

Kernel Bounds for Path and Cycle Problems

Bart M. P. Jansen

Joint work with Hans L. Bodlaender \& Stefan Kratsch

Universiteit Utrecht

September $8^{\text {th }} 2011$, Saarbrucken

Path and Cycle problems

Path and Cycle problems

Long Path

- Given G and an integer ℓ, does G contain a path on at least ℓ vertices?

Long Cycle

- Given G and an integer ℓ, does G contain a cycle on at least ℓ vertices?

Disjoint Paths

- Given G and pairs of vertices $\left(s_{1}, t_{1}\right), \ldots,\left(s_{\ell}, t_{l}\right)$, are there vertex-disjoint paths connecting each s_{i} to t_{i} ?

Disjoint Cycles

- Given G and an integer ℓ, are there ℓ vertex-disjoint simple cycles in G ?

Background

- Various path and cycle problems have been important to the development of parameterized complexity

Background

- Various path and cycle problems have been important to the development of parameterized complexity
- Disjoint Paths lies at the heart of the Graph Minors algorithm
- Long Path was one of the first problems known to be fixedparameter tractable
- Long Path was one of the main motivations for the kernel lowerbound framework
- Disjoint Cycles inspired one of the first non-trivial compositions

Theoretical

Universiteit Utrecht

- Long Path has applications in computational biology
- ...

Practical

Previous results

Previous results

- Many recent developments in FPT algorithms

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]
- k-Path continues to inspire new algorithmic techniques [BjörklundHKK'10]

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]
- k-Path continues to inspire new algorithmic techniques [BjörklundHKK'10]
Table 1. k-path in time $O^{*}(f(k))$

$k!$	Monien [29]	12.6^{k}		Chen et al. $[6]$
$k!2^{k}$	Bodlaender [5]	4^{k}	r	Chen et al. $[6]$
5.44^{k}	r	Alon et al. [1]	2.83^{k}	r
c^{k}	$c>8000$, Koutis (2008) et al. [1]	2^{k}	r	Williams [37]
16^{k}	Kneis et al. $[25]$	1.66^{k}	r	this paper

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]
- k-Path continues to inspire new algorithmic techniques [BjörklundHKK'10]

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]
- k-Path continues to inspire new algorithmic techniques [BjörklundHKK'10]
- Natural parameterizations k-Path, k-Disjoint Paths, kDisjoint Cycles are fixed-parameter tractable but do not admit polynomial kernels unless NP \subseteq coNP/poly [BodlaenderDFH@ICALP'08, BodlaenderTY@ESA'09, Robertson\&Seymour]

Previous results

- Many recent developments in FPT algorithms
- Disjoint Paths: improvements to the Unique Linkage Theorem for planar graphs [AdlerKKLSThilikos@ICALP'11]
- k-Path continues to inspire new algorithmic techniques [BjörklundHKK'10]
- Natural parameterizations k-Path, k-Disjoint Paths, kDisjoint Cycles are fixed-parameter tractable but do not admit polynomial kernels unless NP \subseteq coNP/poly [BodlaenderDFH@ICALP'08, BodlaenderTY@ESA'09, Robertson\&Seymour]
- For k-Path: not even a polynomial kernel on connected planar graphs [ChenFM@CiE'09]

Preprocessing for path \& cycle problems

- Even though natural parameterizations do not admit polynomial kernels, we might still benefit from preprocessing

Preprocessing for path \& cycle problems

- Even though natural parameterizations do not admit polynomial kernels, we might still benefit from preprocessing
- How to guide the search for good reduction rules?

Preprocessing for path \& cycle problems

- Even though natural parameterizations do not admit polynomial kernels, we might still benefit from preprocessing
- How to guide the search for good reduction rules?
- Non-standard parameters!

Preprocessing for path \& cycle problems

- Even though natural parameterizations do not admit polynomial kernels, we might still benefit from preprocessing
- How to guide the search for good reduction rules?
- Non-standard parameters!
- One example known:

Hamiltonian Cycle parameterized by Max Leaf Number has a kernel with 5.75k vertices [FellowsLMMRS@CiE’07]

Our results

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

Generalizes kernel for Hamiltonian Cycle by [FellowsLMMRS@CIE’07]

ince to a Cluster graph

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $\mathrm{O}\left(\mathrm{k}^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Our results

Long Path, Long Cycle,
 Disjoint Paths, Disjoint Cycles

- Admit $O\left(k^{2}\right)$-vertex kernels parameterized by Vertex Cover Number
- Admit polynomial kernels parameterized by Max Leaf Number

Long Path \& Long Cycle

- Admit polynomial kernels parameterized by vertex-deletion distance to a Cluster graph

Hamiltonian Path \& Hamiltonian Cycle

- Do not admit polynomial kernels parameterized by vertex-deletion distance to an outerplanar graph

Path problems with Forbidden Pairs

- First study of parameterized complexity: para-NP-completeness, FPT, W[1]-hardness and kernel lower-bounds

Quadratic-vertex kernel parameterized by Vertex Cover \# LONG CYCLE

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input: Graph G, vertex cover X of G, integer ℓ
- Question: Does G have a cycle on at least ℓ vertices?

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input: Graph G, vertex cover X of G, integer ℓ
- Question: Does G have a cycle on at least ℓ vertices?

Universiteit Utrecht

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input:

Graph G, vertex cover X of G, integer ℓ

- Question: Does G have a cycle on at least ℓ vertices?
- Example for $\ell=6$

Universiteit Utrecht

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input:

Graph G, vertex cover X of G, integer ℓ

- Question: Does G have a cycle on at least ℓ vertices?
- Example for $\ell=6$

Universiteit Utrecht

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input:

Graph G, vertex cover X of G, integer ℓ

- Question: Does G have a cycle on at least ℓ vertices?
- Example for $\ell=6$

Universiteit Utrecht

Quadratic-vertex kernel for Long Cycle by Vertex Cover

- Input: Graph G, vertex cover X of G, integer ℓ
- Question: Does G have a cycle on at least ℓ vertices?
- Assume $\ell>4$ (otherwise, solve by brute force)
- Example for $\ell=6$

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash \mathrm{X}$

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash \mathrm{X}$

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are V(G) \X
- Blue vertex $v(p, q)$ for each pair $p, q \in X$

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $V(G) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $V(G) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H
- Let R_{U} be the unsaturated red vertices

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $V(G) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H
- Let R_{U} be the unsaturated red vertices

Universiteit Utrecht

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $V(G) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H
- Let R_{U} be the unsaturated red vertices

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $V(G) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H
- Let R_{U} be the unsaturated red vertices
- Output $G-R_{U}$ with $\leq|X|+|X|^{2}$ vertices

Reduction algorithm

- Bipartite auxiliary graph $H=(R \cup B, E)$
- Red vertices are $\mathrm{V}(\mathrm{G}) \backslash X$
- Blue vertex $v(p, q)$ for each pair $p, q \in X$
- $v(p, q)$ adjacent to $N(p) \cap N(q) \backslash X$
- Compute maximum matching in H
- Let R_{U} be the unsaturated red vertices
- Output $G-R_{U}$ with $\leq|X|+|X|^{2}$ vertices

Property of maximum matchings

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Theorem. For all $\mathrm{B}^{\prime} \subseteq \mathrm{B}:$
if H has a matching saturating B^{\prime}, then $H-R_{U}$ has a matching saturating B^{\prime}.

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Theorem. For all $\mathrm{B}^{\prime} \subseteq \mathrm{B}:$
if H has a matching saturating B^{\prime}, then $H-R_{U}$ has a matching saturating B^{\prime}.

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Theorem. For all $\mathrm{B}^{\prime} \subseteq \mathrm{B}$:
if H has a matching saturating B^{\prime}, then $H-R_{U}$ has a matching saturating B^{\prime}.

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Theorem. For all $\mathrm{B}^{\prime} \subseteq \mathrm{B}:$
if H has a matching saturating B^{\prime}, then $H-R_{U}$ has a matching saturating B^{\prime}.

Property of maximum matchings

- Let $H=(R \cup B, E)$ be a bipartite graph
- Let M be a maximum matching in H
- Let R_{U} be vertices of R not saturated by M

Theorem. For all $\mathrm{B}^{\prime} \subseteq \mathrm{B}:$
if H has a matching saturating B^{\prime}, then $H-R_{U}$ has a matching saturating B^{\prime}.

- Proof using augmenting paths

Correctness (I)

- G has a cycle of length $\ell \Leftrightarrow G-R_{U}$ has a cycle of length ℓ

Correctness (I)

- G has a cycle of length $\ell \Leftrightarrow G-R_{U}$ has a cycle of length ℓ
- (\leftarrow) Trivial since cycle in subgraph gives cycle in G

Universiteit Utrecht

Correctness (I)

- G has a cycle of length $\ell \Leftrightarrow G-R_{U}$ has a cycle of length ℓ
- (\leftarrow) Trivial since cycle in subgraph gives cycle in G
- (\rightarrow) Proof using a matching property
- Suppose G has a cycle C of length $\ell>4$

Universiteit Utrecht

Correctness (I)

- G has a cycle of length $\ell \Leftrightarrow G-R_{U}$ has a cycle of length ℓ
- (\leftarrow) Trivial since cycle in subgraph gives cycle in G
- (\rightarrow) Proof using a matching property
- Suppose G has a cycle C of length $\ell>4$

Correctness (II)

- All (green) vertices and edges of G[X] are still present

Correctness (II)

- All (green) vertices and edges of $G[X]$ are still present
- Red vertices in G-X are used to connect two green vertices in X

Universiteit Utrecht

Correctness (II)

- All (green) vertices and edges of $G[X]$ are still present
- Red vertices in G-X are used to connect two green vertices in X
- Subpath $\left(g_{1}, r, g_{2}\right)$ of C is an indirect connection

Universiteit Utrecht

Correctness (II)

- All (green) vertices and edges of $G[X]$ are still present
- Red vertices in G-X are used to connect two green vertices in X
- Subpath (g_{1}, r, g_{2}) of C is an indirect connection
$-r \in N\left(g_{1}\right) \cap N\left(g_{2}\right) \backslash X$

Universiteit Utrecht

Correctness (II)

- All (green) vertices and edges of G[X] are still present
- Red vertices in G-X are used to connect two green vertices in X
- Subpath $\left(g_{1}, r, g_{2}\right)$ of C is an indirect connection
$-r \in N\left(g_{1}\right) \cap N\left(g_{2}\right) \backslash X$
- Find red vertices in $R \backslash R_{U}$ to replace all indirect connections

Correctness (III)

- No two connections $\left(g_{1}, r, g_{2}\right)$ and $\left(g_{1}, r^{\prime}, g_{2}\right)$ since $\ell>4$

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:

Universiteit Utrecht

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H

Universiteit Utrecht

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H

Universiteit Utrecht

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H
- matching in H saturating all connected pairs

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H
- matching in H saturating all connected pairs
- By matching property: exists matching in $\mathrm{H}-\mathrm{R}_{\mathrm{u}}$ saturating all connected pairs

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H
- matching in H saturating all connected pairs
- By matching property: exists matching in $\mathrm{H}-\mathrm{R}_{\mathrm{u}}$ saturating all connected pairs

Universiteit Utrecht

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H
- matching in H saturating all connected pairs
- By matching property: exists matching in $\mathrm{H}-\mathrm{R}_{\mathrm{u}}$ saturating all connected pairs
- Update cycle accordingly

Correctness (III)

- No two connections (g_{1}, r, g_{2}) and (g_{1}, r^{\prime}, g_{2}) since $\ell>4$
- For each connection $\left(g_{1}, r, g_{2}\right)$:
- match $v\left(g_{1}, g_{2}\right)$ to r in H
- matching in H saturating all connected pairs
- By matching property: exists matching in $\mathrm{H}-\mathrm{R}_{\mathrm{u}}$ saturating all connected pairs
- Update cycle accordingly

Universiteit Utrecht

The kernel

- For the decision problem with a vertex cover in the input:

The kernel

- For the decision problem with a vertex cover in the input:

Long Cycle parameterized by a vertex cover X has a kernel with $|X|+|X|^{2}$ vertices.

The kernel

- For the decision problem with a vertex cover in the input:

Long Cycle parameterized by a vertex cover X has a kernel with $|X|+|X|^{2}$ vertices.

- Kernel does not depend on desired length of the cycle
- Works for optimization problem as well

The kernel

- For the decision problem with a vertex cover in the input:

Long Cycle parameterized by a vertex cover X has a kernel with $|X|+|X|^{2}$ vertices.

- Kernel does not depend on desired length of the cycle
- Works for optimization problem as well
- If X is not given:
- Compute a 2-approximate vertex cover, use it as X

The kernel

- For the decision problem with a vertex cover in the input:

Long Cycle parameterized by a vertex cover X has a kernel with $|X|+|X|^{2}$ vertices.

- Kernel does not depend on desired length of the cycle
- Works for optimization problem as well
- If X is not given:
- Compute a 2-approximate vertex cover, use it as X
- Also applies to Long Path, Disjoint Paths, Disjoint Cycles

Polynomial kernel by Max Leaf Number

LONG CYCLE

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k, promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k , promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k , promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k, promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k, promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k , promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

Long Cycle parameterized by Max Leaf Number

- Input: Graph G, integer ℓ, integer k.
- Parameter: k , promised to be the max leaf number of G.
- Question: Does G contain a simple cycle of length $\geq \ell$?

The kernelization algorithm

Universiteit Utrecht

The kernelization algorithm

Kleitman-West Theorem

Universiteit Utrecht

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2$: $|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges
- Reduce to weighted simple graph ($\left.G^{\prime}, w^{\prime}\right)$ with $\left|V\left(G^{\prime}\right)\right|=|X| \leq c \cdot k$

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges
- Reduce to weighted simple graph ($\left.G^{\prime}, w^{\prime}\right)$ with $\left|V\left(G^{\prime}\right)\right|=|X| \leq c \cdot k$

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2$: $|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges
- Reduce to weighted simple graph ($\mathrm{G}^{\prime}, w^{\prime}$) with $\left|\mathrm{V}\left(\mathrm{G}^{\prime}\right)\right|=|\mathrm{X}| \leq \mathrm{c} \cdot \mathrm{k}$

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges
- Reduce to weighted simple graph ($\left.G^{\prime}, w^{\prime}\right)$ with $\left|V\left(G^{\prime}\right)\right|=|X| \leq c \cdot k$

Held-Karp Dynamic Programming

- If binary encoding of a weight uses $>c \cdot k$ bits:
- There were $>2^{c \cdot \mathrm{k}}$ degree- 2 vertices so $\mathrm{n}>2^{c \cdot k}$
- Solve weighted instance: $\mathrm{O}\left(2^{|X|}|X|^{3}\right)$ is $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time

The kernelization algorithm

Kleitman-West Theorem

- Let X be vertices of degree $\neq 2:|X| \leq c \cdot k$
- Transform paths of degree-2 vertices into weighted edges
- Reduce to weighted simple graph ($\left.G^{\prime}, w^{\prime}\right)$ with $\left|V\left(G^{\prime}\right)\right|=|X| \leq c \cdot k$

Held-Karp Dynamic Programming

- If binary encoding of a weight uses $>c \cdot k$ bits:
- There were $>2^{\cdot \cdot k}$ degree- 2 vertices so $n>2^{c \cdot k}$
- Solve weighted instance: $\mathrm{O}\left(2^{|x|}|X|^{3}\right)$ is $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time

Karp Reduction

- If binary encoding is small: ($\mathrm{G}^{\prime}, \mathrm{w}^{\prime}, \ell^{\prime}$) has bitsize poly(k)
- Weighted Long Cycle is in NP
- Reduce to back to unweighted problem
- Polynomial-time transformation, output has size poly(k)

DISCUSSION \& CONCLUSION

Structural parameterizations of Hamiltonian Cycle (\& related)

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

> Deletion distance to Outerplanar

- Deletion distance to treewidth 2

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

Feedback Vertex Number

- Deletion distance to treewidth 1

Deletion distance to Outerplanar

- Deletion distance to treewidth 2

Structural parameterizations of Hamiltonian Cycle (\& related)

Vertex Cover Number

- Deletion distance to treewidth 0

Feedback
Vertex
Number

- Deletion distance to treewidth 1

Deletion distance to Outerplanar

- Deletion distance to treewidth 2

Complexity overview for Long Cycle parameterized by...

Conclusion

- Structural parameterizations of Path and Cycle problems admit polynomial kernels
- Various upper and lower-bound results

Conclusion

- Structural parameterizations of Path and Cycle problems admit polynomial kernels
- Various upper and lower-bound results

Poly kernels for Long Path parameterized by:

- feedback vertex number
- vertex-deletion distance to a cograph

Poly kernels for Long Path parameterized by:

- Max Leaf Number, without using binary encoding?

Is Longest Path in FPT ...

- parameterized by a (given) deletion set to an Interval graph?

Conclusion

- Structural parameterizations of Path and Cycle problems admit polynomial kernels
- Various upper and lower-bound results


```
Is Longest Path in FPT
- parameterized by a (given) deletion set to an Interval graph?
```

