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Abstract—Several bot detection algorithms have recently been
discussed in the literature, as software bots that perform main-
tenance tasks have become more popular in recent years. State-
of-the-art techniques detect bots based on a binary classification,
where a GitHub account is either a human or a bot. However,
this conceptualisation of bot detection as an account-level binary
classification problem fails to account for ’mixed accounts’,
accounts that are shared between a human and a bot, and
that therefore exhibit both bot and human activity. By using
binary classification models for bot detection, researchers might
hence mischaracterize both human and bot behavior in software
maintenance. This calls for conceptualisation of bot detection
through a comment-level classification. However, the single such
approach solely investigates a small number of mixed account
comments. The nature of mixed accounts on GitHub is thus yet
unknown, and the absence of appropriate datasets make this a
difficult problem to study.

In this paper, we investigate three comment-level classification
models and we evaluate these classifiers on a manually labeled
dataset of mixed accounts. We find that the best classifiers
based on these classification models achieve a precision and
recall between 88% and 96%. However, even the most accurate
comment-level classifier cannot accurately detect mixed accounts;
rather, we find that textual content alone, or textual content
combined with templates used by bots, are very effective features
for the detection of both bot and mixed accounts.

Our study calls for more accurate bot detection techniques ca-
pable of identifying mixed accounts, and as such supporting more
refined insights in software maintenance activities performed by
humans and bots on social coding sites.

Index Terms—bot identification, classification model, social
coding platforms, GitHub, software engineering

I. INTRODUCTION

Social coding platforms such as GitHub or BitBucket
have been widely embraced by open-source software (OSS)
communities to facilitate collaboration [1]. To streamline the
process of external contributions and safeguard the shared
codebase, many teams have adopted the pull-based develop-
ment model [2]. However, in this model developers need to
ensure that the community guidelines are followed, new code
fragments are reviewed, and approved changes are successfully
integrated [3]. To lighten the workload, teams utilize bots,
tools that automate repetitive tasks and communicate with
developers using a conversational interface [4], [5]: e.g., bots
triage abandoned issues [6], generate bug patches [7], upgrade
out-of-date dependencies [8] and refactor source code [9].

Studies of human aspects of software maintenance require
separating human activity from bot activity as falsely reporting
human activity as bot activity or vice-versa can threaten

internal validity of a study. This is why software engineer-
ing studies have often excluded bots and bot activity [10]–
[12]. The need to exclude bots led to several bot detection
approaches being proposed, often as an account-level binary
classification [13], [14] where accounts are classified either
as a bot or a human. However, Golzadeh et al. have found
’mixed’ GitHub accounts [15], accounts shared by a human
and a bot, and as such exhibiting both human-like and bot-like
behavior: e.g., maintainers might share their private GitHub
token with a bot provider, such as the semantic-release bot.1

The presence of mixed accounts threatens conceptualisation
of the bot detection as an account-level binary classification
problem and subsequently accuracy of the tools based on this
conceptualisation. For instance, studies of an issue or pull-
request response time might derive wrong conclusions if mixed
accounts are misrecognised as a solely human activity: indeed,
some bots immediately respond to issues or code reviews [13].

This observation calls for comment-level classification that
should support categorisation of accounts into bot, human or
mixed. Hence, we pose the following Research Question: To
what extent can comment-level classifiers distinguish human
and bot activity in mixed accounts?. We consider a validated
dataset of GitHub accounts and a set of mixed accounts [14],
and evaluate three classification models and several classifiers
to determine how suited these models and these classifiers are
for the detection of mixed accounts.

In this work we find that the most accurate classifica-
tion models in a binary setting are not able to accurately
detect mixed accounts. Moreover, we find that the textual
content alone, or combined with information about the use
of templates, is an effective feature for the classification of
mixed accounts. More accurate classification models for mixed
accounts can be used to study and discover mixed accounts,
and secondly support a more accurate separation of human
and bot activity in software maintenance.

The remainder of this paper is structured as follows. Section
II discusses previous work related to the detection of bots.
Section III presents the data collection process and the setup of
the classification models. In Section IV we present the results
and a discussion of the results follows in Section V. Section
VI outlines threats to the validity of this research and mentions
possible future work, and Section VII concludes.

1https://github.com/semantic-release/semantic-release



TABLE I
COMMENTS IN DATASET

Human comments Bot comments Total
Training set 4,351 4,245 8,596
Testing set 4,256 4,283 8,539

Total 8,607 8,528 17,135

II. RELATED WORK

Traditionally bots have been identified manually, e.g.,
through previous knowledge [16], [17], based on their
names [10], or descriptions or templates [4].

Several recent approaches utilize the entire account’s ac-
tivity to classify accounts as bot or human. Dey et al. [13]
utilised three distinct classification approaches and combined
them into an ensemble model to automatically identify and
characterize bots through an account’s commit activity w.r.t
comments and files/projects, and the name/email of the ac-
count. Their approach was validated on a custom dataset and
it was able to identify 58 out of the 67 bots. This approach
has been simplified by Saadat et al. [18]. Golzadeh et al. [14]
proposed a classification model utilising pull request and issue
comments. They constructed a ground-truth dataset of bot and
human accounts by manually investigating their recent activity,
and harnessed it to distinguish the features that would best
accommodate a classification model. The final classification
model includes such features as the number of comment
patterns, the inequality between comments in patterns, and the
number of empty comments.

Golzadeh et al. [15] proposed a bot detection classifier
that classifies individual comments, with the goal of detect-
ing mixed accounts. Golzadeh et al. encode comments as
vectors using TF-IDF, and find that a multinomial Naive
Bayes classifier is most accurate, with an average precision,
recall, and F1 score of 0.88. Moreover, they find that the
classifier can correctly classify 80% of the comments of mixed
accounts. However, they rely on a small set of 177 and 203
bot and human comments respectively. On the contrary, our
work utilizes 14,097 comments from 78 mixed accounts (see
Section IV-B). Our study also builds on top of their classifier,
by identifying which features can be used to accurately detect
human accounts, bot accounts, and mixed accounts.

III. METHODOLOGY

Comments made by a mixed account are either produced
by a human or by a bot; to detect mixed accounts we classify
individual comments as being written by humans or by bots.
Optimally, we would train a classifier based on comments
of mixed accounts. However, such a strategy poses a great
challenge; since mixed accounts are not easily identifiable, it
becomes difficult to form a large ground truth dataset. Thus,
we would need to train a classifier on a small amount of data
and in turn, we expect that such a classifier would perform
poorly in unseen data. We therefore opt for a classifier trained
on messages from human-only and bot-only accounts.

Dataset: To this end we rely on and extend a manually
labeled dataset by Golzadeh et al. [14]. The dataset contains
a list of 5,000 GitHub accounts, the repository in which they
were found, and the label “human” or “bot.” We used the
GitHub REST API to gather the 500 most recent comments
from each repository in which at least one of the accounts
was active. From the 374,783 scraped comments we extracted
all comments by accounts present in the dataset of Golzadeh
et al. In total, we gathered 32,870 comments from 393 bot
accounts, and 341,913 comments from 4,025 human accounts;
582 accounts did not have any recent activity, so they have
been excluded. As this dataset is unbalanced we randomly
sample at most 25 comments per account, and undersample
the number of human accounts, such that in total, we obtain
8,528 comments from 393 bot accounts, and 8,607 comments
from 406 human accounts. We further split these accounts
into an equally divided training and a test set, see Table I.
Additionally, we measured the overlap in vocabulary between
the training and test set, and we found that 68.5% of the
vocabulary in the test set does not occur in the training set.

Overview: To classify the comments we preprocessed the
data and evaluated three classification models: Model 1 based
on TF-IDF representation of the comment akin to Golzadeh
et al. [15], Model 2 extending Model 1 with templated
messages [13], [14] and Model 3 combining Model 2 with
the information about activity of the accounts authoring the
comments. For each classification model we compare the
performance of four classifiers well suited for textual data:
multinomial Naive Bayes [19], Decision Trees [20], Random
Forest [21], Support Vector Machines [22]. The model perfor-
mance is evaluated using the accuracy, precision, recall and F1;
while evaluating the performance of the model we also report
the performance of the model for individual classes. We do this
such that we can be sure that the model can accurately identify
both bot and human comments. To optimize the models we
use a Grid Search with 5-Fold Cross-Validation to compute
the optimum values of hyper-parameters and select the most
accurate classifier; for each model, we only discuss the most
accurate classifier.

Preprocessing: A manual inspection of the scraped com-
ments has shown occurrence of several non-natural language
tokens such as URLs, absolute paths to directories and files,
commit SHAs, email addresses, usernames, version numbers
and tags to other pull requests or issues. Following Efstathiou
and Spinellis [23], we replace non-natural language tokens
with dummy strings corresponding to the type of a token,
e.g., #URL or #SHA. Next we pre-process the comments
by removing punctuation and numbers, converting uppercase
characters to lowercase, removing stop words and stemming
with Porter’s stemmer [24]. The pre-processing is performed
using the NLTK Python library.2

Classification models: We evaluate the three classification
models. Model 1 classifies comments based solely on the

2https://www.nltk.org/



textual content of the comment (cf. [15]). We use TF-IDF
to create a numerical representation of the comments [25].

Model 2 extends Model 1 based on an observation that
bots often use templated messages [13], [14]. These templated
messages are often highly structured and similar to each other.
Given the high frequency of templated posts used by bots
we hypothesize that clustering similar comments could be
useful to classify comments. To this end, we take the pre-
processed comments and cluster them based on their similarity.
We follow Golzadeh et al. [14] and use as the dissimilarity
measure the average of the Jaccard distance [26] and the
normalized Levenshtein [27] distance between the comments

Jaccard(C1, C2) = 1− |tokens(C1 ∩ C2)|
|tokens(C1 ∪ C2)|

nLevenshtein(C1, C2) =
edit(C1, C2)

max(|C1|, |C2|)

We start the clustering process with one cluster which contains
a single comment (the original comment of the cluster). Next
we traverse the list of comments and for each comment we
compare it to the original comment of each cluster. If the
dissimilarity score is lower than .6 we add the comment to the
cluster. If the dissimilarity score is higher than .6 we create a
new cluster with the comment as the original comment of
the cluster. A manual evaluation of several values for the
dissimilarity score has shown that .6 is the most accurate
value, for slightly lower values known bot templates are not
clustered, while for slightly higher values a large number of
non-templated comments is clustered. Finally, we count the
number of comments per cluster, and for each comment we
record the cluster size as the number of similar messages for
that comment. The number of similar messages per comment
is scaled by removing the mean and scaling to unit variance.

Model 3 extends Model 2 with the following features based
on the activity of the account that authored the comment: the
number of repositories created, the number of gists created, the
number of users followed by the account, and the number of
users that follows the account. We expect that bot accounts do
not use additional features of Github, such as gists, or social
features of Github, and that these features help predict whether
a comment originated from a bot or not.

Classification of mixed accounts: As explained above, due
to the limited amount of mixed accounts we use them only
for testing the models. To this end for each of the 78 mixed
accounts identified by Golzadeh et al. [14], we extract the
most recent 100 comments of the most recent 100 issues
and pull requests from the GitHub repositories in which the
mixed accounts were identified. The final collected dataset
includes 14,097 comments from the 78 mixed accounts. We
preprocess these comments as discussed above. Finally, for
each classification model we select the classifier found to
perform best on the previous task and report the percentage
of accounts correctly identified as mixed accounts.

TABLE II
VALIDATION OF THE THREE MODELS ON THE TEST SET

Prediction
Bot Human F1 Precision Recall

Actual

Model 1
Bot 3,786 497 0.883 0.881 0.883
Human 509 3,747 0.882 0.883 0.880

Total 4,295 4,244 0.882 0.882 0.882

Model 2
Bot 3,864 419 0.917 0.932 0.902
Human 280 3,976 0.919 0.904 0.934

Total 4,144 4,395 0.918 0.918 0.918

Model 3
Bot 4,153 130 0.963 0.956 0.969
Human 190 4,066 0.962 0.969 0.955

Total 4,343 4,196 0.962 0.962 0.962

IV. VALIDATION RESULTS

A. Model Evaluation

For each classification model, we train and test each of
the four classifiers and report on their performance. The best
performing classifiers for Model 1, Model 2 and Model 3 are
the multinomial Naive Bayes, Support Vector Machines and
Random Forest, respectively. In most cases the best performing
classifier achieves precision and recall values that are very
close to the competing algorithms; the differences with the
best performing classifier range from less than 1% to 6%. The
only exception is Decision Trees of Model 1, with a recall that
is 10% lower than the best performing classifier. Due to the
small differences we refrain from drawing conclusions about
the strengths of each classifier.

Table II presents the evaluation results of each model.
Results of Model 1 indicate that 88% of the bot comments and
88% of the human comments are correctly classified. The man-
ual investigation of the misclassified comments indicates three
patterns that the model struggles with. First, all comments of
38 (out of 196) bot accounts were incorrectly classified, as
they use vocabulary that does not occur in the training set.
Second, certain bots post comments that incorporate entire
change logs, which significantly alter the TF-IDF score from
other comments that have been posted by the same bot.
Third, multiple human comments are incorrectly classified
because they include tokens prevalent in bot comments such
as usernames, version numbers or links to GitHub pages.

The evaluation results for Model 2 show that the addition
of the number of similar comments in the feature vectors
appears to improve the performance. Identification of human
comments is especially improved, as 93.4% of them are
correctly classified. A review of the misclassifications indicates
that the concerns discussed above, related to differences in
vocabulary and presence of change logs, apply to Model 2 as
well. However, the template similarity algorithm proves to be
an effective measure to mitigate the misclassification of human
comments due to shared vocabulary observed for Model 1.
This approach is capable of correctly labeling longer human
comments, as only 67 out of the 280 human misclassifications
involve comments with more than five words. The difficulty
to accurately predict the origin of short comments does not



come as a surprise, since these cases can incorrectly appear to
stem from a template, as shorter comments are usually highly
similar to each other. For instance the commonly occurring
pattern “LGTM” (Looks good to me) is often incorrectly
identified as being part of template.

Lastly, the results of Model 3 show that the accuracy
is significantly improved, with 97% of bot comments and
95.5% of human comments being correctly identified. The
addition of account level features, and the difference in GitHub
usage between the two classes contributes to the improved
performance of Model 3. Nevertheless, the investigation of
the misclassifications indicates that these features can also lead
to mistakes. For example, the entire activity of two bots was
classified as human, presumably because their accounts had
created 177 and 2,045 repositories, unusually high numbers for
a bot. Simultaneously, on several occasions human comments
have been misclassified because they have been posted by
authors with activity more akin to bots.

B. Mixed accounts

The goal of this evaluation is determining whether the
three models can detect whether both human and bot activity
occurred in the comments of an account. Model 1 and Model
2 correctly identify mixed activity in all of the accounts, while
Model 3 identifies mixed activity in only 36% of the accounts.

Specifically, Model 3 misclassifies the activity of 48 ac-
counts as entirely human and the activity of 3 accounts as
entirely bot. To investigate why the third model is not able to
distinguish mixed accounts, we identify which features the
model utilises to classify a comment. Figure 1 showcases
the ten features with the highest importance scores, feature
importance has been determined with the Gini-importance
score [28]. Since mixed accounts typically involve human
accounts which have given permissions to bots to post com-
ments, the profile information of mixed accounts is more like
that of humans. As a result, the incorporation of the profile
information leads the vast majority of comments from mixed
accounts to be classified as human. Specifically, Model 3
identifies bot activity in only 10% of the mixed accounts.

Fig. 1. Most important features in Model 3

V. DISCUSSION

Bots often use templated messages that are highly repetitive,
and this property of bots has proven to be very useful for
bot detection: Model 2 and Model 3 outperform Model 1.
This result confirms and builds on earlier work by Dey et
al. [13] and Golzadeh et al. [14], and further emphasizes the
importance of template detection as a feature for bot detection.
Moreover, the set of templates used by a bot can be studied
to characterize the different actions performed by a bot.

We observe that the most accurate bot detection classifier
(Model 3) does not accurately detect mixed accounts. Based
on the importance of features used by the classifiers we
theorize that account level features such as the number of
repositories created by an account can be accurate predictors
for a binary classification of comments. However, a classifier
that uses these features will fail to identify mixed accounts
because account level features of mixed accounts stem from
human behavior, making them less useful when identifying
mixed accounts. There can also be a mismatch between the
account level characteristics of bots that operate as individual
accounts and bots that are part of mixed profiles.

Since Model 1 and Model 2 accurately detect all mixed
activity we expect that classifiers that use template and text
based features can be effective in detecting mixed activity.
The extent that templates can improve comment classification
of mixed accounts needs to be further investigated on a
larger dataset. This is important, as mixed accounts have just
recently been reported on by Golzadeh et al. [15], but their
investigation relies on a small dataset. To further understand
the impact of bots on software maintenance activities one
should be able to also find mixed accounts. We believe that
the classifiers discussed in this work are a next step, allowing
researchers to find and study mixed accounts at scale.

Being able to accurately detect bots is becoming increas-
ingly important, as bot adoption is increasing, and more repet-
itive maintenance activities are being outsourced to bots [4].
A side-effect of this is that an accurate study of behavior on
social coding site requires one to separate bot from human
activity, as the behavior of bots fundamentally differs from
that of humans [4], [13]. The models identified in this work
can be used to further improve the bot detection techniques
used by researchers to identify or filter out bots from datasets.

Additionally, improved detection techniques could also be
used to find more mixed accounts, and study this phenomenon
in more detail. From a sample of GitHub accounts identified
in the work of Golzadeh et al. [29], 78 accounts out of 5,082
accounts are mixed accounts (1.53%) and 632 accounts are bot
accounts (12.43%). This indicates that mixed accounts make
up a fair share of non-human accounts on GitHub.

VI. THREATS TO VALIDITY

1) Construct Validity: Threats to construct validity are
concerned with the link between the theoretical constructs
behind an experiment and the observations. In Model 2
and Model 3 we opted for a computationally less expensive
similarity measure as compared to, e.g., the method of Dey et



al. [13]. However, this might result in less accurate template
identification. A further follow-up is required to evaluate the
impact of different similarity measures.

2) Internal Validity: Threats to internal validity are related
to the choices made during the study and their impact on
the outcome. To mine the comments of the accounts we
scraped the 500 most recent comments of the projects in
which the accounts are active. However, as a result of this
we only scraped recent comments, and our conclusions might
be biased towards recent developments on GitHub. A similar
issue threatens our study of mixed accounts. To evaluate
the accuracy of the three classification approaches we used
a train/test split. Therefore, the results we obtained for the
experiments might be sensitive to this particular split.

3) External Validity: Threats to external validity are con-
cerned with the possibility to generalize our findings beyond
the scope of this study. Our research focuses only on pull
request and issue comments in GitHub. However, there is
no certainty that the presented models would perform sim-
ilarly on other software engineering texts created by bots
and humans, such as commit messages. Finally, we cannot
ascertain whether our approach is generalizable to social
coding platforms other than GitHub.

VII. CONCLUSION

In this paper we study the problem of automatic recognition
of mixed accounts based on the comments posted by them on
GitHub pull requests and issues. We evaluated three classifi-
cation models on a curated dataset [14], which includes both
bot accounts and mixed accounts. We find that the templates
posted by accounts, and account-level features of Github
accounts are powerful predictors for bot detection. However,
the most accurate model in a binary setting where accounts
are either bot or human was not accurate in a setting where
mixed accounts were present. By investigating the features
used by the model, we conjecture this is due to the fact that
the account level features of mixed accounts resemble those
of human accounts, and this results in misclassification of bot
comments created by a mixed account. Our results are a careful
first step in designing more accurate bot detection algorithms
that can reliably detect mixed accounts. Potential next steps are
studies that attempt to assess the prevalence of mixed accounts
on GitHub, and an investigation on how existing bot detection
algorithms label mixed accounts. Additionally, the detection
of mixed accounts is important for researchers that need to
distinguish between human and bot behavior on social coding
sites. Algorithms that are able to detect mixed accounts can
be used to further identify and study this new phenomenon.
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