
Kernel Bounds for Path
and Cycle Problems

Bart M. P. Jansen

Joint work with

Hans L. Bodlaender & Stefan Kratsch

September 8th 2011, Saarbrucken

Path and Cycle problems

2

Path and Cycle problems

3

• Given G and an integer l, does G contain a path on at least l vertices?

Long Path

• Given G and an integer l, does G contain a cycle on at least l vertices?

Long Cycle

• Given G and pairs of vertices (s1, t1), … , (sl, tl), are there vertex-disjoint paths
connecting each si to ti?

Disjoint Paths

• Given G and an integer l, are there l vertex-disjoint simple cycles in G?

Disjoint Cycles

Background

• Various path and cycle problems have been important to
the development of parameterized complexity

4

Background

• Various path and cycle problems have been important to
the development of parameterized complexity

5

• Disjoint Paths lies at the heart of
the Graph Minors algorithm

• Long Path was one of the first
problems known to be fixed-
parameter tractable

• Long Path was one of the main
motivations for the kernel lower-
bound framework

• Disjoint Cycles inspired one of the
first non-trivial compositions

Theoretical

• Long Path has applications in
computational biology

• …

Practical

Previous results

6

• Many recent developments in FPT algorithms

Previous results

7

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

Previous results

8

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques
[BjörklundHKK’10]

Previous results

9

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques
[BjörklundHKK’10]

Previous results

10

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques
[BjörklundHKK’10]

Previous results

11

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques
[BjörklundHKK’10]

• Natural parameterizations k-Path, k-Disjoint Paths, k-
Disjoint Cycles are fixed-parameter tractable but do not
admit polynomial kernels unless NP ⊆ coNP/poly
[BodlaenderDFH@ICALP’08, BodlaenderTY@ESA’09,
Robertson&Seymour]

Previous results

12

• Many recent developments in FPT algorithms

– Disjoint Paths: improvements to the Unique Linkage
Theorem for planar graphs
[AdlerKKLSThilikos@ICALP’11]

– k-Path continues to inspire new algorithmic techniques
[BjörklundHKK’10]

• Natural parameterizations k-Path, k-Disjoint Paths, k-
Disjoint Cycles are fixed-parameter tractable but do not
admit polynomial kernels unless NP ⊆ coNP/poly
[BodlaenderDFH@ICALP’08, BodlaenderTY@ESA’09,
Robertson&Seymour]

– For k-Path: not even a polynomial kernel on connected
planar graphs [ChenFM@CiE’09]

Previous results

13

Preprocessing for path & cycle
problems
• Even though natural parameterizations do not admit

polynomial kernels, we might still benefit from
preprocessing

14

Preprocessing for path & cycle
problems
• Even though natural parameterizations do not admit

polynomial kernels, we might still benefit from
preprocessing

• How to guide the search for good reduction rules?

15

Preprocessing for path & cycle
problems
• Even though natural parameterizations do not admit

polynomial kernels, we might still benefit from
preprocessing

• How to guide the search for good reduction rules?

– Non-standard parameters!

16

Preprocessing for path & cycle
problems
• Even though natural parameterizations do not admit

polynomial kernels, we might still benefit from
preprocessing

• How to guide the search for good reduction rules?

– Non-standard parameters!

• One example known:

17

Hamiltonian Cycle parameterized by Max Leaf Number has a
kernel with 5.75k vertices *FellowsLMMRS@CiE’07+

Our results

18

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

19

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

20

Generalizes kernel for Hamiltonian Cycle by

*FellowsLMMRS@CIE’07+

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

21

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

22

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

23

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

24

Our results

• Admit O(k2)-vertex kernels parameterized by Vertex Cover Number

• Admit polynomial kernels parameterized by Max Leaf Number

Long Path, Long Cycle,
Disjoint Paths, Disjoint Cycles

• Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Long Path & Long Cycle

• Do not admit polynomial kernels parameterized by vertex-deletion distance to an
outerplanar graph

Hamiltonian Path & Hamiltonian Cycle

• First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness
and kernel lower-bounds

Path problems with Forbidden Pairs

25

LONG CYCLE
Quadratic-vertex kernel parameterized by Vertex Cover #

26

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

27

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

28

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

29

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

• Example for l = 6

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

30

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

• Example for l = 6

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

31

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

• Example for l = 6

Quadratic-vertex kernel for Long Cycle
by Vertex Cover

32

• Input: Graph G, vertex cover X of G, integer l

• Question: Does G have a cycle on at least l vertices?

– Assume l > 4 (otherwise, solve by brute force)

• Example for l = 6

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

33

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X

34

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X

35

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

36

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

37

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X

38

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X

39

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

40

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

41

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

– Let RU be the unsaturated red vertices

42

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

– Let RU be the unsaturated red vertices

43

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

– Let RU be the unsaturated red vertices

44

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

– Let RU be the unsaturated red vertices
• Output G – RU with ≤ |X| + |X|2 vertices

45

Reduction algorithm

• Bipartite auxiliary graph H = (R ∪ B, E)

– Red vertices are V(G) \ X
– Blue vertex v(p,q) for each pair p,q ∈ X

• v(p,q) adjacent to N(p)∩N(q) \ X
• Compute maximum matching in H

– Let RU be the unsaturated red vertices
• Output G – RU with ≤ |X| + |X|2 vertices

46

Property of maximum matchings

47

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

48

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

49

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

50

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

51

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

52

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

53

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

54

Theorem. For all B’  B:
if H has a matching saturating B’,

then H – RU has a matching saturating B’.

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

55

Theorem. For all B’  B:
if H has a matching saturating B’,

then H – RU has a matching saturating B’.

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

56

Theorem. For all B’  B:
if H has a matching saturating B’,

then H – RU has a matching saturating B’.

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

57

Theorem. For all B’  B:
if H has a matching saturating B’,

then H – RU has a matching saturating B’.

Property of maximum matchings

• Let H = (R ∪ B, E) be a bipartite graph

• Let M be a maximum matching in H

• Let RU be vertices of R not saturated by M

58

• Proof using augmenting paths

Theorem. For all B’  B:
if H has a matching saturating B’,

then H – RU has a matching saturating B’.

Correctness (I)

• G has a cycle of length l  G – RU has a cycle of length l

59

Correctness (I)

• G has a cycle of length l  G – RU has a cycle of length l

• () Trivial since cycle in subgraph gives cycle in G

60

Correctness (I)

• G has a cycle of length l  G – RU has a cycle of length l

• () Trivial since cycle in subgraph gives cycle in G

• () Proof using a matching property

– Suppose G has a cycle C of length l > 4

61

Correctness (I)

• G has a cycle of length l  G – RU has a cycle of length l

• () Trivial since cycle in subgraph gives cycle in G

• () Proof using a matching property

– Suppose G has a cycle C of length l > 4

62

Correctness (II)

• All (green) vertices and edges of G[X] are still present

63

Correctness (II)

• All (green) vertices and edges of G[X] are still present

• Red vertices in G-X are used to connect two green vertices in X

64

Correctness (II)

• All (green) vertices and edges of G[X] are still present

• Red vertices in G-X are used to connect two green vertices in X

• Subpath (g1, r, g2) of C is an indirect connection

65

Correctness (II)

• All (green) vertices and edges of G[X] are still present

• Red vertices in G-X are used to connect two green vertices in X

• Subpath (g1, r, g2) of C is an indirect connection

– r ∈ N(g1) ∩ N(g2) \ X

66

Correctness (II)

• All (green) vertices and edges of G[X] are still present

• Red vertices in G-X are used to connect two green vertices in X

• Subpath (g1, r, g2) of C is an indirect connection

– r ∈ N(g1) ∩ N(g2) \ X

• Find red vertices in R \ RU to replace all indirect connections

67

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

68

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):

69

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):

70

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H

71

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H

72

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H
– matching in H saturating all connected pairs

73

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H
– matching in H saturating all connected pairs

• By matching property: exists matching in H – RU
saturating all connected pairs

74

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H
– matching in H saturating all connected pairs

• By matching property: exists matching in H – RU
saturating all connected pairs

75

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H
– matching in H saturating all connected pairs

• By matching property: exists matching in H – RU
saturating all connected pairs

• Update cycle accordingly

76

Correctness (III)

• No two connections (g1, r, g2) and (g1, r’, g2) since l > 4

• For each connection (g1, r, g2):
– match v(g1,g2) to r in H
– matching in H saturating all connected pairs

• By matching property: exists matching in H – RU
saturating all connected pairs

• Update cycle accordingly

77

The kernel

• For the decision problem with a vertex cover in the input:

78

The kernel

• For the decision problem with a vertex cover in the input:

79

Long Cycle parameterized by a vertex cover X
has a kernel with |X| + |X|2 vertices.

The kernel

• For the decision problem with a vertex cover in the input:

• Kernel does not depend on desired length of the cycle

– Works for optimization problem as well

80

Long Cycle parameterized by a vertex cover X
has a kernel with |X| + |X|2 vertices.

The kernel

• For the decision problem with a vertex cover in the input:

• Kernel does not depend on desired length of the cycle

– Works for optimization problem as well

• If X is not given:

– Compute a 2-approximate vertex cover, use it as X

81

Long Cycle parameterized by a vertex cover X
has a kernel with |X| + |X|2 vertices.

The kernel

• For the decision problem with a vertex cover in the input:

• Kernel does not depend on desired length of the cycle

– Works for optimization problem as well

• If X is not given:

– Compute a 2-approximate vertex cover, use it as X

• Also applies to Long Path, Disjoint Paths, Disjoint Cycles

82

Long Cycle parameterized by a vertex cover X
has a kernel with |X| + |X|2 vertices.

LONG CYCLE
Polynomial kernel by Max Leaf Number

83

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

84

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

85

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

86

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

87

1. Kleitman-West
Theorem

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

88

1. Kleitman-West
Theorem

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

89

2. Held-Karp Dynamic
Programming

1. Kleitman-West
Theorem

Long Cycle parameterized by Max
Leaf Number
• Input: Graph G, integer l, integer k.

• Parameter: k, promised to be the max leaf number of G.

• Question: Does G contain a simple cycle of length ≥l ?

90

3. Karp Reduction
2. Held-Karp Dynamic

Programming

The kernelization algorithm

91

The kernelization algorithm

Kleitman-West Theorem

92

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

93

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

94

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

95

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

96

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

97

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

98

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

99

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

100

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

Held-Karp Dynamic Programming

• If binary encoding of a weight uses > c·k bits:

• There were > 2c·k degree-2 vertices so n > 2c·k

• Solve weighted instance: O(2|X| |X|3) is O(n4) time

101

The kernelization algorithm

Kleitman-West Theorem

• Let X be vertices of degree ≠ 2: |X| ≤ c·k

• Transform paths of degree-2 vertices into weighted edges

• Reduce to weighted simple graph (G’, w’) with |V(G’)| = |X| ≤ c·k

Held-Karp Dynamic Programming

• If binary encoding of a weight uses > c·k bits:

• There were > 2c·k degree-2 vertices so n > 2c·k

• Solve weighted instance: O(2|X| |X|3) is O(n4) time

Karp Reduction

• If binary encoding is small: (G’, w’, l’) has bitsize poly(k)

• Weighted Long Cycle is in NP

• Reduce to back to unweighted problem

• Polynomial-time transformation, output has size poly(k)

102

DISCUSSION & CONCLUSION

103

Structural parameterizations of
Hamiltonian Cycle (& related)

104

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

105

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

106

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

Deletion
distance to

Outerplanar

• Deletion
distance to
treewidth 2

107

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

Deletion
distance to

Outerplanar

• Deletion
distance to
treewidth 2

108

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

Feedback
Vertex

Number

• Deletion
distance to
treewidth 1

Deletion
distance to

Outerplanar

• Deletion
distance to
treewidth 2

109

Structural parameterizations of
Hamiltonian Cycle (& related)

Vertex Cover
Number

• Deletion
distance to
treewidth 0

Feedback
Vertex

Number

• Deletion
distance to
treewidth 1

Deletion
distance to

Outerplanar

• Deletion
distance to
treewidth 2

110

111

Distance to
linear forest

Vertex Cover

Distance to
Cograph

Distance to
Chordal

Treewidth

Chromatic Number

Odd Cycle
Transversal

Distance to
Perfect

Max Leaf #

Distance to
Co-cluster

Distance to
Outerplanar

Feedback
Vertex Set

Distance to
Interval

Distance to Clique

Distance to
Cluster

Pathwidth

Polynomial kernels

NP-complete for k=0

FPT, no poly
kernel unless

NP⊆coNP/poly

FPT
poly kernel?

FPT?
poly kernel?

Complexity overview for Long Cycle parameterized by…

Conclusion

• Structural parameterizations of Path and Cycle problems
admit polynomial kernels

• Various upper and lower-bound results

112

Conclusion

• Structural parameterizations of Path and Cycle problems
admit polynomial kernels

• Various upper and lower-bound results

113

Poly kernels for Long Path parameterized by:

• feedback vertex number

• vertex-deletion distance to a cograph

Poly kernels for Long Path parameterized by:

• Max Leaf Number, without using binary
encoding?

Is Longest Path in FPT …

• parameterized by a (given) deletion set to an Interval graph?

Conclusion

• Structural parameterizations of Path and Cycle problems
admit polynomial kernels

• Various upper and lower-bound results

114

Poly kernels for Long Path parameterized by:

• feedback vertex number

• vertex-deletion distance to a cograph

Poly kernels for Long Path parameterized by:

• Max Leaf Number, without using binary
encoding?

Is Longest Path in FPT …

• parameterized by a (given) deletion set to an Interval graph?

