A strongly regular graph on 336 vertices

aeb

September 12, 2014

Recently, Thomas Jenrich [1] constructed a strongly regular graph with parameters $(v, k, \lambda, \mu) = (336, 80, 28, 16)$ starting from the $G_2(4)$ graph. Graphs with these parameters were known already: examples are the block graphs of Steiner systems S(2, 4, 64), and in particular the line graph of the affine space AG(3, 4). This new graph is different.

0.1 The Suzuki tower

There exists a strongly regular graph Γ with parameters $(v, k, \lambda, \mu) = (1782, 416, 100, 96)$, that has as full group of automorphisms Suz.2, acting rank 3. Fix a vertex ∞ of Γ . The graph Δ induced by Γ on the set of neighbours of ∞ is strongly regular with parameters $(v, k, \lambda, \mu) = (416, 100, 36, 20)$, and has as full group of automorphisms $G_2(4).2$, acting rank 3.

Fix a vertex p of Γ , nonadjacent to ∞ . Then the set B of common neighbours of ∞ and p has size 96, and the set C of remaining vertices of Δ has size 320. In this way we find 1365 splits of the vertex set of Δ , in a single orbit of Aut Δ . The subgraphs induced on B and C have valencies 20 and 76, respectively.

The graph E constructed by Jenrich arises from C by adjoining a set D of 16 new vertices, where D is a coclique and each vertex of C is adjacent to 4 vertices of D. (For a strongly regular graph with parameters (336,80,28,16) the Hoffman bound for cocliques is 16, and necessarily every vertex outside a 16-coclique is adjacent to 4 vertices inside.)

The block graph of a Steiner system S(2, 4, 64), and in particular the line graph of the affine space AG(3, 4), contains cliques of size 21 formed by all blocks on a given point. On the other hand, maximal cliques in Δ have size 5, so the graph E has maximal cliques of size at most 6, and cannot be a block graph of some S(2, 4, 64).

0.2 Construction of Δ

The graph Δ can be constructed as follows (cf. [2, 3]). Consider the projective plane PG(2, 16) provided with a nondegenerate Hermitean form. There are 273 points, 65 isotropic and 208 nonisotropic. There are $208 \cdot 12 \cdot 1/6 = 416$ orthogonal bases. These 416 orthogonal bases will be the vertices of Δ . Each nonisotropic point *a* is orthogonal to 5 isotropic points; call the set of these 5 points S_a . Then an orthogonal base $u = \{a, b, c\}$ determines a 15-set $T_u :=$ $S_a \cup S_b \cup S_c$. Now two vertices u, v of Δ are adjacent when $|T_u \cap T_v| = 3$.

(More in detail: The group $U_3(4)$:4 of semilinear transformations preserving the form acts transitively on the 416 bases, with rank 5. The suborbit sizes (sizes of the orbits of the stabilizer of a fixed base u) are 1, 15, 100, 150, 150. One has $|T_u \cap T_v|$ equal to 15, 5, 3, 2, 5 (respectively) for v in one of these suborbits. The suborbit of size 15 consists of the bases that have an element in common with $u = \{a, b, c\}$. The first suborbit of size 150 consists of the bases that are disjoint from $\{a, b, c\}$ but contain a point orthogonal to one of a, b, c.)

0.3 Construction of E

Let p be a fixed isotropic point. Let B be the set of vertices u with $p \in T_u$, and let C be the set of remaining vertices of Δ . Then |B| = 96 and |C| = 320. Each $u \in B$ has a unique element a with $p \in S_a$. Let L_u be the set S_a (a hyperbolic line on p).

Each $v \in C$ is adjacent to 76 vertices in C, and to 24 in B. These 24 neighbours $u \in B$ determine 24 lines L_u , and it turns out that each of these occurs twice. So we see 12 of the 16 hyperbolic lines on p. Let W_v be the set of 4 hyperbolic lines not seen.

Take for the 16-set D the set of 16 hyperbolic lines on p, and join v to the elements of W_v . The resulting graph E is strongly regular with parameters (336, 80, 28, 16).

0.4 The affine plane locally at p

Above we found for each $v \in C$ a 4-subset W_v of D. These 320 sets W_v coincide in groups of 16, so that only 20 distinct such sets occur. We find an affine plane AG(2,4) with point set D and as lines the distinct sets W_v .

There is a different way to find W_v from $v = \{a, b, c\}$. The isotropic parts of the (distinct) lines p + a, p + b, p + c are in W_v , and this gives a triple in W_v . Since giving the collinear triples in AG(2, 4) suffices to determine the lines, and since any two points determine a unique line, this provides a more direct way to go from v to W_v . No detour over B is needed.

0.5 Groups

The graph on the lines of AG(3, 4), adjacent when they meet, is strongly regular with parameters $(v, k, \lambda, \mu) = (336, 80, 28, 16)$. Its full group of automorphisms is $2^6 \cdot \Gamma L_3(4)$ of order 23224320. The subgraph of all lines not in some fixed direction has 320 vertices and full group of order 1105920.

Compare this to the full group $2^9: S_5 \times S_3$ of order 368640 of the 320-point graph on C, and the full group of order 3840 of Jenrich's new graph E.

References

- [1] T. Jenrich, arXiv:1409.3520v1, 11 Sept. 2014.
- [2] D. Crnković & V. Mikulić, Block designs and strongly regular graphs constructed from the group U(3,4), Glasnik Matematicki 41 (2006) 189–194.
- [3] A. E. Brouwer, N. Horiguchi, M. Kitazume & H. Nakasora, A construction of the sporadic Suzuki graph from U₃(4), J. Comb. Th. (A) **116** (2009) 1056-1062.