(50 + ε).5797.16 < 1765.(21.85 + 32ε)(1− 1

ε
)

a contradiction. And for k = 3, q = 3:

(20 + ε).1210.9 < 508.(13.40 + 18ε)(1− 1

ε
)

that is, 1746ε < 37216− 264160/ε, again a contradiction.
Finally, suppose q = 2. Our aim is to show that the chromatic number

is 12, so suppose that the 1395 planes in V can be partitioned into 11 inter-
secting families. Extend the families to maximal intersecting families. Each
family of type P ∗ or H∗ covers 155 planes, while each second such family
meets the first in 15 planes. Every family of different type covers at most
99 planes. Since 2.155 + 4.140 + 5.99 = 1365, there can be at most 4 ‘bad’
families. If no plane is in more than three families of type P ∗ or H∗, then 11
families cover at most 2.(155 + 140 + 126 + 113 + 101) + 99 = 1369 planes,
not enough. So some plane π0 is in at least 4 families of type P ∗ or H∗.
The 512 planes disjoint from π0 are colored with at most 7 colors. But a
family of type P ∗ or H∗ contains (either 0 or) 64 planes disjoint from π0, a
family of type π∗ contains at most 56 planes disjoint from π0, a family of
type (P, S)∗ or (L,H)∗ contains at most 48 planes disjoint from π0, while
any other family contains at most 83 planes. Since 4.64 + 3.83 < 512 we
need at least 4, and hence precisely 4, of these other other families. But
2.155 + 5.140 + 4.83 = 1342, which is not enough. This shows that for q = 2
the graph qK6:3 has chromatic number 12. �
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