

Reprint from the Bulletin of the Belgian Mathematical Society - Simon Stevin

The association scheme on the points off a quadric

F. Vanhove (19 Nov 1984 – 27 Nov 2013)

Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 153–160

The Bulletin of the Belgian Mathematical Society - Simon Stevin is published by The Belgian Mathematical Society, with financial support from the Universitaire Stichting van Belgie – Fondation Universitaire de Belgique and the Fonds National de la Recherche Scientifique (FNRS). It appears quarterly and is indexed and/or abstracted in Current Contents, Current Mathematical Publications, Mathematical Reviews, Science Citation Index Expanded and Zentralblatt für Mathematik.

The Bulletin of the Belgian Mathematical Society - Simon Stevin is part of Project Euclid (Cornell University Library), an aggregation of electronic journals. It is available online to subscribers to Project Euclid (http://projecteuclid.org).

For more informations about the Belgian Mathematical Society - Simon Stevin, see our web site at http://bms.ulb.ac.be

The association scheme on the points off a quadric

F. Vanhove (19 Nov 1984 – 27 Nov 2013)

Abstract

The parameters of the association scheme on the points off a quadric are computed. This corrects a mistake in the literature.

In [BCN, Theorem 12.1.1], the existence of a certain association scheme is claimed, and details are given for n = 3. Here we correct the statements given there for odd $n \ge 5$.

Let *q* be a power of 2, and $n \ge 3$. Let *V* be an *n*-dimensional vector space over \mathbb{F}_q provided with a nondegenerate quadratic form *Q*. Let *B* be the associated symmetric bilinear form, given by B(x, y) = Q(x + y) - Q(x) - Q(y). If *n* is odd, there will be a nucleus $N = V^{\perp}$.

We construct an association scheme with point set *X*, where *X* is the set of projective points not on the quadric defined by *Q* and (for odd *n*) distinct from *N*. For n = 3 and for even *n*, the relations will be R_0 , R_1 , R_2 , R_3 where

 $R_0 = \{(x, x) \mid x \in X\}, \text{ the identity relation;}$ $R_1 = \{(x, y) \mid x + y \text{ is a hyperbolic line (secant)}\};$ $R_2 = \{(x, y) \mid x + y \text{ is an elliptic line (exterior line)}\};$ $R_3 = \{(x, y) \mid x + y \text{ is a tangent}\}.$

For odd *n*, $n \ge 5$, it is necessary to distinguish R_{3a} and R_{3n} , defined by

 $R_{3a} = \{(x, y) \mid x + y \text{ is a tangent not on } N\};$ $R_{3n} = \{(x, y) \mid x + y \text{ is a tangent on } N\}.$

Received by the editors in September 2019.

Communicated by H. Van Maldeghem.

Note that every line on *N* is a tangent, and that for n = 3 there are no other tangents, so that R_{3a} is empty. For q = 2 a hyperbolic line contains only one non-isotropic point, and a tangent on *N* contains only one nonisotropic point distinct from *N*, so that R_1 and R_{3n} are empty.

We show that if n = 3 or n is even, then $(X, \{R_0, R_1, R_2, R_3\})$ is an association scheme. Also that if n is odd, $n \ge 5$, then $(X, \{R_0, R_1, R_2, R_{3a}, R_{3n}\})$ is an association scheme. We give the parameters p_{jk}^i and the eigenmatrix P in both cases.

1 Quadric size

The number M of isotropic projective points on a nonisotropic quadric in V, where V has vector space dimension n equals

$$M = \begin{cases} (q^{2m} - 1)/(q - 1) & \text{if } n = 2m + 1\\ (q^m - \varepsilon)(q^{m-1} + \varepsilon)/(q - 1) & \text{if } n = 2m. \end{cases}$$

Equivalently,

$$M = (q^{n-1} - 1)/(q - 1) + \varepsilon q^{n/2 - 1}$$

with $\varepsilon = \pm 1$ if *n* is even, and $\varepsilon = 0$ if *n* is odd.

2 *n* = 3

Suppose first that n = 3. The parameters (p_{jk}^i) were given in [BCN], p. 375. Let us call them (a_{jk}^i) here in the special case n = 3.

$$(a_{0j}^{i})_{ij} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ (a_{1j}^{i})_{ij} = \begin{pmatrix} 0 & \frac{1}{2}q(q-2) & 0 & 0 \\ 1 & \frac{1}{4}(q-2)^{2} & \frac{1}{4}q(q-2) & \frac{1}{2}q-2 \\ 0 & \frac{1}{4}(q-2)^{2} & \frac{1}{4}q(q-2) & \frac{1}{2}q-1 \\ 0 & \frac{1}{4}q(q-4) & \frac{1}{4}q^{2} & 0 \end{pmatrix},$$
$$(a_{2j}^{i})_{ij} = \begin{pmatrix} 0 & 0 & \frac{1}{2}q^{2} & 0 \\ 0 & \frac{1}{4}q(q-2) & \frac{1}{4}q^{2} & \frac{1}{2}q \\ 1 & \frac{1}{4}q(q-2) & \frac{1}{4}q^{2} & \frac{1}{2}q-1 \\ 0 & \frac{1}{4}q^{2} & \frac{1}{4}q^{2} & 0 \end{pmatrix}, \ (a_{3j}^{i})_{ij} = \begin{pmatrix} 0 & 0 & 0 & q-2 \\ 0 & \frac{1}{2}q-2 & \frac{1}{2}q & 0 \\ 0 & \frac{1}{2}q-1 & \frac{1}{2}q-1 & 0 \\ 1 & 0 & 0 & q-3 \end{pmatrix}.$$

The *P* matrix has in column *h* the eigenvalues of $(p_{hj}^i)_{ij}$. The rows correspond to eigenspaces. We find

$$P = \begin{pmatrix} 1 & q(q-2)/2 & q^2/2 & q-2 \\ 1 & q/2 & -q/2 & -1 \\ 1 & -q/2 + 1 & -q/2 & q-2 \\ 1 & -q/2 & q/2 & -1 \end{pmatrix}$$

We see that R_3 is an equivalence relation (and the equivalence classes are the tangent lines, that is, the lines on N). We also see that R_2 has only three distinct eigenvalues, and hence defines a strongly regular graph.

Now suppose that dim V = 3 but the quadratic form Q on V is degenerate in such a way that $N := V^{\perp}$ is a (single) isotropic point. Then the space is a cone over a hyperbolic or elliptic line. We have $v = |X| = q^2 - \varepsilon q$ and the valencies are $k_0 = 1, k_3 = q - 1$ and $k_1 = q^2 - 2q, k_2 = 0$ if $\varepsilon = 1, k_1 = 0, k_2 = q^2$ if $\varepsilon = -1$. Call the corresponding parameters (h_{ik}^i) and (e_{ik}^i) , respectively. Then

$$(h_{1j}^{i})_{ij} = \begin{pmatrix} 0 & q^{2} - 2q & 0 & 0 \\ 1 & q^{2} - 3q & 0 & q - 1 \\ * & * & * & * \\ 0 & q^{2} - 2q & 0 & 0 \end{pmatrix}, (h_{3j}^{i})_{ij} = \begin{pmatrix} 0 & 0 & 0 & q - 1 \\ 0 & q - 1 & 0 & 0 \\ * & * & * & * \\ 1 & 0 & 0 & q - 2 \end{pmatrix},$$
$$(e_{2j}^{i})_{ij} = \begin{pmatrix} 0 & 0 & q^{2} & 0 \\ * & * & * & * \\ 1 & 0 & q^{2} - q & q - 1 \\ 0 & 0 & q^{2} & 0 \end{pmatrix}, (e_{3j}^{i})_{ij} = \begin{pmatrix} 0 & 0 & 0 & q - 1 \\ * & * & * & * \\ 0 & 0 & q - 1 & 0 \\ 1 & 0 & 0 & q - 2 \end{pmatrix}.$$

(with undefined * since relation R_2 (resp. R_1) does not occur).

Finally, suppose that dim V = 3 and the quadratic form Q on V is a double line (that is, B vanishes identically, Q is the square of a linear form). Now $k_0 = 1$, $k_1 = k_2 = 0$, $k_3 = q^2 - 1$. Call the corresponding parameters (z_{jk}^i) . Then

$$(z_{3j}^i)_{ij} = \begin{pmatrix} 0 & 0 & 0 & q^2 - 1 \\ * & * & * & * \\ * & * & * & * \\ 1 & 0 & 0 & q^2 - 2 \end{pmatrix}.$$

3 *n* **even**

Now let *n* be even, say n = 2m, where $m \ge 2$. Let the form have type ε , with $\varepsilon = 1$ for a hyperbolic and $\varepsilon = -1$ for an elliptic quadric.

The number of points of the scheme equals $v = |X| = q^{2m-1} - \varepsilon q^{m-1}$. For the valencies k_i of the relations R_i we find

$$k_0 = 1$$

$$k_1 = (q - 2)q^{m-1}(q^{m-1} + \varepsilon)/2$$

$$k_2 = q^m(q^{m-1} - \varepsilon)/2$$

$$k_3 = q^{2m-2} - 1$$

If n = 2, m = 1, then only one type of line occurs (since all of *V* is just a line), and $P = \begin{pmatrix} 1 & q-2 \\ 1 & -1 \end{pmatrix}$ if $\varepsilon = 1$, and $P = \begin{pmatrix} 1 & q \\ 1 & -1 \end{pmatrix}$ if $\varepsilon = -1$.

Let $n \ge 4$, $m \ge 2$. If $(x, y) \in R_h$ for a certain $h \in \{1, 2, 3\}$ then for each plane on the line x + y we find the same relation, and a contribution as just computed for

the case n = 3. In the plane we did not count the nucleus, but here that nucleus contributes 1 to p_{33}^h for $h \neq 3$. If h = 3 then x or y might itself be the nucleus of a nondegenerate plane on x + y. The details follow.

Let *L* be a hyperbolic line, and consider the $(q^{n-2}-1)/(q-1)$ planes on *L*. A degenerate plane must be the span L + z of *L* and an isotropic point *z* in L^{\perp} . Now L^{\perp} has the same type ε as *V* and dimension n - 2, so has $a := (q^{2m-3}-1)/(q-1) + \varepsilon q^{m-2}$ isotropic points. Hence *L* is on *a* degenerate planes L + z, and on $(q^{n-2}-1)/(q-1) - a = q^{n-3} - \varepsilon q^{m-2}$ nondegenerate planes. All parameters p_{jk}^1 follow by summing such parameters of these two types of planes: If $(x, y) \in R_1$, then L = x + y is a hyperbolic line that contributes q - 3 to p_{11}^1 and nothing to p_{jk}^1 for $\{j, k\} \not\subseteq \{0, 1\}$. A degenerate plane on *L* is a cone over a hyperbolic line, and contributes h_{jk}^1 . Thus

$$p_{11}^1 = q - 3 + (q^{n-3} - \varepsilon q^{m-2})(a_{11}^1 - q + 3) + a(h_{11}^1 - q + 3)$$

and

$$p_{33}^1 = (q^{n-3} - \varepsilon q^{m-2})(a_{33}^1 + 1) + ah_{33}^1$$

and

$$p_{jk}^1 = (q^{n-3} - \varepsilon q^{m-2})a_{jk}^1 + ah_{jk}^1$$

for nonzero j, k not both 1 or both 3.

Let *L* be an elliptic line, and consider planes on *L*. This time L^{\perp} has the opposite type, so has $b := (q^{2m-3} - 1)/(q-1) - \varepsilon q^{m-2}$ isotropic points, and *L* is on $(q^{n-2} - 1)/(q-1) - b = q^{n-3} + \varepsilon q^{m-2}$ nondegenerate planes. We find

$$p_{22}^2 = q - 1 + (q^{n-3} + \varepsilon q^{m-2})(a_{22}^2 - q + 1) + b(e_{22}^2 - q + 1)$$

and

$$p_{33}^2 = (q^{n-3} + \varepsilon q^{m-2})(a_{33}^2 + 1) + be_{33}^2$$

and

$$p_{jk}^2 = (q^{n-3} + \varepsilon q^{m-2})a_{jk}^2 + be_{jk}^2$$

for nonzero *j*, *k* not both 2 or both 3.

Let *L* be a tangent, with isotropic point *z*. Then L^{\perp} is an (n-2)-space containing *L*. The line *L* is on q^{n-3} nondegenerate planes (where *Q* is a conic, *L* a tangent to the conic, and the nucleus of the plane is a nonisotropic point of *L*), namely those not contained in z^{\perp} . The line *L* is on $(q^{n-4} - 1)/(q-1)$ planes contained in L^{\perp} (on which the symplectic form vanishes identically, and the quadratic form is a double line). The line *L* is on q^{n-4} degenerate planes with radical *z* (contained in z^{\perp} but not in L^{\perp}). The space z^{\perp}/z is a nondegenerate (n-2)-space of the same type ε in which *L* is a nonisotropic point. The quadric in that space has size $(q^{n-3} - 1)/(q-1) + \varepsilon q^{m-2}$, and through the point *L* there are $(q^{n-4} - 1)/(q-1)$ tangents, and $(q^{n-4} + \varepsilon q^{m-2})/2$ hyperbolic lines, and $(q^{n-4} - \varepsilon q^{m-2})/2$ elliptic lines. Consequently, of the q^{n-4} degenerate planes π on *L* with radical *z*, for $(q^{n-4} + \varepsilon q^{m-2})/2$ the quotient π/z is hyperbolic, and for $(q^{n-4} - \varepsilon q^{m-2})/2$ elliptic. Each of the *q* nonisotropic points of *L* is nucleus of q^{n-4} nondegenerate planes. For the computation of p_{3k}^3 starting with two points *x*, *y* where L = x + y

is a tangent, the q^{n-4} nondegenerate planes in which x is nucleus each contribute $\frac{1}{2}q(q-2)$ for k = 1 and $\frac{1}{2}q^2$ for k = 2. There are $q^{n-4}(q-2)$ such planes where none of x, y is nucleus. Altogether, we find

$$p_{jk}^3 = q^{n-4}(q-2)a_{jk}^3 + \frac{1}{2}(q^{n-4} + \epsilon q^{m-2})h_{jk}^3 + \frac{1}{2}(q^{n-4} - \epsilon q^{m-2})e_{jk}^3$$

for $j, k \neq 0, 3$, and

$$p_{31}^{3} = \frac{1}{2}q^{n-3}(q-2),$$

$$p_{32}^{3} = \frac{1}{2}q^{n-2},$$

$$p_{33}^{3} = q - 2 + \frac{q^{n-4} - 1}{q - 1}(z_{33}^{3} - q + 2).$$

Since we could compute all p_{jk}^i , this proves that we have an association scheme. Let us substitute the values of a_{jk}^i , h_{jk}^i , e_{jk}^i and z_{jk}^i and compute the eigenmatrix P of the scheme. In order to save space, we abbreviate r := q - 2.

For $(p_{1i}^i)_{ij}$ one finds

$$\begin{pmatrix} 0 & \frac{1}{2}q^{m-1}(q^{m-1}+\varepsilon)r & 0 & 0\\ 1 & \frac{1}{4}q^{n-3}r^2 + \varepsilon q^{m-2}(\frac{3}{4}q^2 - 2q - 1) & \frac{1}{4}q^{m-1}(q^{m-1} - \varepsilon)r & \frac{1}{2}(q^{m-1} - \varepsilon)(q^{m-2}r + 2\varepsilon)\\ 0 & \frac{1}{4}q^{m-2}(q^{m-1} + \varepsilon)r^2 & \frac{1}{4}q^{m-1}(q^{m-1} + \varepsilon)r & \frac{1}{2}q^{m-2}(q^{m-1} + \varepsilon)r\\ 0 & \frac{1}{4}q^{m-1}(q^{m-2}r + 2\varepsilon)r & \frac{1}{4}q^{n-2}r & \frac{1}{2}q^{n-3}r \end{pmatrix}$$

with eigenvalues $\frac{1}{2}q^{m-1}(q^{m-1}+\epsilon)(q-2), \frac{1}{2}\epsilon q^{m-2}(q+1)(q-2), -\epsilon q^{m-1}, 0.$

For $(p_{2j}^i)_{ij}$ one finds

$$\begin{pmatrix} 0 & 0 & \frac{1}{2}q^{m}(q^{m-1}-\varepsilon) & 0 \\ 0 & \frac{1}{4}q^{m-1}(q^{m-1}-\varepsilon)r & \frac{1}{4}q^{m}(q^{m-1}-\varepsilon) & \frac{1}{2}q^{m-1}(q^{m-1}-\varepsilon) \\ 1 & \frac{1}{4}q^{m-1}(q^{m-1}+\varepsilon)r & \frac{1}{4}q^{n-1}-\varepsilon q^{m-1}(\frac{3}{4}q-1) & \frac{1}{2}(q^{m-1}+\varepsilon)(q^{m-1}-2\varepsilon) \\ 0 & \frac{1}{4}q^{n-2}r & \frac{1}{4}q^{m}(q^{m-1}-2\varepsilon) & \frac{1}{2}q^{n-2} \end{pmatrix}$$

with eigenvalues $\frac{1}{2}q^m(q^{m-1}-\varepsilon)$, εq^{m-1} , $-\frac{1}{2}\varepsilon q^{m-1}(q-1)$, 0.

For $(p_{3j}^i)_{ij}$ one finds

$$\begin{pmatrix} 0 & 0 & 0 & q^{n-2}-1 \\ 0 & \frac{1}{2}(q^{m-1}-\varepsilon)(q^{m-2}r+2\varepsilon) & \frac{1}{2}q^{m-1}(q^{m-1}-\varepsilon) & q^{m-2}(q^{m-1}-\varepsilon) \\ 0 & \frac{1}{2}q^{m-2}(q^{m-1}+\varepsilon)r & \frac{1}{2}(q^{m-1}+\varepsilon)(q^{m-1}-2\varepsilon) & q^{m-2}(q^{m-1}+\varepsilon) \\ 1 & \frac{1}{2}q^{n-3}r & \frac{1}{2}q^{n-2} & q^{n-3}-2 \end{pmatrix}$$

with eigenvalues $q^{n-2} - 1$, $q^{m-1} - 1$, $-q^{m-1} - 1$, $\varepsilon q^{m-2} - 1$.

The *P*-matrix is

$$P = \begin{pmatrix} 1 & \frac{1}{2}q^{m-1}(q^{m-1}+\varepsilon)(q-2) & \frac{1}{2}q^m(q^{m-1}-\varepsilon) & q^{2m-2}-1 \\ 1 & \frac{1}{2}\varepsilon q^{m-2}(q+1)(q-2) & -\frac{1}{2}\varepsilon q^{m-1}(q-1) & \varepsilon q^{m-2}-1 \\ 1 & 0 & \varepsilon q^{m-1} & -\varepsilon q^{m-1}-1 \\ 1 & -\varepsilon q^{m-1} & 0 & \varepsilon q^{m-1}-1 \end{pmatrix}.$$

The multiplicities (in the order of the rows of *P*) are 1, $q^2(q^{n-2}-1)/(q^2-1)$, $\frac{1}{2}q(q^{m-1}-\varepsilon)(q^m-\varepsilon)/(q+1)$, $\frac{1}{2}(q-2)(q^{m-1}+\varepsilon)(q^m-\varepsilon)/(q-1)$.

4 *n* **odd**

Now let *n* be odd, say n = 2m + 1, where $m \ge 2$. Let *Q* be a nondegenerate quadric, and let *N* be its nucleus. We compute the p_{jk}^i as before, this time splitting relation R_3 (being joined by a tangent) into the two relations R_{3a} and R_{3n} , depending on whether the tangent does not or does pass through *N*.

The number of points of the scheme equals $v = |X| = q^{n-1} - 1$. For the valencies k_i of the relations R_i we find

$$k_{0} = 1$$

$$k_{1} = \frac{1}{2}q^{n-2}(q-2)$$

$$k_{2} = \frac{1}{2}q^{n-1}$$

$$k_{3a} = q^{n-2} - q$$

$$k_{3n} = q - 2$$

The number of planes on a line *L* is $(q^{n-2} - 1)/(q - 1)$. If *L* is hyperbolic or elliptic, then a degenerate plane must be the span L + z of *L* and an isotropic point *z* in L^{\perp} . Now L^{\perp} is a nondegenerate (n - 2)-space, and has $(q^{n-3} - 1)/(q - 1)$ isotropic points, so there are q^{n-3} nondegenerate planes, and $(q^{n-3} - 1)/(q - 1)$ degenerate planes on *L*. We find for i = 1, 2 that

$$p_{jk}^{i} = q^{n-3}(a_{jk}^{i} - c) + \frac{q^{n-3} - 1}{q - 1}(\mathbf{x}_{jk}^{i} - c) + c$$

with x = h for i = 1 and x = e for i = 2, and c = q - 3 if i = j = k = 1, c = q - 1 if i = j = k = 2 and c = 0 otherwise.

If *L* is a tangent on *N*, with isotropic point *z*, then the q^{n-3} nondegenerate planes on *L* are the planes not in z^{\perp} . The remaining $(q^{n-3} - 1)/(q - 1)$ planes on *L* are contained in L^{\perp} , and the form induces a double line on these. Hence

$$p_{jk}^i = q^{n-3}a_{jk}^3$$

for i = 3n when not $\{j, k\} \subseteq \{0, 3a, 3n\}$.

If *L* is a tangent not on *N*, with isotropic point *z*, then the q^{n-3} nondegenerate planes on *L* are the planes not in z^{\perp} . Each nonisotropic point of *L* is the nucleus of q^{n-4} of these planes. There are $(q^{n-4} - 1)/(q-1)$ planes on *L* contained in L^{\perp} , where the form induces a double line. The remaining planes are degenerate, cones over a hyperbolic or elliptic line, $\frac{1}{2}q^{n-4}$ of each.

Relation R_{3n} is an equivalence relation with equivalence classes of size q - 1. If *L* does not pass through *N*, then it is on a unique plane L + N on *N*, and the points that have relation R_{4n} with *x* or *y* live in that plane. We find $p_{1,3n}^1 = \frac{1}{2}q - 2$, $p_{2,3n}^1 = \frac{1}{2}q$, $p_{1,3n}^2 = p_{2,3n}^2 = \frac{1}{2}q - 1$.

For (p_{1i}^i) one finds

$$\begin{pmatrix} 0 & \frac{1}{2}q^{n-2}(q-2) & 0 & 0 & 0 \\ 1 & \frac{1}{4}q^{n-3}(q-2)^2 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}(q^{n-3}-1)(q-2) & \frac{1}{2}q-2 \\ 0 & \frac{1}{4}q^{n-3}(q-2)^2 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}(q^{n-3}-1)(q-2) & \frac{1}{2}q-1 \\ 0 & \frac{1}{4}q^{n-3}(q-2)^2 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}q^{n-3}(q-2) & 0 \\ 0 & \frac{1}{4}q^{n-2}(q-4) & \frac{1}{4}q^{n-1} & 0 & 0 \end{pmatrix}$$

with eigenvalues $\frac{1}{2}q^{2m-1}(q-2)$, $\pm \frac{1}{2}q^{m-1}(q-2)$, $\pm \frac{1}{2}q^m$. For (p_{2j}^i) one finds

$$\begin{pmatrix} 0 & 0 & \frac{1}{2}q^{n-1} & 0 & 0 \\ 0 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{4}q^{n-1} & \frac{1}{2}q(q^{n-3}-1) & \frac{1}{2}q \\ 1 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{4}q^{n-1} & \frac{1}{2}q(q^{n-3}-1) & \frac{1}{2}q-1 \\ 0 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{4}q^{n-1} & \frac{1}{2}q^{n-2} & 0 \\ 0 & \frac{1}{4}q^{n-1} & \frac{1}{4}q^{n-1} & 0 & 0 \end{pmatrix}$$

with eigenvalues $\frac{1}{2}q^{2m}$, $\pm \frac{1}{2}q^m$ (each twice). For $(p^i_{3a,j})$ one finds

(0	0	0	$q(q^{n-3}-1)$	0)
	0	$\frac{1}{2}(q^{n-3}-1)(q-2)$	$\frac{1}{2}q(q^{n-3}-1)$	$q^{n-3} - 1$	0
		$\frac{1}{2}(q^{n-3}-1)(q-2)$		$q^{n-3} - 1$	0
	1	$\frac{1}{2}q^{n-3}(q-2)$	$\frac{1}{2}q^{n-2}$	$q^{n-3} - 2q + 1$	q – 2
ĺ	0	0	0	$q(q^{n-3}-1)$	

with eigenvalues $q(q^{2m-2}-1)$, $(q^{m-1}-1)(q-1)$, $-(q^{m-1}+1)(q-1)$, 0 (twice). For $(p_{3n,i}^i)$ one finds

	0	0	0	q-2
0	$\frac{1}{2}q - 2$	$\frac{1}{2}q$	0	0
0	$\frac{1}{2}q - 1$	$\frac{1}{2}q - 1$	0	0
0	0	0	q-2	0
1	0	0	0	$ \begin{array}{c} q-2 \\ 0 \\ 0 \\ q-3 \end{array} \right) $

with eigenvalues q - 2 (three times) and -1 (twice).

Since we could compute all p_{jk}^i , this is indeed an association scheme.

The P-matrix is

$$P = \begin{pmatrix} 1 & \frac{1}{2}q^{2m-1}(q-2) & \frac{1}{2}q^{2m} & q(q^{2m-2}-1) & q-2 \\ 1 & \frac{1}{2}q^{m-1}(q-2) & \frac{1}{2}q^m & -(q^{m-1}+1)(q-1) & q-2 \\ 1 & -\frac{1}{2}q^{m-1}(q-2) & -\frac{1}{2}q^m & (q^{m-1}-1)(q-1) & q-2 \\ 1 & \frac{1}{2}q^m & -\frac{1}{2}q^m & 0 & -1 \\ 1 & -\frac{1}{2}q^m & \frac{1}{2}q^m & 0 & -1 \end{pmatrix}$$

The multiplicities (in the order of the rows of *P*) are 1, $\frac{1}{2}q(q^m + 1)(q^{m-1} - 1)/(q - 1)$, $\frac{1}{2}q(q^m - 1)(q^{m-1} + 1)/(q - 1)$, $\frac{1}{2}(q - 2)(q^{2m} - 1)/(q - 1)$ (twice).

5 Conclusion

F. Vanhove computed all p_{jk}^i and communicated both *P* matrices by email. This note was written by A. E. Brouwer, and confirms his results.

References

- [BCN] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-regular graphs*, Springer, 1989.
- [FV] F. Vanhove, email, Sept. 2013.