A strongly regular graph on 336 vertices

aeb

September 12, 2014

Recently, Thomas Jenrich [1] constructed a strongly regular graph with parameters $(v, k, \lambda, \mu)=(336,80,28,16)$ starting from the $G_{2}(4)$ graph. Graphs with these parameters were known already: examples are the block graphs of Steiner systems $S(2,4,64)$, and in particular the line graph of the affine space $A G(3,4)$. This new graph is different.

0.1 The Suzuki tower

There exists a strongly regular graph Γ with parameters $(v, k, \lambda, \mu)=(1782,416$, $100,96)$, that has as full group of automorphisms Suz.2, acting rank 3. Fix a vertex ∞ of Γ. The graph Δ induced by Γ on the set of neighbours of ∞ is strongly regular with parameters $(v, k, \lambda, \mu)=(416,100,36,20)$, and has as full group of automorphisms $G_{2}(4) \cdot 2$, acting rank 3 .

Fix a vertex p of Γ, nonadjacent to ∞. Then the set B of common neighbours of ∞ and p has size 96 , and the set C of remaining vertices of Δ has size 320 . In this way we find 1365 splits of the vertex set of Δ, in a single orbit of Aut Δ. The subgraphs induced on B and C have valencies 20 and 76 , respectively.

The graph E constructed by Jenrich arises from C by adjoining a set D of 16 new vertices, where D is a coclique and each vertex of C is adjacent to 4 vertices of D. (For a strongly regular graph with parameters $(336,80,28,16)$ the Hoffman bound for cocliques is 16 , and necessarily every vertex outside a 16 -coclique is adjacent to 4 vertices inside.)

The block graph of a Steiner system $S(2,4,64)$, and in particular the line graph of the affine space $A G(3,4)$, contains cliques of size 21 formed by all blocks on a given point. On the other hand, maximal cliques in Δ have size 5 , so the graph E has maximal cliques of size at most 6 , and cannot be a block graph of some $S(2,4,64)$.

0.2 Construction of Δ

The graph Δ can be constructed as follows (cf. [2, 3]). Consider the projective plane $\mathrm{PG}(2,16)$ provided with a nondegenerate Hermitean form. There are 273 points, 65 isotropic and 208 nonisotropic. There are $208 \cdot 12 \cdot 1 / 6=416$ orthogonal bases. These 416 orthogonal bases will be the vertices of Δ. Each nonisotropic point a is orthogonal to 5 isotropic points; call the set of these 5 points S_{a}. Then an orthogonal base $u=\{a, b, c\}$ determines a 15 -set $T_{u}:=$ $S_{a} \cup S_{b} \cup S_{c}$. Now two vertices u, v of Δ are adjacent when $\left|T_{u} \cap T_{v}\right|=3$.
(More in detail: The group $U_{3}(4): 4$ of semilinear transformations preserving the form acts transitively on the 416 bases, with rank 5 . The suborbit sizes
(sizes of the orbits of the stabilizer of a fixed base u) are $1,15,100,150,150$. One has $\left|T_{u} \cap T_{v}\right|$ equal to $15,5,3,2,5$ (respectively) for v in one of these suborbits. The suborbit of size 15 consists of the bases that have an element in common with $u=\{a, b, c\}$. The first suborbit of size 150 consists of the bases that are disjoint from $\{a, b, c\}$ but contain a point orthogonal to one of a, b, c.)

0.3 Construction of E

Let p be a fixed isotropic point. Let B be the set of vertices u with $p \in T_{u}$, and let C be the set of remaining vertices of Δ. Then $|B|=96$ and $|C|=320$. Each $u \in B$ has a unique element a with $p \in S_{a}$. Let L_{u} be the set S_{a} (a hyperbolic line on p).

Each $v \in C$ is adjacent to 76 vertices in C, and to 24 in B. These 24 neighbours $u \in B$ determine 24 lines L_{u}, and it turns out that each of these occurs twice. So we see 12 of the 16 hyperbolic lines on p. Let W_{v} be the set of 4 hyperbolic lines not seen.

Take for the 16 -set D the set of 16 hyperbolic lines on p, and join v to the elements of W_{v}. The resulting graph E is strongly regular with parameters (336, 80, 28, 16).

0.4 The affine plane locally at p

Above we found for each $v \in C$ a 4 -subset W_{v} of D. These 320 sets W_{v} coincide in groups of 16 , so that only 20 distinct such sets occur. We find an affine plane AG(2,4) with point set D and as lines the distinct sets W_{v}.

There is a different way to find W_{v} from $v=\{a, b, c\}$. The isotropic parts of the (distinct) lines $p+a, p+b, p+c$ are in W_{v}, and this gives a triple in W_{v}. Since giving the collinear triples in $\mathrm{AG}(2,4)$ suffices to determine the lines, and since any two points determine a unique line, this provides a more direct way to go from v to W_{v}. No detour over B is needed.

0.5 Groups

The graph on the lines of $\mathrm{AG}(3,4)$, adjacent when they meet, is strongly regular with parameters $(v, k, \lambda, \mu)=(336,80,28,16)$. Its full group of automorphisms is $2^{6} . \Gamma L_{3}(4)$ of order 23224320 . The subgraph of all lines not in some fixed direction has 320 vertices and full group of order 1105920.

Compare this to the full group $2^{9}: S_{5} \times S_{3}$ of order 368640 of the 320 -point graph on C, and the full group of order 3840 of Jenrich's new graph E.

References

[1] T. Jenrich, arXiv:1409.3520v1, 11 Sept. 2014.
[2] D. Crnković \& V. Mikulić, Block designs and strongly regular graphs constructed from the group $U(3,4)$, Glasnik Matematicki 41 (2006) 189-194.
[3] A. E. Brouwer, N. Horiguchi, M. Kitazume \& H. Nakasora, A construction of the sporadic Suzuki graph from $U_{3}(4)$, J. Comb. Th. (A) 116 (2009) 1056-1062.

