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• Given G and an integer l, does G contain a path on at least l vertices?

Long Path

• Given G and an integer l, does G contain a cycle on at least l vertices?

Long Cycle

• Given G and pairs of vertices (s1, t1), … , (sl, tl), are there vertex-disjoint paths 
connecting each si to ti?

Disjoint Paths

• Given G and an integer l, are there l vertex-disjoint simple cycles in G?

Disjoint Cycles
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• Disjoint Paths lies at the heart of 
the Graph Minors algorithm

• Long Path was one of the first 
problems known to be fixed-
parameter tractable

• Long Path was one of the main 
motivations for the kernel lower-
bound framework

• Disjoint Cycles inspired one of the 
first non-trivial compositions

Theoretical

• Long Path has applications in 
computational biology

• …

Practical
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• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage 
Theorem for planar graphs 
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques 
[BjörklundHKK’10]

• Natural parameterizations k-Path, k-Disjoint Paths, k-
Disjoint Cycles are fixed-parameter tractable but do not 
admit polynomial kernels unless NP ⊆ coNP/poly 
[BodlaenderDFH@ICALP’08, BodlaenderTY@ESA’09, 
Robertson&Seymour]

– For k-Path: not even a polynomial kernel on connected 
planar graphs [ChenFM@CiE’09]
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polynomial kernels, we might still benefit from 
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Preprocessing for path & cycle 
problems
• Even though natural parameterizations do not admit 

polynomial kernels, we might still benefit from 
preprocessing

• How to guide the search for good reduction rules?

– Non-standard parameters!

• One example known:
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Hamiltonian Cycle parameterized by Max Leaf Number has a 
kernel with 5.75k vertices *FellowsLMMRS@CiE’07+
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Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle, 
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an 
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness 
and kernel lower-bounds

Path problems with Forbidden Pairs
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Generalizes kernel for Hamiltonian Cycle by 

*FellowsLMMRS@CIE’07+
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LONG CYCLE
Quadratic-vertex kernel parameterized by Vertex Cover #
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Quadratic-vertex kernel for Long Cycle 
by Vertex Cover
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• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?
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Quadratic-vertex kernel for Long Cycle 
by Vertex Cover
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• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

– Assume l > 4 (otherwise, solve by brute force)

• Example for l = 6



Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)
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• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M
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• Proof using augmenting paths

Theorem. For all B’  B: 
if H has a matching saturating B’, 

then H – RU has a matching saturating B’.
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Correctness (II)
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Correctness (II)

• All (green) vertices and edges of G[X] are still present

• Red vertices in G-X are used to connect two green vertices in X

• Subpath (g1, r, g2) of C is an indirect connection

– r ∈ N(g1) ∩ N(g2) \ X

• Find red vertices in R \ RU to replace all indirect connections
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The kernel

• For the decision problem with a vertex cover in the input:

• Kernel does not depend on desired length of the cycle

– Works for optimization problem as well

• If X is not given: 

– Compute a 2-approximate vertex cover, use it as X

• Also applies to Long Path, Disjoint Paths, Disjoint Cycles
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has a kernel with |X| + |X|2 vertices.
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Polynomial kernel by Max Leaf Number
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The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

Held-Karp Dynamic Programming

• If binary encoding of a weight uses > c·k bits:

• There were > 2c·k degree-2 vertices so n > 2c·k

• Solve weighted instance: O(2|X| |X|3) is O(n4) time

Karp Reduction

• If binary encoding is small: (G’, w’, l’) has bitsize poly(k)

• Weighted Long Cycle is in NP

• Reduce to back to unweighted problem

• Polynomial-time transformation, output has size poly(k)
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Distance to 
linear forest

Vertex Cover

Distance to 
Cograph

Distance to 
Chordal

Treewidth

Chromatic Number

Odd Cycle 
Transversal

Distance to 
Perfect

Max Leaf #

Distance to 
Co-cluster

Distance to 
Outerplanar

Feedback 
Vertex Set

Distance to 
Interval

Distance to Clique

Distance to 
Cluster

Pathwidth

Polynomial kernels

NP-complete for k=0

FPT, no poly
kernel unless

NP⊆coNP/poly

FPT
poly kernel?

FPT?
poly kernel?

Complexity overview for Long Cycle parameterized by…



Conclusion
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• Various upper and lower-bound results
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Poly kernels for Long Path parameterized by:

• feedback vertex number

• vertex-deletion distance to a cograph

Poly kernels for Long Path parameterized by:

• Max Leaf Number, without using binary 
encoding?

Is Longest Path in FPT …

• parameterized by a (given) deletion set to an Interval graph?



Conclusion

• Structural parameterizations of Path and Cycle problems 
admit polynomial kernels

• Various upper and lower-bound results

114

Poly kernels for Long Path parameterized by:

• feedback vertex number

• vertex-deletion distance to a cograph

Poly kernels for Long Path parameterized by:

• Max Leaf Number, without using binary 
encoding?

Is Longest Path in FPT …

• parameterized by a (given) deletion set to an Interval graph?


