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Abstract

Consider the graph Γ obtained by taking as vertices the flags in a finite
building of spherical type defined over Fq, where two flags are adjacent
when they are opposite. We show that the squares of the eigenvalues of
Γ are powers of q.

1 Introduction

Let G be a finite group of Lie type with Borel subgroup B and Weyl group
W , so that one has the Bruhat decomposition G =

⋃
w BwB. Let (W,S) be

a Coxeter system, and let w0 be the longest element of W w.r.t. the set of
generators S. Then conjugation by w0 induces a diagram automorphism on the
Coxeter diagram of W (with vertex set S).

Let a type be a nonempty subset of S. Call two types J,K opposite when
K = Jw0 (so that J = Kw0).

For J ⊂ S, let WJ := 〈J〉 and PJ := BWJB. Let an object of type S \ J , or
of cotype J , be a coset gPJ in G. Call two objects gPJ and hPK opposite when
their cotypes J,K are opposite, and moreover PKh−1gPJ = PKw0PJ .

Let ΓJ,K , with K = Jw0 , be the bipartite graph with as vertices in one part
the objects of cotype J and in the other part the objects of cotype K, where two
vertices in different parts are adjacent when they are opposite. If J = K, let ΓJ
be the graph with as vertices the objects of cotype J , adjacent when opposite.

Theorem 1.1 Let G be defined over Fq. Let J be a proper subset of S, and let
K = Jw0 . Let θ be an eigenvalue of ΓJ,K or, if J = K, of ΓJ . Then θ2 = qe

for some integer e.

The exponents e can be determined explicitly.

2 Examples

We give diagrams, with the nodes in the type (outside the cotype) circled, so
that at least one node is circled. The action of w0 on the diagram is the identity
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everywhere, except in the cases An (n > 1), Dn (n odd), and E6, where w0

induces the unique diagram automorphism of order 2.

2.1 The projective line

Consider the diagram A1: rd . The geometry is the projective line, with q + 1
points. The graph Γ on these points, adjacent when distinct, is the complete
graph Kq+1, with eigenvalues q and −1.

2.2 The projective plane

Consider the diagram A2, with J = rd r and K = r rd . The graph Γ is the
bipartite point-line nonincidence graph of the projective plane PG(2, q). It has
eigenvalues ±q2, ±√q.

Consider the diagram A2, with J = K = rd rd . The graph Γ is the graph on
the flags of PG(2, q), adjacent when in general position. It has eigenvalues q3,
±q√q, −1.

2.3 Projective 3-space

Consider the diagram A3.
(i) J = K = r rd r . The graph Γ is the graph on the lines of PG(3, q),

adjacent when skew. It has eigenvalues q4, −q2, q.
(ii) J = K = rd r rd . The graph Γ is the graph on the point-plane flags of

PG(3, q), adjacent when in general position. It has eigenvalues q5, ±q3, q2, −q.
(iii) J = K = rd rd rd . The graph Γ is the graph on the chambers (point-line-

plane flags) of PG(3, q), adjacent when in general position. It has eigenvalues
q6, ±q4, q3, ±q2, 1.

(iv) J = rd r r and K = r r rd . The graph Γ is the bipartite nonincidence
graph on the points and planes of PG(3, q). It has eigenvalues ±q3, ±q.

(v) J = rd rd r and K = r rd rd . The graph Γ is the bipartite graph on the
point-line and line-plane flags of PG(3, q), adjacent when in general position.
It has eigenvalues ±q5, ±q3, ±q2, ±q.

2.4 Projective space

Consider the diagram An.
(i) J = K = rd r r r r r rd . The graph Γ is the graph on the point-

hyperplane flags of PG(n, q), adjacent when in general position. If n > 2, it has
eigenvalues q2n−1, ±q3(n−1)/2, qn−1, −qn−2.

(ii) J = K = r r r rd r r r . For n = 2d − 1 we can pick the middle
node. Now the graph Γ is the graph on the d-spaces in a 2d-space, adjacent
when disjoint. (Here an i-space is a PG(i − 1, q).) This graph has eigenvalues
(−1)iqd

2−di+i(i−1)/2 (0 ≤ i ≤ d).

Here, and in several other cases, there is a distance-regular graph ∆ of
diameter d, and our graph Γ is the distance-d graph of ∆. (That is, the adjacency
matrices of ∆ and Γ are the matrices A1 and Ad, respectively.) Now Ai has
the same eigenvalues as Li, where Li is the matrix of order d + 1 defined by
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(Li)kj = pkij . In particular, Ad has the same eigenvalues as Ld. Now Ld is
lower-right triangular (indeed, pkdj = 0 for j + k < d by the triangle inequality),
so the product of the eigenvalues of Γ equals detLd = (−1)d(d−1)/2

∏
i p
i
d,d−i. It

follows that here the pid,d−i must be powers of q. In this particular case we have
pid,d−i = qd

2−i2 .

Formulas for the eigenvalues of metric and cometric distance-regular graphs
are given in [1], 8.3.3 and 8.4.2. As a special case one gets the eigenvalues for
the graphs on the m-spaces in an n-space, adjacent when they have an (m− 1)-
space in common. Eigenvalues for other relations can be computed from these.
See also Eisfeld [4].

2.5 Generalized quadrangles

Here the two generating reflections of W are not conjugate, and two prime
powers are involved.rd r : The non-collinearity graph on the points of GQ(s, t) has eigenvalues
s2t, t, −s.rd rd : The graph on the flags of GQ(s, t), adjacent when in general position,
has eigenvalues s2t2, s2, t2, 1, −st.

2.6 Generalized hexagonsrd r : The collinearity graph of a generalized hexagon GH(s, t) is distance-
regular of diameter 3. The distance-3 graph on the points has eigenvalues s3t2,
±s
√
st, −t2. (The flag graph of PG(2, q) is the case (s, t) = (q, 1).)

The P -matrix is

P =


1 s(t+ 1) s2t(t+ 1) s3t2

1 s− 1 +
√
st −s+ (s− 1)

√
st −s

√
st

1 s− 1−
√
st −s− (s− 1)

√
st s

√
st

1 −t− 1 t(t+ 1) −t2

 .

2.7 Generalized octagons

The situation for the generalized octagon GO(s, t) is interesting in that the
collinearity graph has five distinct eigenvalues, while the distance-4 graph on
the points only has four distint eigenvalues (namely, s4t3, s2t, t3, −s2t). It
follows that A4 does not generate the Bose-Mesner algebra.

The P -matrix is

P =


1 s(t+ 1) s2t(t+ 1) s3t2(t+ 1) s4t3

1 s− 1 +
√

2st st− s+ (s− 1)
√

2st s2t− st− s
√

2st −s2t
1 s− 1 −st− s −s2t+ st s2t

1 s− 1−
√

2st st− s− (s− 1)
√

2st s2t− st+ s
√

2st −s2t
1 −t− 1 t(t+ 1) −t2(t+ 1) t3

 .

2.8 Polar spaces and dual polar spacesrd r r r r : The noncollinearity graph of a polar space has eigenvalues
q2d+e−2, qd+e−2, −qd−1, with d, e as in [1] (9.4.1), so that the corresponding
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dual polar space has diameter d, and the final double stroke corresponds to a
generalized quadrangle GQ(q, qe).r r r r rd : The graph on the maximal totally isotropic subspaces in a
polar space, adjacent when disjoint, has eigenvalues (−1)iqd(d−1)/2+de−i(d+e−i)

(0 ≤ i ≤ d) with e as above. Here pid,d−i = q(d−i)(d+i+2e−1)/2. If e = 0 (the case
of Dd, that is, O+

2d) then for even d it is the disjoint union of two copies of the

oppositeness graph for the half dual polar space r r r r rrd�H , while for odd d

this graph is the bipartite graph found for J = r r r rrd�H , K = r r r rrd�H .
More generally, Eisfeld [4] determined the eigenvalues for all relations be-

tween subspaces of (vector space) dimension m, 1 ≤ m ≤ d. Vanhove [6]
evaluated Eisfeld’s formulas for the oppositeness relation (where m-spaces A
and B are opposite when A⊥ ∩B = 0) and found that the eigenvalues are

(−1)i+jqm(4d−3m−1)/2+e(m+j−i)−i(d−i)−j(i+1−j)

where 0 ≤ i ≤ m en 0 ≤ j ≤ min(i, d−m).

2.9 E6

(i) J = rd r rr r r and K = r r rr r rd : Eigenvalues are ±q16, ±q10, ±q7.

(ii) J = K = r r rrd r r : Eigenvalues are q21, q12, ±q9, −q15.

2.10 E7

r r rr r r rd : Eigenvalues are q27, −q18, q13, −q12.

2.11 F4rd r r r : Eigenvalues are q15, ±q9, q7, −q6.

2.12 Disconnected diagrams

If the diagram is disconnected, the graph is the tensor product of the graphs for
the components, and the eigenvalues are the products of the eigenvalues of the
graphs for the components.

3 Affine space

It is possible to define affine space on objects of type J as the space induced by
the set of all such objects opposite to a fixed object of type Jw0 . (See also [2].)

For example, inside PG(d, q) affine space on the points is the space of which
the points are those not on a fixed hyperplane: rd r r gives rdAFr r . Similarly,r rd r gives r rd rFAAF

. In the case of An such spaces are sometimes called affine
Grassmannians.

We shall need that such an affine space has a size that is a power of q. (This
is a particular case of the theorem, since this size is the valency of a graph ΓJ,K ,
and hence one of the eigenvalues.)
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Proposition 3.1 Let J and K be opposite types. The size of the affine space
of objects of cotype J , i.e., the number of objects of cotype J opposite to a fixed
object of cotype K, is qa, where the integer a equals the length of the longest
word in W minus the length of the longest word in WJ .

Proof: Two objects gPJ and hPK are opposite when PKh
−1gPJ = PKw0PJ .

Thus, the claim is that |PKw0PJ/PJ | = qa.
Let w0 = u0w1 be a reduced expression, with u0 ∈ WK and w1 left K-

reduced. Then PKw0B = PKw1B.
Now PK =

⋃
uBuB, where the union is over u ∈ WK , and BuBw1PJ =

Buw1PJ = Buu−1
0 w0PJ = Bw0(uu−1

0 )w0PJ = Bw0PJ for all u ∈ WK since
Kw0 = J . It follows that PKw0PJ = Bw0PJ .

Let w0 = wv be a reduced expression, with v ∈ WJ and w right J-reduced.
Then v is the longest word in WJ and l(w) = l(w0)− l(v) = a. Now Bw0PJ =
BwPJ , and |BwPJ/PJ | = |U−w | = ql(w) = qa, as desired. 2

For example, in the above two examples l(w0) = 6, and the lengths of the longest
word of WJ are 3 and 2, so that in PG(3, q) there are q3 points outside a given
hyperplane, and q4 lines skew to a given line.

Corollary 3.2 Let gPJ and hPK be opposite. Then the number of cosets xB
contained in gPJ and opposite to hB equals qb, where b is the length of the
longest word in WJ . 2

Remark All valencies in an association scheme on the cosets of a parabolic in
a group of Lie type are of the form

ki =
∑
w∈Si

ql(w)

for some Si ⊆ W that has a unique shortest element. It follows that ki will be
a power of q if and only if |Si| = 1, i.e., if and only if ki = 1 in the thin case.

In the cases considered, the thin graphs are ladder graphs: all components
are K2 with eigenvalues ±1.

3.1 Weights

For the case of twisted Chevalley groups, the Coxeter group is a subgroup of the
Coxeter group for the corresponding non-twisted case, and the length function
l(w) used here (in |U−w | = ql(w)) is that of the untwisted group, cf. [1], §10.7.
For example, An has l(w0) = 1

2n(n + 1) with n generators of length 1. And
2An has the same l(w0), and dn/2e generators: all but one of length 2, and if
n is odd one of length 1, and if n is even one of length 3. Consequently, the
noncollinearity graph of the polar space 2An(q2) (that is Un+1(q)) has valency
q2n−1, where 2n − 1 = 1

2n(n + 1) − 1
2 (n − 2)(n − 1). And the oppositeness

graph of the corresponding dual polar graph has valency qd
2

for n = 2d−1, and
qd(d+2) for n = 2d.

More generally, if node s (for s ∈ S) of the diagram has order qes (in the
Buekenhout sense: a flag of cotype {s} is contained in qes maximal flags), then
the length function l() is weighted, and each generator s has weight es. Of
course conjugate generators have the same weight.
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4 Proof of the theorem

We use ∼ for adjacency.

4.1 Bipartite or not

The bipartite double Γ̃ of a graph Γ with vertices v is the graph with vertices v+

and v−, where if v ∼ w then v+ ∼ w− and v− ∼ w+ (cf. [1], 1.11.1). If Γ has
spectrum Θ then Γ̃ has spectrum Θ∪−Θ. Since ΓJ,J is the bipartite double of
ΓJ , it follows that the claims for ΓJ are equivalent to those for ΓJ,J .

4.2 Reduction to the case J = ∅.
There is a natural map φJ from the set of objects of cotype ∅ (that is, the set
of chambers) to the set of objects of cotype J , given by gB 7→ gPJ . This map
is a homomorphism from Γ∅ onto ΓJ , and the pair of maps (φJ , φK) provides a
homomorphism from Γ∅,∅ onto ΓJ,K : the neighbours of gB in Γ∅ are the cosets
xB contained in gBw0B, and if gB ∼ hB in Γ∅, then gPJ ∼ hPK in ΓJ,K .

By Corollary 3.2, the number of cosets xB contained in gBw0B∩hPK is qb.
It follows that if z is an eigenvector with eigenvalue θ of ΓJ,K , viewed as a
map z : V ΓJ,K → R, then its composition with (φJ , φK) is an eigenvector with
eigenvalue θqb of Γ∅,∅. (Note that since conjugation by w0 interchanges J and
K, the value b remains the same when J and K are interchanged.)

This reduces us to the case of Γ∅,∅, and by the previous subsection to the
case Γ∅.

4.3 Eigenvector constant on Bruhat cells

Let Γ := Γ∅ so that the vertices of Γ are the cosets gB. Let z be an eigenvector of
Γ with eigenvalue θ. We may assume that z(B) 6= 0. Put z̄(x) = 1

|B|
∑
b∈B z(bx).

Then z̄ is an eigenvector of Γ with eigenvalue θ that is constant on Bruhat cells
BwB/B.

4.4 Reduction to the Iwahori-Hecke algebra

We saw that each eigenvalue has an eigenvector z that can be described by
z(gB) = f(w) when gB ⊆ BwB. It remains to find the condition on f , and the
resulting eigenvalue θ. Let us change notation and work with right cosets Bg
instead of left cosets gB, in order to get Tu(v) rather than Tu−1(v−1) below.

For any ring R, let RW be the ring of linear combinations of elements of W
with coefficients in R. For each u ∈ W define an R-linear operator Tu on RW
by letting Tu(v) (for v ∈ W ) be the element of ZW describing the multiset of
Bruhat cells reached from any point Bg in BvB by going a distance u. That is,
let Tu(v) =

∑
nww when there are nw cosets Bh in BuBv ∩BwB. Then

Tuv = TuTv if l(uv) = l(u) + l(v)

and, for s ∈ S,

Ts(v) =
{
q.sv if l(sv) > l(v)
(q − 1).v + sv otherwise
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Now T 2
s = (q − 1)Ts + qT1, so that (Ts − q)(Ts + 1) = 0. Let H be the ring

R{Tw | w ∈ W} of linear combinations of the Tw with coefficients in R. The
actions of the R-linear operators Tu on RW and on H (by left multiplication)
are isomorphic via the map ql(w).w 7→ Tw. The ring H (algebra when R is a
field) is known as the Iwahori-Hecke ring (algebra). (Cf. [5], §7.4, [3], §8.4.)

The additive function f : ZW → R defines an eigenvector with eigenvalue θ
when f(Tw0(v)) = θf(v) for all v ∈W . But that means that the eigenvalues of
Γ are precisely the eigenvalues of Tw0 .

It remains to find the eigenvalues of Tw0 acting on H.

4.5 The center of the Hecke algebra

If w0 is central in W , then Tw0 is central in H, and in all cases, T 2
w0

is central
in H. (Indeed, suppose rw0 = s where r, s ∈ S. Then rw0 = w0s and TrTw0 =
T 2
r Trw0 = ((q − 1)Tr + q)Trw0 = Tw0s((q − 1)Ts + q) = Tw0sT

2
s = Tw0Ts. If

w0 is central in W , this shows that Tw0 is central in H. In all cases TrT 2
w0

=
Tw0TsTw0 = T 2

w0
r so that T 2

w0
is central in H.)

4.6 The eigenvalues of T 2
w0

Look at the action of the Hecke algebra on itself. By Schur’s Lemma, T 2
w0

acts
as a multiple of the identity on each irreducible part of H. If it is cI on a
part of dimension d, then the determinant there is cd. Look at an irreducible
part of H of dimension d with character χ. All eigenvalues of Tr are q or −1.
If Tr has a eigenvalues q and b eigenvalues −1, then a + b = d = χ(T1), and
qa−b = χ(Tr). By [3] (8.1.7), the characters ofH become the characters ofW for
q = 1. Consequently, |detTr| = qa = q(χ(1)+χ(r))/2. If the Coxeter diagram has
single bonds only, so that all generating involutions are conjugate, it follows that
cd = detT 2

w0
= qN(χ(1)+χ(r)) so that c = qe with e = N(1 + χ(r)/χ(1)). (The

d-th root of unity expected here is 1, e.g. because being opposite is a symmetric
relation so that Tw0 has real eigenvalues, and T 2

w0
has positive real eigenvalues.)

If not all generators are conjugate, but r, s are representatives for the conjugacy
classes, and there are Nr, Ns generators conjugate to r, s in an expression for
w0, then c = qe1q

f
2 with e = Nr(1 + χ(r)/χ(1)) and f = Ns(1 + χ(s)/χ(1)),

if Tr has eigenvalue q1 and Ts eigenvalue q2. The exponents e or e, f here are
integral. This computation is due to Springer, cf. [3], (9.2.2).

This completes the proof of the theorem. 2

4.7 The eigenvalues of Tw0

The above describes the eigenvalues of T 2
w0

. But we wanted the eigenvalues
of Tw0 , so there is a sign to be determined. Consider an irreducible part of
dimension d with character χ. If T 2

w0
has eigenvalue θ2 and the trace of Tw0 is

dθ or −dθ then Tw0 has only eigenvalue θ or −θ there. Otherwise Tw0 has both
eigenvalues ±θ. The trace of Tw0 is found from a result by Broué & Michel (see
[3], (9.2.8), (9.2.9a)): χ(Tw0) = χ(w0)

√
θ2. Thus, if χ(w0) = ±χ(1) then there

is a single sign and only (χ(w0)/χ(1))θ occurs. Otherwise we see ±θ.
In the particular case where w0 is central in W we are always in the situation

with a single sign.
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4.8 Examples

4.8.1 A1

Here W = Sym(2) and N = 1. Character table, e = N(1 + χ(r)/χ(1)) and θ:

1 2
χ1 1 1
χ2 1 −1

χ(1) χ(r) χ(w0) e θ
1 1 1 2 q
1 −1 −1 0 1

4.8.2 A2

Here W = Sym(3). The number of positive roots is N = 3, and we find the
character table, and computation of e = N(1 + χ(r)/χ(1)) and θ:

1 2 3
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

χ(1) χ(r) χ(w0) e θ
1 1 1 6 q3

1 −1 −1 0 −1
2 0 0 3 ±q√q

4.8.3 A3

Here W = Sym(4) with N = 6. Character table and computation of θ:

1 2 22 3 4
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

χ(1) χ(r) χ(w0) e θ

1 1 1 12 q6

1 −1 1 0 1
2 0 2 6 q3

3 1 −1 8 ±q4
3 −1 −1 4 ±q2

4.8.4 BC2 : r
r

r
s

Here W is the dihedral group of order 8, and N = 4. The two generators r, s
are not conjugate. Write e = Nr(1 + χ(r)/χ(1)) and f = Ns(1 + χ(s)/χ(1)),
where Nr = Ns = 2. Character table and computation of eigenvalues:

1 2r 2s 2 4
χ1 1 1 1 1 1
χ2 1 −1 −1 1 1
χ3 1 1 −1 1 −1
χ4 1 −1 1 1 −1
χ5 2 0 0 −2 0

χ(1) χ(r) χ(s) χ(w0) e f θ
1 1 1 1 4 4 q21q

2
2

1 −1 −1 1 0 0 1
1 1 −1 1 4 0 q21
1 −1 1 1 0 4 q22
2 0 0 −2 2 2 −q1q2

4.8.5 BC3 : r
r

r
s

r
t

Consider the eigenvalues θ, α, β, γ of the four graphs rd rd rd and rd r r andr rd r and r r rd , where the final double stroke is a GQ(q, qe).
Here |W | = 48 and N = 9. Of the three generators r, s, t, the first two

are conjugate (being joined by a single stroke in the diagram), but t is not
conjugate to r, s. The conjugacy class of r has size Nr = 6 (and consists of
r, s, srs, tst, tsrst, stsrsts), the conjugacy class of t has size Nt = 3 (and consists
of t, sts, rstsr). Write f = Nr(1 + χ(r)/χ(1)) and g = Nt(1 + χ(t)/χ(1)).
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χ χ(1) χ(r) χ(t) χ(w0) f g θ α β γ

χ1 1 1 1 1 12 6 q6+3e q4+e q5+2e q3+3e

χ2 1 −1 −1 −1 0 0 −1
χ3 1 1 −1 −1 12 0 −q6 −q3
χ4 1 −1 1 1 0 6 q3e

χ5 2 0 −2 −2 6 0 −q3
χ6 2 0 2 2 6 6 q3+3e q1+e q2+2e

χ7 3 −1 −1 3 4 2 q2+e

χ8 3 1 −1 3 8 2 q4+e q3 q1+e

χ9 3 −1 1 −3 4 4 −q2+2e −q1+e
χ10 3 1 1 −3 8 4 −q4+2e −q2 −q3+e −q1+2e

Here for J = {s, t} and {r, t} and {r, s}, the longest word of WJ is stst,
rt, rsr, respectively, so that compared to θ the eigenvalues lose a factor q2+2e,
q1+e, q3, respectively. In these cases, 1WWJ

decomposes as χ1 + χ6 + χ10 and
χ1 + χ6 + χ8 + χ9 + χ10 and χ1 + χ3 + χ8 + χ10, respectively.
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