The eigenvalues of oppositeness graphs in buildings of spherical type

Andries E. Brouwer
Department of Mathematics, Technological University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2009-06-17

To Reza Khosrovshahi on the occasion of his 70th birthday

Abstract

Consider the graph Γ obtained by taking as vertices the flags in a finite building of spherical type defined over \mathbb{F}_{q}, where two flags are adjacent when they are opposite. We show that the squares of the eigenvalues of Γ are powers of q.

1 Introduction

Let G be a finite group of Lie type with Borel subgroup B and Weyl group W, so that one has the Bruhat decomposition $G=\bigcup_{w} B w B$. Let (W, S) be a Coxeter system, and let w_{0} be the longest element of W w.r.t. the set of generators S. Then conjugation by w_{0} induces a diagram automorphism on the Coxeter diagram of W (with vertex set S).

Let a type be a nonempty subset of S. Call two types J, K opposite when $K=J^{w_{0}}$ (so that $J=K^{w_{0}}$).

For $J \subset S$, let $W_{J}:=\langle J\rangle$ and $P_{J}:=B W_{J} B$. Let an object of type $S \backslash J$, or of cotype J, be a coset $g P_{J}$ in G. Call two objects $g P_{J}$ and $h P_{K}$ opposite when their cotypes J, K are opposite, and moreover $P_{K} h^{-1} g P_{J}=P_{K} w_{0} P_{J}$.

Let $\Gamma_{J, K}$, with $K=J^{w_{0}}$, be the bipartite graph with as vertices in one part the objects of cotype J and in the other part the objects of cotype K, where two vertices in different parts are adjacent when they are opposite. If $J=K$, let Γ_{J} be the graph with as vertices the objects of cotype J, adjacent when opposite.

Theorem 1.1 Let G be defined over \mathbb{F}_{q}. Let J be a proper subset of S, and let $K=J^{w_{0}}$. Let θ be an eigenvalue of $\Gamma_{J, K}$ or, if $J=K$, of Γ_{J}. Then $\theta^{2}=q^{e}$ for some integer e.

The exponents e can be determined explicitly.

2 Examples

We give diagrams, with the nodes in the type (outside the cotype) circled, so that at least one node is circled. The action of w_{0} on the diagram is the identity
everywhere, except in the cases $A_{n}(n>1), D_{n}(n$ odd $)$, and E_{6}, where w_{0} induces the unique diagram automorphism of order 2 .

2.1 The projective line

Consider the diagram A_{1} : ๑. The geometry is the projective line, with $q+1$ points. The graph Γ on these points, adjacent when distinct, is the complete graph K_{q+1}, with eigenvalues q and -1 .

2.2 The projective plane

Consider the diagram A_{2}, with $J=\bigcirc$ • and $K=\bullet$. The graph Γ is the bipartite point-line nonincidence graph of the projective plane $P G(2, q)$. It has eigenvalues $\pm q^{2}, \pm \sqrt{q}$.

Consider the diagram A_{2}, with $J=K=\odot \bigcirc$. The graph Γ is the graph on the flags of $P G(2, q)$, adjacent when in general position. It has eigenvalues q^{3}, $\pm q \sqrt{q},-1$.

2.3 Projective 3 -space

Consider the diagram A_{3}.
(i) $J=K=\bullet \bullet$. The graph Γ is the graph on the lines of $\operatorname{PG}(3, q)$, adjacent when skew. It has eigenvalues $q^{4},-q^{2}, q$.
(ii) $J=K=\bigcirc$. . The graph Γ is the graph on the point-plane flags of $P G(3, q)$, adjacent when in general position. It has eigenvalues $q^{5}, \pm q^{3}, q^{2},-q$.
(iii) $J=K=\bigcirc$. The graph Γ is the graph on the chambers (point-lineplane flags) of $P G(3, q)$, adjacent when in general position. It has eigenvalues $q^{6}, \pm q^{4}, q^{3}, \pm q^{2}, 1$.
(iv) $J=\odot \bullet$ and $K=\bullet \bullet$. The graph Γ is the bipartite nonincidence graph on the points and planes of $P G(3, q)$. It has eigenvalues $\pm q^{3}, \pm q$.
(v) $J=0$ - and $K=\bullet$. The graph Γ is the bipartite graph on the point-line and line-plane flags of $P G(3, q)$, adjacent when in general position. It has eigenvalues $\pm q^{5}, \pm q^{3}, \pm q^{2}, \pm q$.

2.4 Projective space

Consider the diagram A_{n}.
(i) $J=K=0 \ldots$. The graph Γ is the graph on the pointhyperplane flags of $P G(n, q)$, adjacent when in general position. If $n>2$, it has eigenvalues $q^{2 n-1}, \pm q^{3(n-1) / 2}, q^{n-1},-q^{n-2}$.
(ii) $J=K=\bullet \bullet \bullet \bullet \bullet$. For $n=2 d-1$ we can pick the middle node. Now the graph Γ is the graph on the d-spaces in a $2 d$-space, adjacent when disjoint. (Here an i-space is a $P G(i-1, q)$.) This graph has eigenvalues $(-1)^{i} q^{d^{2}-d i+i(i-1) / 2}(0 \leq i \leq d)$.

Here, and in several other cases, there is a distance-regular graph Δ of diameter d, and our graph Γ is the distance- d graph of Δ. (That is, the adjacency matrices of Δ and Γ are the matrices A_{1} and A_{d}, respectively.) Now A_{i} has the same eigenvalues as L_{i}, where L_{i} is the matrix of order $d+1$ defined by
$\left(L_{i}\right)_{k j}=p_{i j}^{k}$. In particular, A_{d} has the same eigenvalues as L_{d}. Now L_{d} is lower-right triangular (indeed, $p_{d j}^{k}=0$ for $j+k<d$ by the triangle inequality), so the product of the eigenvalues of Γ equals $\operatorname{det} L_{d}=(-1)^{d(d-1) / 2} \prod_{i} p_{d, d-i}^{i}$. It follows that here the $p_{d, d-i}^{i}$ must be powers of q. In this particular case we have $p_{d, d-i}^{i}=q^{d^{2}-i^{2}}$.

Formulas for the eigenvalues of metric and cometric distance-regular graphs are given in [1], 8.3.3 and 8.4.2. As a special case one gets the eigenvalues for the graphs on the m-spaces in an n-space, adjacent when they have an $(m-1)$ space in common. Eigenvalues for other relations can be computed from these. See also Eisfeld [4].

2.5 Generalized quadrangles

Here the two generating reflections of W are not conjugate, and two prime powers are involved.
©- : The non-collinearity graph on the points of $G Q(s, t)$ has eigenvalues $s^{2} t, t,-s$.
© : The graph on the flags of $G Q(s, t)$, adjacent when in general position, has eigenvalues $s^{2} t^{2}, s^{2}, t^{2}, 1,-s t$.

2.6 Generalized hexagons

ω : The collinearity graph of a generalized hexagon $G H(s, t)$ is distanceregular of diameter 3. The distance-3 graph on the points has eigenvalues $s^{3} t^{2}$, $\pm s \sqrt{s t},-t^{2}$. (The flag graph of $P G(2, q)$ is the case $(s, t)=(q, 1)$.)

The P-matrix is

$$
P=\left(\begin{array}{cccc}
1 & s(t+1) & s^{2} t(t+1) & s^{3} t^{2} \\
1 & s-1+\sqrt{s t} & -s+(s-1) \sqrt{s t} & -s \sqrt{s t} \\
1 & s-1-\sqrt{s t} & -s-(s-1) \sqrt{s t} & s \sqrt{s t} \\
1 & -t-1 & t(t+1) & -t^{2}
\end{array}\right) .
$$

2.7 Generalized octagons

The situation for the generalized octagon $G O(s, t)$ is interesting in that the collinearity graph has five distinct eigenvalues, while the distance- 4 graph on the points only has four distint eigenvalues (namely, $s^{4} t^{3}, s^{2} t, t^{3},-s^{2} t$). It follows that A_{4} does not generate the Bose-Mesner algebra.

The P-matrix is

$$
P=\left(\begin{array}{ccccc}
1 & s(t+1) & s^{2} t(t+1) & s^{3} t^{2}(t+1) & s^{4} t^{3} \\
1 & s-1+\sqrt{2 s t} & s t-s+(s-1) \sqrt{2 s t} & s^{2} t-s t-s \sqrt{2 s t} & -s^{2} t \\
1 & s-1 & -s t-s & -s^{2} t+s t & s^{2} t \\
1 & s-1-\sqrt{2 s t} & s t-s-(s-1) \sqrt{2 s t} & s^{2} t-s t+s \sqrt{2 s t} & -s^{2} t \\
1 & -t-1 & t(t+1) & -t^{2}(t+1) & t^{3}
\end{array}\right)
$$

2.8 Polar spaces and dual polar spaces

$\bigcirc \bullet . \quad$: The noncollinearity graph of a polar space has eigenvalues $q^{2 d+e-2}, q^{d+e-2},-q^{d-1}$, with d, e as in [1] (9.4.1), so that the corresponding
dual polar space has diameter d, and the final double stroke corresponds to a generalized quadrangle $G Q\left(q, q^{e}\right)$.
\cdots : The graph on the maximal totally isotropic subspaces in a polar space, adjacent when disjoint, has eigenvalues $(-1)^{i} q^{d(d-1) / 2+d e-i(d+e-i)}$ $(0 \leq i \leq d)$ with e as above. Here $p_{d, d-i}^{i}=q^{(d-i)(d+i+2 e-1) / 2}$. If $e=0$ (the case of D_{d}, that is, $O_{2 d}^{+}$) then for even d it is the disjoint union of two copies of the oppositeness graph for the half dual polar space $\bullet \bullet$, while for odd d this graph is the bipartite graph found for $J=\ldots, K=\ldots \ldots$.

More generally, Eisfeld [4] determined the eigenvalues for all relations between subspaces of (vector space) dimension $m, 1 \leq m \leq d$. Vanhove [6] evaluated Eisfeld's formulas for the oppositeness relation (where m-spaces A and B are opposite when $A^{\perp} \cap B=0$) and found that the eigenvalues are

$$
(-1)^{i+j} q^{m(4 d-3 m-1) / 2+e(m+j-i)-i(d-i)-j(i+1-j)}
$$

where $0 \leq i \leq m$ en $0 \leq j \leq \min (i, d-m)$.

$2.9 \quad E_{6}$

(i) $J=\odot \bullet \bullet$ and $K=\bullet!\bullet$: Eigenvalues are $\pm q^{16}, \pm q^{10}, \pm q^{7}$.
(ii) $J=K=\bullet .$. Eigenvalues are $q^{21}, q^{12}, \pm q^{9},-q^{15}$.

$2.10 \quad E_{7}$

\ldots. : Eigenvalues are $q^{27},-q^{18}, q^{13},-q^{12}$.

$2.11 \quad F_{4}$

๑... : Eigenvalues are $q^{15}, \pm q^{9}, q^{7},-q^{6}$.

2.12 Disconnected diagrams

If the diagram is disconnected, the graph is the tensor product of the graphs for the components, and the eigenvalues are the products of the eigenvalues of the graphs for the components.

3 Affine space

It is possible to define affine space on objects of type J as the space induced by the set of all such objects opposite to a fixed object of type $J^{w_{0}}$. (See also [2].)

For example, inside $P G(d, q)$ affine space on the points is the space of which the points are those not on a fixed hyperplane: © - gives $\Theta^{\mathrm{A}} \bullet$. . Similarly, $\bullet-$ - gives $\stackrel{\text { FAAF }}{\sim}$. In the case of A_{n} such spaces are sometimes called affine Grassmannians.

We shall need that such an affine space has a size that is a power of q. (This is a particular case of the theorem, since this size is the valency of a graph $\Gamma_{J, K}$, and hence one of the eigenvalues.)

Proposition 3.1 Let J and K be opposite types. The size of the affine space of objects of cotype J, i.e., the number of objects of cotype J opposite to a fixed object of cotype K, is q^{a}, where the integer a equals the length of the longest word in W minus the length of the longest word in W_{J}.

Proof: Two objects $g P_{J}$ and $h P_{K}$ are opposite when $P_{K} h^{-1} g P_{J}=P_{K} w_{0} P_{J}$. Thus, the claim is that $\left|P_{K} w_{0} P_{J} / P_{J}\right|=q^{a}$.

Let $w_{0}=u_{0} w_{1}$ be a reduced expression, with $u_{0} \in W_{K}$ and w_{1} left K reduced. Then $P_{K} w_{0} B=P_{K} w_{1} B$.

Now $P_{K}=\bigcup_{u} B u B$, where the union is over $u \in W_{K}$, and $B u B w_{1} P_{J}=$ $B u w_{1} P_{J}=B u u_{0}^{-1} w_{0} P_{J}=B w_{0}\left(u u_{0}^{-1}\right)^{w_{0}} P_{J}=B w_{0} P_{J}$ for all $u \in W_{K}$ since $K^{w_{0}}=J$. It follows that $P_{K} w_{0} P_{J}=B w_{0} P_{J}$.

Let $w_{0}=w v$ be a reduced expression, with $v \in W_{J}$ and w right J-reduced. Then v is the longest word in W_{J} and $l(w)=l\left(w_{0}\right)-l(v)=a$. Now $B w_{0} P_{J}=$ $B w P_{J}$, and $\left|B w P_{J} / P_{J}\right|=\left|U_{w}^{-}\right|=q^{l(w)}=q^{a}$, as desired.

For example, in the above two examples $l\left(w_{0}\right)=6$, and the lengths of the longest word of W_{J} are 3 and 2 , so that in $P G(3, q)$ there are q^{3} points outside a given hyperplane, and q^{4} lines skew to a given line.

Corollary 3.2 Let $g P_{J}$ and $h P_{K}$ be opposite. Then the number of cosets $x B$ contained in $g P_{J}$ and opposite to $h B$ equals q^{b}, where b is the length of the longest word in W_{J}.

Remark All valencies in an association scheme on the cosets of a parabolic in a group of Lie type are of the form

$$
k_{i}=\sum_{w \in S_{i}} q^{l(w)}
$$

for some $S_{i} \subseteq W$ that has a unique shortest element. It follows that k_{i} will be a power of q if and only if $\left|S_{i}\right|=1$, i.e., if and only if $k_{i}=1$ in the thin case.

In the cases considered, the thin graphs are ladder graphs: all components are K_{2} with eigenvalues ± 1.

3.1 Weights

For the case of twisted Chevalley groups, the Coxeter group is a subgroup of the Coxeter group for the corresponding non-twisted case, and the length function $l(w)$ used here (in $\left|U_{w}^{-}\right|=q^{l(w)}$) is that of the untwisted group, cf. [1], §10.7. For example, A_{n} has $l\left(w_{0}\right)=\frac{1}{2} n(n+1)$ with n generators of length 1. And ${ }^{2} A_{n}$ has the same $l\left(w_{0}\right)$, and $\lceil n / 2\rceil$ generators: all but one of length 2 , and if n is odd one of length 1 , and if n is even one of length 3 . Consequently, the noncollinearity graph of the polar space ${ }^{2} A_{n}\left(q^{2}\right)$ (that is $\left.U_{n+1}(q)\right)$ has valency $q^{2 n-1}$, where $2 n-1=\frac{1}{2} n(n+1)-\frac{1}{2}(n-2)(n-1)$. And the oppositeness graph of the corresponding dual polar graph has valency $q^{d^{2}}$ for $n=2 d-1$, and $q^{d(d+2)}$ for $n=2 d$.

More generally, if node s (for $s \in S$) of the diagram has order $q^{e_{s}}$ (in the Buekenhout sense: a flag of cotype $\{s\}$ is contained in $q^{e_{s}}$ maximal flags), then the length function $l()$ is weighted, and each generator s has weight e_{s}. Of course conjugate generators have the same weight.

4 Proof of the theorem

We use \sim for adjacency.

4.1 Bipartite or not

The bipartite double $\tilde{\Gamma}$ of a graph Γ with vertices v is the graph with vertices v^{+} and v^{-}, where if $v \sim w$ then $v^{+} \sim w^{-}$and $v^{-} \sim w^{+}$(cf. [1], 1.11.1). If Γ has spectrum Θ then $\tilde{\Gamma}$ has spectrum $\Theta \cup-\Theta$. Since $\Gamma_{J, J}$ is the bipartite double of Γ_{J}, it follows that the claims for Γ_{J} are equivalent to those for $\Gamma_{J, J}$.

4.2 Reduction to the case $J=\emptyset$.

There is a natural map ϕ_{J} from the set of objects of cotype \emptyset (that is, the set of chambers) to the set of objects of cotype J, given by $g B \mapsto g P_{J}$. This map is a homomorphism from Γ_{\emptyset} onto Γ_{J}, and the pair of maps $\left(\phi_{J}, \phi_{K}\right)$ provides a homomorphism from $\Gamma_{\emptyset, \emptyset}$ onto $\Gamma_{J, K}$: the neighbours of $g B$ in Γ_{\emptyset} are the cosets $x B$ contained in $g B w_{0} B$, and if $g B \sim h B$ in Γ_{\emptyset}, then $g P_{J} \sim h P_{K}$ in $\Gamma_{J, K}$.

By Corollary 3.2, the number of cosets $x B$ contained in $g B w_{0} B \cap h P_{K}$ is q^{b}. It follows that if z is an eigenvector with eigenvalue θ of $\Gamma_{J, K}$, viewed as a map $z: V \Gamma_{J, K} \rightarrow \mathbb{R}$, then its composition with $\left(\phi_{J}, \phi_{K}\right)$ is an eigenvector with eigenvalue θq^{b} of $\Gamma_{\emptyset, \emptyset}$. (Note that since conjugation by w_{0} interchanges J and K, the value b remains the same when J and K are interchanged.)

This reduces us to the case of $\Gamma_{\emptyset, \emptyset}$, and by the previous subsection to the case Γ_{\emptyset}.

4.3 Eigenvector constant on Bruhat cells

Let $\Gamma:=\Gamma_{\emptyset}$ so that the vertices of Γ are the cosets $g B$. Let z be an eigenvector of Γ with eigenvalue θ. We may assume that $z(B) \neq 0$. Put $\bar{z}(x)=\frac{1}{|B|} \sum_{b \in B} z(b x)$. Then \bar{z} is an eigenvector of Γ with eigenvalue θ that is constant on Bruhat cells $B w B / B$.

4.4 Reduction to the Iwahori-Hecke algebra

We saw that each eigenvalue has an eigenvector z that can be described by $z(g B)=f(w)$ when $g B \subseteq B w B$. It remains to find the condition on f, and the resulting eigenvalue θ. Let us change notation and work with right cosets $B g$ instead of left cosets $g B$, in order to get $T_{u}(v)$ rather than $T_{u^{-1}}\left(v^{-1}\right)$ below.

For any ring R, let $R W$ be the ring of linear combinations of elements of W with coefficients in R. For each $u \in W$ define an R-linear operator T_{u} on $R W$ by letting $T_{u}(v)$ (for $v \in W$) be the element of $\mathbb{Z} W$ describing the multiset of Bruhat cells reached from any point $B g$ in $B v B$ by going a distance u. That is, let $T_{u}(v)=\sum n_{w} w$ when there are n_{w} cosets $B h$ in $B u B v \cap B w B$. Then

$$
T_{u v}=T_{u} T_{v} \quad \text { if } l(u v)=l(u)+l(v)
$$

and, for $s \in S$,

$$
T_{s}(v)= \begin{cases}q \cdot s v & \text { if } l(s v)>l(v) \\ (q-1) \cdot v+s v & \text { otherwise }\end{cases}
$$

Now $T_{s}^{2}=(q-1) T_{s}+q T_{1}$, so that $\left(T_{s}-q\right)\left(T_{s}+1\right)=0$. Let \mathcal{H} be the ring $R\left\{T_{w} \mid w \in W\right\}$ of linear combinations of the T_{w} with coefficients in R. The actions of the R-linear operators T_{u} on $R W$ and on \mathcal{H} (by left multiplication) are isomorphic via the map $q^{l(w)} . w \mapsto T_{w}$. The ring \mathcal{H} (algebra when R is a field) is known as the Iwahori-Hecke ring (algebra). (Cf. [5], §7.4, [3], §8.4.)

The additive function $f: \mathbb{Z} W \rightarrow \mathbb{R}$ defines an eigenvector with eigenvalue θ when $f\left(T_{w_{0}}(v)\right)=\theta f(v)$ for all $v \in W$. But that means that the eigenvalues of Γ are precisely the eigenvalues of $T_{w_{0}}$.

It remains to find the eigenvalues of $T_{w_{0}}$ acting on \mathcal{H}.

4.5 The center of the Hecke algebra

If w_{0} is central in W, then $T_{w_{0}}$ is central in \mathcal{H}, and in all cases, $T_{w_{0}}^{2}$ is central in \mathcal{H}. (Indeed, suppose $r^{w_{0}}=s$ where $r, s \in S$. Then $r w_{0}=w_{0} s$ and $T_{r} T_{w_{0}}=$ $T_{r}^{2} T_{r w_{0}}=\left((q-1) T_{r}+q\right) T_{r w_{0}}=T_{w_{0} s}\left((q-1) T_{s}+q\right)=T_{w_{0} s} T_{s}^{2}=T_{w_{0}} T_{s}$. If w_{0} is central in W, this shows that $T_{w_{0}}$ is central in \mathcal{H}. In all cases $T_{r} T_{w_{0}}^{2}=$ $T_{w_{0}} T_{s} T_{w_{0}}=T_{w_{0}}^{2} r$ so that $T_{w_{0}}^{2}$ is central in \mathcal{H}.)

4.6 The eigenvalues of $T_{w_{0}}^{2}$

Look at the action of the Hecke algebra on itself. By Schur's Lemma, $T_{w_{0}}^{2}$ acts as a multiple of the identity on each irreducible part of \mathcal{H}. If it is $c I$ on a part of dimension d, then the determinant there is c^{d}. Look at an irreducible part of \mathcal{H} of dimension d with character χ. All eigenvalues of T_{r} are q or -1 . If T_{r} has a eigenvalues q and b eigenvalues -1 , then $a+b=d=\chi\left(T_{1}\right)$, and $q a-b=\chi\left(T_{r}\right)$. By [3] (8.1.7), the characters of \mathcal{H} become the characters of W for $q=1$. Consequently, $\left|\operatorname{det} T_{r}\right|=q^{a}=q^{(\chi(1)+\chi(r)) / 2}$. If the Coxeter diagram has single bonds only, so that all generating involutions are conjugate, it follows that $c^{d}=\operatorname{det} T_{w_{0}}^{2}=q^{N(\chi(1)+\chi(r))}$ so that $c=q^{e}$ with $e=N(1+\chi(r) / \chi(1))$. (The d-th root of unity expected here is 1 , e.g. because being opposite is a symmetric relation so that $T_{w_{0}}$ has real eigenvalues, and $T_{w_{0}}^{2}$ has positive real eigenvalues.) If not all generators are conjugate, but r, s are representatives for the conjugacy classes, and there are N_{r}, N_{s} generators conjugate to r, s in an expression for w_{0}, then $c=q_{1}^{e} q_{2}^{f}$ with $e=N_{r}(1+\chi(r) / \chi(1))$ and $f=N_{s}(1+\chi(s) / \chi(1))$, if T_{r} has eigenvalue q_{1} and T_{s} eigenvalue q_{2}. The exponents e or e, f here are integral. This computation is due to Springer, cf. [3], (9.2.2).
This completes the proof of the theorem.

4.7 The eigenvalues of $T_{w_{0}}$

The above describes the eigenvalues of $T_{w_{0}}^{2}$. But we wanted the eigenvalues of $T_{w_{0}}$, so there is a sign to be determined. Consider an irreducible part of dimension d with character χ. If $T_{w_{0}}^{2}$ has eigenvalue θ^{2} and the trace of $T_{w_{0}}$ is $d \theta$ or $-d \theta$ then $T_{w_{0}}$ has only eigenvalue θ or $-\theta$ there. Otherwise $T_{w_{0}}$ has both eigenvalues $\pm \theta$. The trace of $T_{w_{0}}$ is found from a result by Broué \& Michel (see [3], (9.2.8), (9.2.9a)): $\chi\left(T_{w_{0}}\right)=\chi\left(w_{0}\right) \sqrt{\theta^{2}}$. Thus, if $\chi\left(w_{0}\right)= \pm \chi(1)$ then there is a single sign and only $\left(\chi\left(w_{0}\right) / \chi(1)\right) \theta$ occurs. Otherwise we see $\pm \theta$.

In the particular case where w_{0} is central in W we are always in the situation with a single sign.

4.8 Examples

4.8.1 A_{1}

Here $W=\operatorname{Sym}(2)$ and $N=1$. Character table, $e=N(1+\chi(r) / \chi(1))$ and θ :
$\left.\begin{array}{l|cccccc|c} & 1 & 2 \\ \hline \chi_{1} & 1 & 1 & & \chi(1) & \chi(r) & \chi\left(w_{0}\right) & e\end{array}\right) \theta$

4.8.2 $\quad A_{2}$

Here $W=\operatorname{Sym}(3)$. The number of positive roots is $N=3$, and we find the character table, and computation of $e=N(1+\chi(r) / \chi(1))$ and θ :

	1	2	3		$\chi(1)$	$\chi(r)$	$\chi\left(w_{0}\right)$	e
χ_{1}	1	1	1		1	1	1	6
χ_{2}	1	-1	1		1	-1	-1	0
q^{3}								
χ_{3}	2	0	-1		2	0	0	3

4.8.3 A_{3}

Here $W=\operatorname{Sym}(4)$ with $N=6$. Character table and computation of θ :

	1	2	2^{2}	3	4
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	2	0	2	-1	0
χ_{4}	3	1	-1	0	-1
χ_{5}	3	-1	-1	0	1

$\chi(1)$	$\chi(r)$	$\chi\left(w_{0}\right)$	e	θ
1	1	1	12	q^{6}
1	-1	1	0	1
2	0	2	6	q^{3}
3	1	-1	8	$\pm q^{4}$
3	-1	-1	4	$\pm q^{2}$

4.8.4 $B C_{2}: \stackrel{\rightharpoonup}{r}$

Here W is the dihedral group of order 8 , and $N=4$. The two generators r, s are not conjugate. Write $e=N_{r}(1+\chi(r) / \chi(1))$ and $f=N_{s}(1+\chi(s) / \chi(1))$, where $N_{r}=N_{s}=2$. Character table and computation of eigenvalues:

	1	$2 r$	$2 s$	2	4
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	-1	1	1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	-1	1	1	-1
χ_{5}	2	0	0	-2	0

$\chi(1)$	$\chi(r)$	$\chi(s)$	$\chi\left(w_{0}\right)$	e	f	θ
1	1	1	1	4	4	$q_{1}^{2} q_{2}^{2}$
1	-1	-1	1	0	0	1
1	1	-1	1	4	0	q_{1}^{2}
1	-1	1	1	0	4	q_{2}^{2}
2	0	0	-2	2	2	$-q_{1} q_{2}$

4.8.5 $B C_{3}: \stackrel{\bullet}{r} \stackrel{\rightharpoonup}{\bullet}$

Consider the eigenvalues $\theta, \alpha, \beta, \gamma$ of the four graphs \odot and \odot and \bullet and \because, where the final double stroke is a $G Q\left(q, q^{e}\right)$.

Here $|W|=48$ and $N=9$. Of the three generators r, s, t, the first two are conjugate (being joined by a single stroke in the diagram), but t is not conjugate to r, s. The conjugacy class of r has size $N_{r}=6$ (and consists of r, s, srs, tst, tsrst, stsrsts), the conjugacy class of t has size $N_{t}=3$ (and consists of $t, s t s, r s t s r)$. Write $f=N_{r}(1+\chi(r) / \chi(1))$ and $g=N_{t}(1+\chi(t) / \chi(1))$.

χ	$\chi(1)$	$\chi(r)$	$\chi(t)$	$\chi\left(w_{0}\right)$	f	g	θ	α	β	γ
χ_{1}	1	1	1	1	12	6	$q^{6+3 e}$	q^{4+e}	$q^{5+2 e}$	$q^{3+3 e}$
χ_{2}	1	-1	-1	-1	0	0	-1			
χ_{3}	1	1	-1	-1	12	0	$-q^{6}$			$-q^{3}$
χ_{4}	1	-1	1	1	0	6	$q^{3 e}$			
χ_{5}	2	0	-2	-2	6	0	$-q^{3}$			
χ_{6}	2	0	2	2	6	6	$q^{3+3 e}$	q^{1+e}	$q^{2+2 e}$	
χ_{7}	3	-1	-1	3	4	2	q^{2+e}			
χ_{8}	3	1	-1	3	8	2	q^{4+e}		q^{3}	q^{1+e}
χ_{9}	3	-1	1	-3	4	4	$-q^{2+2 e}$		$-q^{1+e}$	
χ_{10}	3	1	1	-3	8	4	$-q^{4+2 e}$	$-q^{2}$	$-q^{3+e}$	$-q^{1+2 e}$

Here for $J=\{s, t\}$ and $\{r, t\}$ and $\{r, s\}$, the longest word of W_{J} is stst, $r t, r s r$, respectively, so that compared to θ the eigenvalues lose a factor $q^{2+2 e}$, q^{1+e}, q^{3}, respectively. In these cases, $1_{W_{J}}^{W}$ decomposes as $\chi_{1}+\chi_{6}+\chi_{10}$ and $\chi_{1}+\chi_{6}+\chi_{8}+\chi_{9}+\chi_{10}$ and $\chi_{1}+\chi_{3}+\chi_{8}+\chi_{10}$, respectively.

References

[1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, Springer, Heidelberg, 1989.
[2] R. J. Blok and A. E. Brouwer, The geometry far from a residue, pp. 29-38 in: Groups and Geometries, L. di Martino, W. M. Kantor, G. Lunardon, A. Pasini, M. C. Tamburini (eds.), Birkhaüser Verlag, Basel, 1998.
[3] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke algebras, Clarendon Press, Oxford, 2000.
[4] J. Eisfeld, The eigenspaces of the Bose-Mesner-algebras of the association schemes corresponding to projective spaces and polar spaces, Designs, Codes and Cryptography 17 (1999) 129-150.
[5] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990.
[6] F. Vanhove, pers. comm., 2009.

