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The association scheme on the points off a

quadric

F. Vanhove

(19 Nov 1984 – 27 Nov 2013)

Abstract

The parameters of the association scheme on the points off a quadric are
computed. This corrects a mistake in the literature.

In [BCN, Theorem 12.1.1], the existence of a certain association scheme is
claimed, and details are given for n = 3. Here we correct the statements given
there for odd n ≥ 5.

Let q be a power of 2, and n ≥ 3. Let V be an n-dimensional vector space over
Fq provided with a nondegenerate quadratic form Q. Let B be the associated
symmetric bilinear form, given by B(x, y) = Q(x + y)− Q(x)− Q(y). If n is odd,
there will be a nucleus N = V⊥.

We construct an association scheme with point set X, where X is the set of
projective points not on the quadric defined by Q and (for odd n) distinct from
N. For n = 3 and for even n, the relations will be R0, R1, R2, R3 where

R0 = {(x, x) | x ∈ X}, the identity relation;

R1 = {(x, y) | x + y is a hyperbolic line (secant)};

R2 = {(x, y) | x + y is an elliptic line (exterior line)};

R3 = {(x, y) | x + y is a tangent}.

For odd n, n ≥ 5, it is necessary to distinguish R3a and R3n, defined by

R3a = {(x, y) | x + y is a tangent not on N};

R3n = {(x, y) | x + y is a tangent on N}.
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Note that every line on N is a tangent, and that for n = 3 there are no other
tangents, so that R3a is empty. For q = 2 a hyperbolic line contains only one non-
isotropic point, and a tangent on N contains only one nonisotropic point distinct
from N, so that R1 and R3n are empty.

We show that if n = 3 or n is even, then (X, {R0, R1, R2, R3}) is an associa-
tion scheme. Also that if n is odd, n ≥ 5, then (X, {R0, R1, R2, R3a, R3n}) is an
association scheme. We give the parameters pi

jk and the eigenmatrix P in both
cases.

1 Quadric size

The number M of isotropic projective points on a nonisotropic quadric in V,
where V has vector space dimension n equals

M =

{

(q2m − 1)/(q − 1) if n = 2m + 1
(qm − ε)(qm−1 + ε)/(q − 1) if n = 2m.

Equivalently,

M = (qn−1 − 1)/(q − 1) + εqn/2−1

with ε = ±1 if n is even, and ε = 0 if n is odd.

2 n = 3

Suppose first that n = 3. The parameters (pi
jk) were given in [BCN], p. 375. Let

us call them (ai
jk) here in the special case n = 3.

(ai
0j)ij =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (ai
1j)ij =











0 1
2 q(q − 2) 0 0

1 1
4 (q − 2)2 1

4 q(q − 2) 1
2 q − 2

0 1
4 (q − 2)2 1

4 q(q − 2) 1
2 q − 1

0 1
4 q(q − 4) 1

4 q2 0











,

(ai
2j)ij =











0 0 1
2 q2 0

0 1
4 q(q − 2) 1

4 q2 1
2 q

1 1
4 q(q − 2) 1

4 q2 1
2 q − 1

0 1
4 q2 1

4 q2 0











, (ai
3j)ij =











0 0 0 q − 2

0 1
2 q − 2 1

2 q 0

0 1
2 q − 1 1

2 q − 1 0

1 0 0 q − 3











.

The P matrix has in column h the eigenvalues of (pi
hj)ij. The rows correspond

to eigenspaces. We find

P =









1 q(q − 2)/2 q2/2 q − 2
1 q/2 −q/2 −1
1 −q/2 + 1 −q/2 q − 2
1 −q/2 q/2 −1









.
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We see that R3 is an equivalence relation (and the equivalence classes are the
tangent lines, that is, the lines on N). We also see that R2 has only three distinct
eigenvalues, and hence defines a strongly regular graph.

Now suppose that dim V = 3 but the quadratic form Q on V is degenerate in

such a way that N := V⊥ is a (single) isotropic point. Then the space is a cone
over a hyperbolic or elliptic line. We have v = |X| = q2 − εq and the valencies are
k0 = 1, k3 = q − 1 and k1 = q2 − 2q, k2 = 0 if ε = 1, k1 = 0, k2 = q2 if ε = −1. Call
the corresponding parameters (hi

jk) and (ei
jk), respectively. Then

(hi
1j)ij =











0 q2 − 2q 0 0

1 q2 − 3q 0 q − 1

∗ ∗ ∗ ∗

0 q2 − 2q 0 0











, (hi
3j)ij =











0 0 0 q − 1

0 q − 1 0 0

∗ ∗ ∗ ∗

1 0 0 q − 2











,

(ei
2j)ij =











0 0 q2 0

∗ ∗ ∗ ∗

1 0 q2 − q q − 1

0 0 q2 0











, (ei
3j)ij =











0 0 0 q − 1

∗ ∗ ∗ ∗

0 0 q − 1 0

1 0 0 q − 2











.

(with undefined * since relation R2 (resp. R1) does not occur).
Finally, suppose that dim V = 3 and the quadratic form Q on V is a double

line (that is, B vanishes identically, Q is the square of a linear form). Now k0 = 1,
k1 = k2 = 0, k3 = q2 − 1. Call the corresponding parameters (zi

jk). Then

(zi
3j)ij =









0 0 0 q2 − 1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 0 0 q2 − 2









.

3 n even

Now let n be even, say n = 2m, where m ≥ 2. Let the form have type ε, with
ε = 1 for a hyperbolic and ε = −1 for an elliptic quadric.

The number of points of the scheme equals v = |X| = q2m−1 − εqm−1.
For the valencies ki of the relations Ri we find

k0 = 1

k1 = (q − 2)qm−1(qm−1 + ε)/2

k2 = qm(qm−1 − ε)/2

k3 = q2m−2 − 1

If n = 2, m = 1, then only one type of line occurs (since all of V is just a line),

and P =

(

1 q − 2
1 −1

)

if ε = 1, and P =

(

1 q
1 −1

)

if ε = −1.

Let n ≥ 4, m ≥ 2. If (x, y) ∈ Rh for a certain h ∈ {1, 2, 3} then for each plane on
the line x + y we find the same relation, and a contribution as just computed for
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the case n = 3. In the plane we did not count the nucleus, but here that nucleus
contributes 1 to ph

33 for h 6= 3. If h = 3 then x or y might itself be the nucleus of a
nondegenerate plane on x + y. The details follow.

Let L be a hyperbolic line, and consider the (qn−2 − 1)/(q − 1) planes on L.
A degenerate plane must be the span L + z of L and an isotropic point z in L⊥.
Now L⊥ has the same type ε as V and dimension n − 2, so has
a := (q2m−3 − 1)/(q − 1) + εqm−2 isotropic points. Hence L is on a degener-
ate planes L + z, and on (qn−2 − 1)/(q − 1)− a = qn−3 − εqm−2 nondegenerate
planes. All parameters p1

jk follow by summing such parameters of these two types

of planes: If (x, y) ∈ R1, then L = x + y is a hyperbolic line that contributes q − 3
to p1

11 and nothing to p1
jk for {j, k} 6⊆ {0, 1}. A degenerate plane on L is a cone

over a hyperbolic line, and contributes h1
jk. Thus

p1
11 = q − 3 + (qn−3 − εqm−2)(a1

11 − q + 3) + a(h1
11 − q + 3)

and
p1

33 = (qn−3 − εqm−2)(a1
33 + 1) + ah1

33

and
p1

jk = (qn−3 − εqm−2)a1
jk + ah1

jk

for nonzero j, k not both 1 or both 3.
Let L be an elliptic line, and consider planes on L. This time L⊥ has the

opposite type, so has b := (q2m−3 − 1)/(q − 1) − εqm−2 isotropic points, and L
is on (qn−2 − 1)/(q − 1)− b = qn−3 + εqm−2 nondegenerate planes. We find

p2
22 = q − 1 + (qn−3 + εqm−2)(a2

22 − q + 1) + b(e2
22 − q + 1)

and
p2

33 = (qn−3 + εqm−2)(a2
33 + 1) + be2

33

and
p2

jk = (qn−3 + εqm−2)a2
jk + be2

jk

for nonzero j, k not both 2 or both 3.
Let L be a tangent, with isotropic point z. Then L⊥ is an (n − 2)-space contain-

ing L. The line L is on qn−3 nondegenerate planes (where Q is a conic, L a tangent
to the conic, and the nucleus of the plane is a nonisotropic point of L), namely
those not contained in z⊥. The line L is on (qn−4 − 1)/(q − 1) planes contained in
L⊥ (on which the symplectic form vanishes identically, and the quadratic form is
a double line). The line L is on qn−4 degenerate planes with radical z (contained
in z⊥ but not in L⊥). The space z⊥/z is a nondegenerate (n − 2)-space of the
same type ε in which L is a nonisotropic point. The quadric in that space has size
(qn−3 − 1)/(q − 1) + εqm−2, and through the point L there are (qn−4 − 1)/(q − 1)
tangents, and (qn−4 + εqm−2)/2 hyperbolic lines, and (qn−4 − εqm−2)/2 ellip-
tic lines. Consequently, of the qn−4 degenerate planes π on L with radical z,
for (qn−4 + εqm−2)/2 the quotient π/z is hyperbolic, and for (qn−4 − εqm−2)/2
elliptic. Each of the q nonisotropic points of L is nucleus of qn−4 nondegenerate
planes. For the computation of p3

3k starting with two points x, y where L = x + y
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is a tangent, the qn−4 nondegenerate planes in which x is nucleus each contribute
1
2q(q − 2) for k = 1 and 1

2q2 for k = 2. There are qn−4(q − 2) such planes where
none of x, y is nucleus. Altogether, we find

p3
jk = qn−4(q − 2)a3

jk +
1
2(q

n−4 + εqm−2)h3
jk +

1
2(q

n−4 − εqm−2)e3
jk

for j, k 6= 0, 3, and

p3
31 = 1

2qn−3(q − 2),

p3
32 = 1

2qn−2,

p3
33 = q − 2 +

qn−4 − 1

q − 1
(z3

33 − q + 2).

Since we could compute all pi
jk, this proves that we have an association scheme.

Let us substitute the values of ai
jk, hi

jk, ei
jk and zi

jk and compute the eigenmatrix P

of the scheme. In order to save space, we abbreviate r := q − 2.

For (pi
1j)ij one finds











0 1
2 qm−1(qm−1 + ε)r 0 0

1 1
4 qn−3r2 + εqm−2( 3

4 q2 − 2q − 1) 1
4 qm−1(qm−1 − ε)r 1

2 (q
m−1 − ε)(qm−2r + 2ε)

0 1
4 qm−2(qm−1 + ε)r2 1

4 qm−1(qm−1 + ε)r 1
2 qm−2(qm−1 + ε)r

0 1
4 qm−1(qm−2r + 2ε)r 1

4 qn−2r 1
2 qn−3r











with eigenvalues 1
2qm−1(qm−1 + ε)(q − 2), 1

2 εqm−2(q + 1)(q − 2), −εqm−1, 0.

For (pi
2j)ij one finds











0 0 1
2 qm(qm−1 − ε) 0

0 1
4 qm−1(qm−1 − ε)r 1

4 qm(qm−1 − ε) 1
2 qm−1(qm−1 − ε)

1 1
4 qm−1(qm−1 + ε)r 1

4 qn−1 − εqm−1( 3
4 q − 1) 1

2 (q
m−1 + ε)(qm−1 − 2ε)

0 1
4 qn−2r 1

4 qm(qm−1 − 2ε) 1
2 qn−2











with eigenvalues 1
2qm(qm−1 − ε), εqm−1, − 1

2εqm−1(q − 1), 0.

For (pi
3j)ij one finds











0 0 0 qn−2 − 1

0 1
2 (q

m−1 − ε)(qm−2r + 2ε) 1
2 qm−1(qm−1 − ε) qm−2(qm−1 − ε)

0 1
2 qm−2(qm−1 + ε)r 1

2 (q
m−1 + ε)(qm−1 − 2ε) qm−2(qm−1 + ε)

1 1
2 qn−3r 1

2 qn−2 qn−3 − 2











with eigenvalues qn−2 − 1, qm−1 − 1, −qm−1 − 1, εqm−2 − 1.

The P-matrix is

P =









1 1
2qm−1(qm−1 + ε)(q − 2) 1

2qm(qm−1 − ε) q2m−2 − 1

1 1
2 εqm−2(q + 1)(q − 2) − 1

2εqm−1(q − 1) εqm−2 − 1
1 0 εqm−1 −εqm−1 − 1
1 −εqm−1 0 εqm−1 − 1









.

The multiplicities (in the order of the rows of P) are 1, q2(qn−2 − 1)/(q2 − 1),
1
2q(qm−1 − ε)(qm − ε)/(q + 1), 1

2(q − 2)(qm−1 + ε)(qm − ε)/(q − 1).
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4 n odd

Now let n be odd, say n = 2m + 1, where m ≥ 2. Let Q be a nondegenerate
quadric, and let N be its nucleus. We compute the pi

jk as before, this time split-

ting relation R3 (being joined by a tangent) into the two relations R3a and R3n,
depending on whether the tangent does not or does pass through N.

The number of points of the scheme equals v = |X| = qn−1 − 1.
For the valencies ki of the relations Ri we find

k0 = 1

k1 = 1
2 qn−2(q − 2)

k2 = 1
2 qn−1

k3a = qn−2 − q

k3n = q − 2

The number of planes on a line L is (qn−2 − 1)/(q − 1). If L is hyperbolic or
elliptic, then a degenerate plane must be the span L+ z of L and an isotropic point
z in L⊥. Now L⊥ is a nondegenerate (n − 2)-space, and has (qn−3 − 1)/(q − 1)
isotropic points, so there are qn−3 nondegenerate planes, and (qn−3 − 1)/(q − 1)
degenerate planes on L. We find for i = 1, 2 that

pi
jk = qn−3(ai

jk − c) +
qn−3 − 1

q − 1
(xi

jk − c) + c

with x = h for i = 1 and x = e for i = 2, and c = q − 3 if i = j = k = 1, c = q − 1
if i = j = k = 2 and c = 0 otherwise.

If L is a tangent on N, with isotropic point z, then the qn−3 nondegenerate
planes on L are the planes not in z⊥. The remaining (qn−3 − 1)/(q − 1) planes on
L are contained in L⊥, and the form induces a double line on these. Hence

pi
jk = qn−3a3

jk

for i = 3n when not {j, k} ⊆ {0, 3a, 3n}.
If L is a tangent not on N, with isotropic point z, then the qn−3 nondegenerate

planes on L are the planes not in z⊥. Each nonisotropic point of L is the nucleus
of qn−4 of these planes. There are (qn−4 − 1)/(q − 1) planes on L contained in
L⊥, where the form induces a double line. The remaining planes are degenerate,
cones over a hyperbolic or elliptic line, 1

2 qn−4 of each.
Relation R3n is an equivalence relation with equivalence classes of size q − 1.

If L does not pass through N, then it is on a unique plane L + N on N, and the
points that have relation R4n with x or y live in that plane. We find p1

1,3n = 1
2q − 2,

p1
2,3n = 1

2q, p2
1,3n = p2

2,3n = 1
2q − 1.

For (pi
1j) one finds

















0 1
2 qn−2(q − 2) 0 0 0

1 1
4 qn−3(q − 2)2 1

4 qn−2(q − 2) 1
2 (q

n−3 − 1)(q − 2) 1
2 q − 2

0 1
4 qn−3(q − 2)2 1

4 qn−2(q − 2) 1
2 (q

n−3 − 1)(q − 2) 1
2 q − 1

0 1
4 qn−3(q − 2)2 1

4 qn−2(q − 2) 1
2 qn−3(q − 2) 0

0 1
4 qn−2(q − 4) 1

4 qn−1 0 0
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with eigenvalues 1
2q2m−1(q − 2), ± 1

2qm−1(q − 2), ± 1
2 qm.

For (pi
2j) one finds

















0 0 1
2 qn−1 0 0

0 1
4 qn−2(q − 2) 1

4 qn−1 1
2 q(qn−3 − 1) 1

2 q

1 1
4 qn−2(q − 2) 1

4 qn−1 1
2 q(qn−3 − 1) 1

2 q − 1

0 1
4 qn−2(q − 2) 1

4 qn−1 1
2 qn−2 0

0 1
4 qn−1 1

4 qn−1 0 0

















with eigenvalues 1
2q2m, ± 1

2 qm (each twice).

For (pi
3a,j) one finds

















0 0 0 q(qn−3 − 1) 0

0 1
2 (q

n−3 − 1)(q − 2) 1
2 q(qn−3 − 1) qn−3 − 1 0

0 1
2 (q

n−3 − 1)(q − 2) 1
2 q(qn−3 − 1) qn−3 − 1 0

1 1
2 qn−3(q − 2) 1

2 qn−2 qn−3 − 2q + 1 q − 2

0 0 0 q(qn−3 − 1) 0

















with eigenvalues q(q2m−2 − 1), (qm−1 − 1)(q − 1), −(qm−1 + 1)(q − 1), 0 (twice).

For (pi
3n,j) one finds













0 0 0 0 q − 2

0 1
2 q − 2 1

2 q 0 0

0 1
2 q − 1 1

2 q − 1 0 0
0 0 0 q − 2 0
1 0 0 0 q − 3













with eigenvalues q − 2 (three times) and −1 (twice).

Since we could compute all pi
jk, this is indeed an association scheme.

The P-matrix is

P =

















1 1
2q2m−1(q − 2) 1

2 q2m q(q2m−2 − 1) q − 2

1 1
2 qm−1(q − 2) 1

2qm −(qm−1 + 1)(q − 1) q − 2

1 − 1
2qm−1(q − 2) − 1

2qm (qm−1 − 1)(q − 1) q − 2

1 1
2qm − 1

2qm 0 −1

1 − 1
2 qm 1

2qm 0 −1

















The multiplicities (in the order of the rows of P) are 1, 1
2 q(qm + 1)(qm−1 −

1)/(q − 1), 1
2q(qm − 1)(qm−1 + 1)/(q − 1), 1

2(q − 2)(q2m − 1)/(q − 1) (twice).

5 Conclusion

F. Vanhove computed all pi
jk and communicated both P matrices by email. This

note was written by A. E. Brouwer, and confirms his results.
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