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Abstract

We find the graphs of valency at most 7 with the property that any two nonadjacent
vertices have either 0 or 2 common neighbours. In particular, we find all semibiplanes of
block size at most 7.

1 Introduction

A (0, 2)-graph is a connected graph such that any two vertices have either 0 or 2 common
neighbours. A rectagraph is a (0, 2)-graph without triangles. A semibiplane is a connected
point-block incidence structure such that any two points are in either 0 or 2 common blocks,
and any two blocks have either 0 or 2 common points. Clearly, the incidence graph of a
semibiplane is a bipartite (0, 2)-graph (and conversely).

These topics have been studied by various authors. Semibiplanes were introduced by Dan
Hughes [2] in the study of projective planes with involution, and are the topic of the thesis [8]
of Peter Wild. Rectagraphs were introduced by Arnold Neumaier [7] in the study of diagram
geometries. Semibiplanes provide examples of geometries with c.c* diagram (where the objects
are the points, the pairs, and the blocks), and these have been studied under various assumptions
on the group of automorphisms. Martyn Mulder [6] showed that (0, 2)-graphs are regular, say
of valency k, and that the number v of vertices and the diameter d satisfy v ≤ 2k and d ≤ k
with in both cases equality only for the hypercube.

During GAC 3 (Oisterwijk, 2005) Kris Coolsaet asked whether it is possible to completely
classify all rectagraphs with valency 6. That is indeed possible, and one can go a bit further.

There is earlier classification work. Peter Wild [9] determined all semibiplanes of block size
at most 6. Michel Mollard [4] determined all (0, 2)-graphs on at most 31 vertices (and finds
that these have valency at most 7).

2 Parameter restriction

The number of closed walks of length 4 without repeated vertices is vk(k− 1)/8 and this must
be integral, so for k = 2, 3 (mod 4) we have 4|v, and for k = 4, 5 (mod 8) we have 2|v.

3 Doubling

The bipartite double ∆ of a graph Γ is the (bipartite) graph with vertices x+ and x− for each
vertex x of Γ, and edges x−y+ and x+y− for each edge xy of Γ. It is connected if and only if Γ
is connected and nonbipartite. It is a (0, 2)-graph if and only if Γ is a nonbipartite (0, 2)-graph,
and then has the same valency as Γ.
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This shows that non-bipartite (0, 2)-graphs of valency k satisfy v ≤ 2k−1.
The bipartite double has an involutory automorphism without fixed edges, namely the one

interchanging x+ and x− for each x. Conversely, given any bipartite (0, 2)-graph ∆ with invo-
lutory automorphism σ without fixed edges that interchanges the two classes of the bipartition,
one can construct a (0, 2)-graph Γ = ∆/σ that has the σ-orbits as vertices, where two σ-orbits
are adjacent when there are edges between them.

In terms of semibiplanes, σ is a polarity without absolute points. This shows that there is
a 1-1 correspondence between nonbipartite (0, 2)-graphs of valency k and semibiplanes of block
size k with given polarity without absolute points.

Classifying (0, 2)-graphs of small valency is thus reduced to classifying semibiplanes of small
block size, and finding their polarities.

The extended bipartite double of a graph Γ is obtained from the bipartite double by adding
edges x−x+ for each x. The extended bipartite double of a nonbipartite rectagraph is a bipartite
rectagraph. The extended bipartite double of a bipartite graph Γ is just the product K2 × Γ.

The universal (0, 2)-cover of a (0, 2)-graph is its universal cover modulo 4-cycles. It is a
(0, 2)-graph again, and is bipartite.

4 Products

Let us use the symbol ∼ to denote adjacency.
For graphs Γ and ∆, let Γ×∆ be the graph of which the vertex set is the Cartesian product

of the vertex sets of Γ and ∆, where (x, y) ∼ (x′, y′) whenever either x = x′ and y ∼ y′ or
x ∼ x′ and y = y′.

If Γ and ∆ are (0, 2)-graphs, then also Γ ×∆ is one. And if both are bipartite, then so is
Γ×∆. The valency of Γ×∆ is the sum of the valencies of Γ and ∆. The diameter of Γ×∆ is
the sum of the diameters of Γ and ∆.

The hypercube 2k (also called Qk) is ×k
i=1K2.

5 Quotients

Let Γ be a graph and G a group of automorphisms of Γ. The quotient Γ/G is the graph that
has as vertices the G-orbits on the vertex set of Γ, where two G-orbits are adjacent when they
contain adjacent elements.

If Γ is a (0, 2)-graph and no two elements of any G-orbit are joined by a path of length 1, 2
or 4, then also Γ/G is a (0, 2)-graph.

In case G = 〈σ〉 we write Γ/σ instead of Γ/G.
For example, let ∆ be the bipartitite double of the icosahedron (∆5.2 in the tables below),

and let Γ = 22 × ∆. Then Γ has 96 vertices and valency 7 and group of order 3840. (It is
∆7.38.) Let σ be the automorphism that sends each vertex to the unique vertex at distance 6.
Then Γ/σ is bipartite, with 48 vertices, valency 7 and group of order 1920. (It is ∆7.2.)

Let δ be the automorphism of Γ that interchanges (u, x+) and (u, x−) for all u and x. The
τ = σδ is an automorphism of Γ that sends each vertex to a vertex at distance 5, and Γ/τ is a
nonbipartite rectagraph with 48 vertices, valency 7 and group of order 960. (It is Γ7.44.)

6 Quotients of hypercubes

Let C be a linear code in 2k viewed as binary vector space. If no distances 1, 2 or 4 occur
between two code words, then the coset graph 2k/C is a (0, 2)-graph of valency k. If moreover
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no distance 3 occurs (so that C has minimum distance at least 5), then 2k/C is a rectagraph.
If no odd weights occur, then 2k/C is bipartite.

For example, with C = 〈1110000, 0111111〉, the code C has weights 0, 3, 5, 6 and the
quotient 27/C is a (0, 2)-graph of valency 7 on 32 vertices, with automorphism group of order
1536 = 2!.4!.25.

Conversely, every rectagraph in which any 3-claw determines a unique 3-cube is a quotient
of a hypercube (not necessarily a coset graph), and in particular has a number of vertices that
is a power of two. For details, see [1], 4.3.6 and 4.3.8.

7 Nonbipartite quotients of a hypercube

Let ∆ be the hypercube 2k, with as vertices the binary vectors of length k. Its group of
automorphisms is 2k : Sym(k).

The involutions without fixed edges that interchange the two classes of the bipartition are
the maps x 7→ π(x) + u, where π ∈ Sym(k) is a coordinate permutation of order 1 or 2 and
u ∈ 2k is a vector of odd weight, where π(u) = u, and π fixes at least three coordinates in the
support of u.

(Indeed, if x 7→ π(x) + u has order 2, then x = π(π(x)) + π(u) + u for all x, so that
π(u) = u and π2 = 1. The vector u must have odd weight to interchange the two classes of the
bipartition. If there is a fixed edge (x, π(x) + u), then x + π(x) + u has weight 1, and π fixes a
unique element of the support of u.)

The conjugacy classes of these involutions have representatives given by such maps x 7→
π(x) + u, where the support of u has odd weight at least 3, and is fixed pointwise by π.

(Indeed, choose the vector a so that the support of a + π(a) + u is fixed pointwise by π.
Then x 7→ π(x + a) + u + a is the required conjugate.)

If π fixes a coordinate outside the support of u, then the resulting quotient is of the form
2 × E for some (0, 2)-graph E of valency k − 1. Hence, we may restrict ourselves to the case
where π moves all positions outside the support of u. Now k is odd.

8 Nonbipartite quotients of a folded hypercube

If k is even, then the quotient 2k/1, the folded k-cube, is still bipartite. The involutions without
fixed edges that interchange the two classes of the bipartition are the maps x 7→ π(x)+u where
π ∈ Sym(k) is a coordinate permutation of order 1 or 2 and u ∈ 2k is a vector of odd weight,
and either π(u) = u + 1, or π(u) = u where π fixes at least three coordinates inside and three
coordinate outside the support of u.

In particular, for k = 6 we can use either π = 1, u = (000111) and find K4 × K4, or
π = (12)(34)(56), u = (010101) and find the Shrikhande graph.

9 Quotients of projective planes

Given a projective plane Π with involution σ, construct a semibiplane of which the points and
blocks are the σ-orbits of size 2 on the points and blocks of Π (Hughes [2]). If Π has parameters
PG(2, q) then for the incidence graph of the semibiplane one has k = q and one of: (i) v = q2

(elation, q even), (ii) v = q2−1 (homology, q odd), (iii) v = q2−√q (Baer involution, q square).
There is work by Moorhouse [5] on reconstructing Π given the semibiplane Π/σ.
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10 The half-double of a locally bipartite graph

Let Γ be a graph, and assume that for each vertex x a partition Πx of the set of neighbours of
Γ is given. Then we can define a graph ∆ by taking as vertices the pairs (x, π) where π ∈ Πx,
and letting (x, π) be adjacent to (y, ρ) when y ∈ π and x ∈ ρ.

The resulting graph ∆ has the same number as edges as Γ, and the covering map (x, π) 7→ x
sends edges to edges.

Now let Γ be locally connected and locally bipartite, without vertices of valency 1. Then
for each vertex x, the set of neighbours of x has a unique partition into two cocliques, and the
above construction yields a graph ∆, called the half-double of Γ (with twice as many vertices
and the same number of edges). Note that ∆ need not be connected, even when Γ is.

Apply this construction to the strongly regular graph with parameters (v, k, λ) = (36, 14, 4)
(with automorphism group U3(3).2 and point stabiliser L2(7).2) that is the first subconstituent
of the Hall-Janko graph on 100 points. The result is a bipartite (0,2)-graph of diameter 5 and
valency 7 on 72 vertices. Each vertex has distance 5 to a unique other point. Interchanging
antipodes is not an automorphism, but identifying antipodes yields the graph Γ again. This
graph has automorphism group U3(3).2 with point stabilizer L2(7). (It is ∆7.29.)

11 A cover

Let us describe one more explicit construction of a bipartite (0, 2)-graph. It is a 2-cover of
the extended bipartite double of K4 × K4 on 64 vertices with k = 7. Let the vertex set be
A × A × B × B, where A = Z3 ∪ {∞} and B = Z2. Let the adjacencies be (a, b, 0, j) ∼
(a, c, 1, j + f(a, b, c)) and (a, b, 0, j) ∼ (c, b, 1, j + f(b, a, c)) for a, b, c ∈ A and j ∈ B, where
f(a, b, c) = 1 for a = ∞, b 6= ∞, c = b − 1 or c = b, and for a 6= ∞, b 6= ∞, c = b + 1,
and f(a, b, c) = 0 otherwise. The resulting graph has the stated properties. Its group is vertex
transitive of order 1152. (It is ∆7.22.)

12 A (0, 2)-graph from the dodecahedron

Consider the graph on the 20 vertices of the dodecahedron, adjacent when either adjacent on
the dodecahedron, or at distance three joined by a path ”step, turn left, step, turn right, step”.
(This latter relation is an equivalence relation, inducing 5K4. Thus, the graph is the edge-
disjoint union of the dodecahedron graph and 5K4, each of valency 3.) The resulting graph is
Γ6.8.

13 Semibiplanes with k ≤ 7

We find unique bipartite (0, 2)-graphs of valency k for k ≤ 3, and 2, 4, 13, 40 nonisomorphic
ones for k = 4, 5, 6, 7, respectively.

(A referee asks: ‘How?’. The short answer is: by computer search. Patric Österg̊ard
independently verified these numbers, and went on to do k = 8.)

In the table below, # gives a serial number (given k), d denotes the diameter, ‘bipd’ stands
for bipartite double, ‘drg’ means distance-regular graph, ‘ico’ means icosahedron. The ‘distribu-
tion’ column gives the distance distribution: the number of points at each distance from a given
point. If the group is nontransitive, there may be several different distributions, depending on
the choice of the given point.

Viewed as semibiplanes, each of these graphs is self-dual, that is, all bipartite (0, 2)-graphs
with 1 ≤ k ≤ 7 have an automorphism that interchanges the two classes of the bipartition. In
particular, each has a nontrivial group of automorphisms G. The ‘gsz’ column gives |G|.
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The bipartite (0, 2)-graph of valency k with serial number i is called ∆k.i.

# k v d distribution gsz orbits graph
1 0 1 0 1 1 tra 20

1 1 2 1 1+1 2 tra 21

1 2 4 2 1+2+1 8 tra 22

1 3 8 3 1+3+3+1 48 tra 23

1 4 14 3 1+4+6+3 336 tra 2-(7,4,2)
2 4 16 4 1+4+6+4+1 384 tra 24

1 5 22 3 1+5+10+6 1320 tra 2-(11,5,2)
2 5 24 4 1+5+10+7+1 480 tra bipd(ico)
3 5 28 4 1+5+10+9+3 672 tra 2×∆4.1

4 5 32 5 1+5+10+10+5+1 3840 tra 25

1 6 32 3 1+6+15+10 1536 tra 2-(16,6,2)
2 6 32 3 1+6+15+10 768 tra 2-(16,6,2)
3 6 32 3 1+6+15+10 23040 tra 2-(16,6,2), 26/1
4 6 36 4 1+6+15+12+2 96 12+24
5 6 36 4 1+6+15+12+2 4320 tra drg [3],[1, p.399]
6 6 36 4 1+6+15+12+2 48 12+24
7 6 40 4 1+6+15+14+4 48 8+8+24
8 6 40 4 1+6+15+14+4 120 tra
9 6 44 4 1+6+15+16+6 2640 tra 2×∆5.1

10 6 48 5 1+6+15+18+8 (32x) 256 16+32
1+6+15+17+8+1 (16x)

11 6 48 5 1+6+15+17+8+1 960 tra 2×∆5.2

12 6 56 5 1+6+15+19+12+3 2688 tra 22 ×∆4.1

13 6 64 6 1+6+15+20+15+6+1 46080 tra 26

1 7 48 4 1+7+21+17+2 384 tra
2 7 48 4 1+7+21+17+2 1920 tra ∆7.38/σ, see §5
3 7 48 4 1+7+21+17+2 48 tra
4 7 48 4 1+7+21+17+2 64 16+32
5 7 48 4 1+7+21+17+2 64 16+32
6 7 48 4 1+7+21+17+2 48 tra
7 7 48 4 1+7+21+17+2 96 tra
8 7 48 4 1+7+21+17+2 72 12+36
9 7 48 4 1+7+21+17+2 96 tra

10 7 48 4 1+7+21+17+2 2016 tra Π/σ
11 7 56 4 1+7+21+21+6 16 2*4+2*8+2*16
12 7 56 4 1+7+21+21+6 8 4*4+5*8
13 7 56 4 1+7+21+21+6 16 2*4+2*8+2*16
14 7 56 4 1+7+21+21+6 24 2+6+4*12
15 7 56 4 1+7+21+21+6 8 4*4+5*8
16 7 56 4 1+7+21+21+6 4 14*4
17 7 56 4 1+7+21+21+6 16 3*8+2*16
18 7 64 4 1+7+21+25+10 48 16+48
19 7 64 4 1+7+21+25+10 120 24+40
20 7 64 4 1+7+21+25+10 3072 tra 2×∆6.1

21 7 64 4 1+7+21+25+10 1536 tra 2×∆6.2

22 7 64 4 1+7+21+25+10 1152 tra see §11
23 7 64 4 1+7+21+25+10 46080 tra 2×∆6.3

24 7 64 5 1+7+21+25+10 (60x) 12 4+5*12
1+7+21+24+10+1 (4x)

25 7 64 5 1+7+21+24+10+1 (36x) 24 4+5*12
1+7+21+25+10 (28x)

26 7 64 5 1+7+21+24+10+1 (24x) 8 8*4+4*8
1+7+21+25+10 (40x)

27 7 64 5 1+7+21+24+10+1 (14x) 12 2*2+2*6+4*12
1+7+21+25+10 (50x)

28 7 64 5 1+7+21+24+10+1 (8x) 336 8+56
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# k v d distribution gsz orbits graph
1+7+21+25+10 (56x)

29 7 72 5 1+7+21+28+14+1 12096 tra U3(3).2/L2(7)
30 7 72 5 1+7+21+27+14+2 192 24+48 2×∆6.4

31 7 72 5 1+7+21+27+14+2 8640 tra 2×∆6.5

32 7 72 5 1+7+21+27+14+2 96 24+48 2×∆6.6

33 7 80 5 1+7+21+30+18+3 (32x) 48 8+24+48
1+7+21+31+18+2 (48x)

34 7 80 5 1+7+21+29+18+4 96 16+16+48 2×∆6.7

35 7 80 5 1+7+21+29+18+4 240 tra 2×∆6.8

36 7 88 5 1+7+21+31+22+6 10560 tra 22 ×∆5.1

37 7 96 6 1+7+21+32+25+9+1 (32x) 512 32+64 2×∆6.10

1+7+21+33+26+8 (64x)
38 7 96 6 1+7+21+32+25+9+1 3840 tra 22 ×∆5.2

39 7 112 6 1+7+21+34+31+15+3 16128 tra 23 ×∆4.1

40 7 128 7 1+7+21+35+35+21+7+1 645120 tra 27

The above table contains five pairs of graphs for which identical data is given. Given a
vertex x of a (0, 2)-graph Γ with set of neighbours A, we can identify a vertex y at distance 2
from x with a pair of vertices (”edge”) on A. Given a vertex z at distance 3 from x, the union
of the geodesics from z to x determines a graph on a subset of A that is regular of valency 2,
that is, a union of polygons.

For graphs ∆7.i with 1 ≤ i ≤ 10 of valency 7 on 48 vertices, for each vertex x the number
of vertices z at distance 3 from x that determine 2K3 equals 2, 10, 5, 6, 2, 7, 4, 6 or 7, 8, 7,
respectively. This suffices to distinguish them. (They can also be distinguished by looking at
their nonbipartite quotients.)

For graphs ∆7.i with 11 ≤ i ≤ 17 of valency 7 on 56 vertices, for each vertex x the number
of vertices z at distance 3 from x that determine K3 equals 0/1, 0/1/2/3, 0/1/2, 0/1/3, 0/1,
0/1/2, 0/1, respectively, where / abbreviates ”or” (and all alternatives do occur). This suffices
to distinguish them.

Of the graphs given here only ∆6.3, ∆7.2, and ∆7.23 are not their own universal (0, 2)-cover.
(Their universal (0, 2)-covers are 26, ∆7.38 and 27, respectively.)

14 Nonbipartite (0, 2)-graphs with k ≤ 7

The nonbipartite (0, 2)-graphs with k ≤ 7 have bipartite doubles found above. We find 1, 1, 4,
11, 56 nonisomorphic solutions for k = 3, 4, 5, 6, 7, respectively.

The column ‘locally’ describes the local graph by a string of digits giving the component
sizes (each component is either a single point or a cycle). For example, the C31 for K2 ×K4

means that all local graphs are the union of a triangle and an isolated vertex. (The C is just
to remind the reader that what follows is a digit string, not a number.) A rectagraph does not
have triangles, so all components of local graphs are single points, and we write ‘recta’ instead
of C111..1. In cases where this is an automorphism, φ denotes the interchange of antipodal
vertices.

The nonbipartite (0, 2)-graph of valency k with serial number i is called Γk.i.

# bipd k v d distribution locally gsz orbits graph
1 3.1 3 4 1 1+3 C3 24 tra 23/(111) ∼= K4

1 4.2 4 8 2 1+4+3 C31 48 tra 24/(0111) ∼= K2 × K4

1 5.2 5 12 3 1+5+5+1 C5 120 tra icosahedron
2 5.4 5 16 2 1+5+10 recta 1920 tra 25/(11111)
3 5.4 5 16 3 1+5+7+3 C311 192 tra 25/(00111) ∼= 22 × K4

4 5.4 5 16 3 1+5+7+3 (8x) C311 96 8+8 25/π(12)(00111)
1+5+10 (8x) C11111

1 6.3 6 16 2 1+6+9 C33 1152 tra K4 × K4

2 6.3 6 16 2 1+6+9 C6 192 tra Shrikhande
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# bipd k v d distribution locally gsz orbits graph
3 6.8 6 20 3 1+6+12+1 C3111 60 tra §12
4 6.7 6 20 3 1+6+10+3 (12x) C51 24 4+4+12

1+6+9+4 (4x) C6
1+6+12+1 (4x) C3111

5 6.11 6 24 3 1+6+12+5 (16x) C3111 32 8+16
1+6+15+2 (8x) C111111

6 6.11 6 24 3 1+6+15+2 recta 480 tra (2× bipd(ico))/φ
7 6.11 6 24 4 1+6+10+6+1 C51 240 tra 2× Γ5.1

8 6.12 6 28 3 1+6+12+9 (16x) C3111 48 4+12+12
1+6+15+6 (12x) C111111

9 6.13 6 32 3 1+6+15+10 recta 3840 tra 2× Γ5.2

10 6.13 6 32 4 1+6+12+10+3 C3111 1152 tra 23 × K4

11 6.13 6 32 4 1+6+12+10+3 (16x) C3111 192 16+16 2× Γ5.4

1+6+15+10 (16x) C111111
1 7.1 7 24 2 1+7+16 C511 96 tra
2 7.1 7 24 2 1+7+16 C511 96 tra
3 7.2 7 24 2 1+7+16 C511 480 tra
4 7.2 7 24 2 1+7+16 C511 480 tra
5 7.1 7 24 3 1+7+15+1 C331 96 tra
6 7.2 7 24 3 1+7+15+1 C61 48 tra
7 7.4 7 24 3 1+7+14+2 (4x) C7 8 4*4+8

1+7+15+1 (16x) C61
1+7+16 (4x) C511

8 7.5 7 24 3 1+7+14+2 (8x) C7 16 8+8+8
1+7+15+1 (8x) C61
1+7+16 (8x) C511

9 7.6 7 24 3 1+7+16 (4x) C511 4 6*4
1+7+15+1 (16x) C61
1+7+14+2 (4x) C7

10 7.8 7 24 3 1+7+14+2 (12x) C7 12 4*6
1+7+15+1 (12x) C61

11 7.9 7 24 3 1+7+16 (12x) C511 12 4*6
1+7+15+1 (12x) C61

12 7.10 7 24 3 1+7+14+2 C7 336 tra drg [1, p.386]
13 7.24 7 32 3 1+7+18+6 (12x) C31111 6 2+5*6

1+7+16+8 (12x) C511
1+7+15+9 (6x) C61
1+7+21+3 (2x) C1111111

14 7.26 7 32 3 1+7+18+6 (8x) C31111 4 8*2+4*4
1+7+21+3 (4x) C1111111
1+7+16+8 (14x) C511
1+7+15+9 (2x) C331
1+7+15+9 (2x) C61
1+7+14+10 (2x) C7

15 7.27 7 32 3 1+7+21+3 (3x) C1111111 2 8*1+12*2
1+7+16+8 (13x) C511
1+7+18+6 (10x) C31111
1+7+14+10 (1x) C7
1+7+15+9 (4x) C61
1+7+15+9 (1x) C331

16 7.18 7 32 3 1+7+16+8 (24x) C511 8 4*8
1+7+15+9 (8x) C61

17 7.18 7 32 3 1+7+18+6 C31111 24 8+24
18 7.20 7 32 3 1+7+18+6 C31111 512 tra
19 7.20 7 32 3 1+7+18+6 C31111 256 tra
20 7.21 7 32 3 1+7+18+6 C31111 96 tra
21 7.21 7 32 3 1+7+18+6 C31111 768 tra
22 7.28 7 32 3 1+7+21+3 (4x) C1111111 24 4+4+24
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# bipd k v d distribution locally gsz orbits graph
1+7+18+6 (24x) C31111
1+7+15+9 (4x) C331

23 7.28 7 32 3 1+7+21+3 (4x) C1111111 168 4+28
1+7+15+9 (28x) C61

24 7.22 7 32 3 1+7+16+8 (24x) C511 48 8+24
1+7+15+9 (8x) C61

25 7.23 7 32 3 1+7+18+6 C31111 1536 tra 27/C, see §6
26 7.23 7 32 3 1+7+18+6 C31111 256 tra
27 7.23 7 32 3 1+7+15+9 C331 2304 tra 2× Γ6.1

28 7.23 7 32 3 1+7+15+9 C61 384 tra 2× Γ6.2

29 7.25 7 32 4 1+7+16+7+1 (6x) C511 12 2+5*6
1+7+16+8 (12x) C511
1+7+14+9+1 (6x) C7
1+7+18+6 (8x) C31111

30 7.28 7 32 4 1+7+14+9+1 (4x) C7 56 4+28
1+7+16+8 (28x) C511

31 7.30 7 36 3 1+7+18+10 (20x) C31111 32 4+2*8+16
1+7+21+7 (16x) C1111111

32 7.32 7 36 3 1+7+18+10 (20x) C31111 8 3*4+3*8
1+7+21+7 (16x) C1111111

33 7.34 7 40 4 1+7+16+13+3 (24x) C511 48 8+8+24 2× Γ6.4

1+7+15+13+4 (8x) C61
1+7+18+13+1 (8x) C31111

34 7.34 7 40 4 1+7+18+12+2 (8x) C31111 16 3*8+16
1+7+18+14 (16x) C31111
1+7+21+11 (16x) C1111111

35 7.35 7 40 4 1+7+21+11 (16x) C1111111 8 5*8
1+7+18+14 (16x) C31111
1+7+18+12+2 (8x) C31111

36 7.35 7 40 4 1+7+18+13+1 C31111 120 tra 2× Γ6.3

37 7.36 7 44 3 1+7+18+18 (20x) C31111 80 4+20+20
1+7+21+15 (24x) C1111111

38 7.37 7 48 4 1+7+21+19 (16x) C1111111 32 3*16
1+7+18+20+2 (16x) C31111
1+7+21+17+2 (16x) C1111111

39 7.37 7 48 4 1+7+18+17+5 (8x) C31111 32 4*8+16
1+7+21+16+3 (8x) C1111111
1+7+18+18+4 (8x) C31111
1+7+21+17+2 (24x) C1111111

40 7.37 7 48 4 1+7+18+17+5 (16x) C31111 128 16+32
1+7+21+17+2 (32x) C1111111

41 7.38 7 48 4 1+7+18+17+5 (32x) C31111 64 16+32 2× Γ6.5

1+7+21+17+2 (16x) C1111111
42 7.38 7 48 4 1+7+18+19+3 (24x) C31111 96 24+24

1+7+21+19 (24x) C1111111
43 7.38 7 48 4 1+7+18+19+3 (16x) C31111 64 3*16

1+7+21+16+3 (16x) C1111111
1+7+21+19 (16x) C1111111

44 7.38 7 48 4 1+7+21+16+3 recta 960 tra ∆7.38/τ , see §5
45 7.38 7 48 4 1+7+21+17+2 recta 960 tra 2× Γ6.6

46 7.38 7 48 5 1+7+16+16+7+1 C511 960 tra 22 × Γ5.1

47 7.38 7 48 5 1+7+16+16+7+1 (24x) C511 480 24+24
1+7+21+16+3 (24x) C1111111

48 7.39 7 56 4 1+7+18+21+9 (32x) C31111 96 8+24+24 2× Γ6.8

1+7+21+21+6 (24x) C1111111
49 7.39 7 56 4 1+7+18+21+9 C31111 8064 tra K4 ×∆4.1

50 7.39 7 56 4 1+7+18+21+9 (24x) C31111 384 8+16+32
1+7+21+24+3 (32x) C1111111
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# bipd k v d distribution locally gsz orbits graph
51 7.40 7 64 3 1+7+21+35 recta 322560 tra 27/(1111111)
52 7.40 7 64 4 1+7+21+25+10 recta 15360 tra 22 × Γ5.2

53 7.40 7 64 4 1+7+21+25+10 (32x) recta 7680 32+32 27/π(12)·
1+7+21+35 (32x) ·(0011111)

54 7.40 7 64 5 1+7+18+22+13+3 C31111 9216 tra 24 × K4

55 7.40 7 64 5 1+7+18+22+13+3 (32x) C31111 768 32+32 22 × Γ5.4

1+7+21+25+10 (32x) C1111111
56 7.40 7 64 5 1+7+18+22+13+3 (16x) C31111 768 2*16+32 27/π(12)(34)·

1+7+21+25+10 (32x) C1111111 ·(0000111)
1+7+21+35 (16x) C1111111

The above table contains two pairs of graphs on 24 points for which identical data is given.
All four have local graphs C511, so that in each the edges that occur in a triangle form two
disjoint icosahedra, and the remaining edges, two on each point, join that point to two antipodal
vertices in the other icosahedron. The structure is that of two icosahedra together with a
matching of the six antipodal pairs of one with the six antipodal pairs of the other. One sees
that there are four possibilities for the number of induced 2×K3 on each edge across, namely
3, 2, 5, 0 for the for cases Γ7.i, i = 1, 2, 3, 4, respectively.
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