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• A quasi-order is a transitive, reflexive, binary relation ⪯ 
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• A quasi-order ⪯ is a well-quasi-order on S if 

– for every infinite sequence x1, x2, … over S,  

– there are indices i<j such that xi ⪯ xj. 

 

• Set L ⊆ S is a lower ideal of S under ⪯ if  

– ∀x,y ∈ S: if x ∈ L and y ⪯ x, then y ∈ L. 

 

• A quasi-order is polynomial if x ⪯ y can be tested in 
poly(|x|+|y|) time. 
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If ⪯ is a WQO on S, and L ⊆ S is a lower ideal, then there is a 
finite obstruction set OBS(L) ⊆ S, such that for all x ∈ S: 
 x ∈ L iff no element in OBS(L) precedes x. 
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• An obstruction is minimal if all elements strictly preceding 
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Obstruction principle 

• Graphs are well-
quasi-ordered by 
the minor relation. 

Lower ideals 

• YES or NO instances 
are closed under 
taking minors. 

Efficient order 
testing 

• f(H)n3 time for 
each fixed graph H. 
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Strongly Uniform FPT (Fixed-Parameter Tractable) 
A parameterized problem Q is strongly uniform FPT if there is 
an algorithm that decides whether (x,k) ∈ Q in f(k)|x|c time. 
(for a computable function f and constant c) 
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Kernelization 

• A kernel of size f(k) for a parameterized problem Q is a 

polynomial-time algorithm that transforms (x,k) into (x’,k’), 

– such that (x,k) in Q iff (x’,k’) in Q,  

– and |x’|+k’ is bounded by f(k). 
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3. Problem Q is decidable and there is a polynomial-time 
quasi-order ⪯ on *×N and a computable function  
f: N  N such that: 

• The set Q is a lower ideal of *×N under ⪯. 

• For every (x,k) ∉ Q, there is an obstruction  
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k). 

•Implies that for every k, there is a finite obstruction set OBS(k) 
containing instances of size ≤ f(k): 

•(x,k) in Q iff no element of OBS(k) precedes it. 

•The obstruction-testing method that lies at the origins of FPT is not 
just one way of obtaining FPT algorithms: 

•all of FPT can be obtained this way. 
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Parameterized problems with polynomial kernels are 
characterized by obstructions of polynomial size. 

Reverse is false, assuming NP ⊄ coNP/poly. 
(Kratsch & Walhström, 2011) 
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• Largest graph that is minor-minimal with vertex cover size k has 2k vertices 
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k-VERTEX COVER 

• Polynomial kernel [Fomin et al.’12] 

• Minor-minimal obstructions have polynomial size 

k-F-MINOR-FREE DELETION (when F contains a planar graph) 

• O(VC3)-vertex kernel [Bodlaender et al.’11] 

• Minor-minimal obstructions have |V| ≤ O(VC3). 

TREEWIDTH parameterized by Vertex Cover 

• O(vcq)-vertex kernel [J+Kratsch’11] 

• Vertex-minimal NO-instances have vc (q) vertices. 

q-COLORING parameterized by Vertex Cover 
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• No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch’11] 
• Size of vertex-minimal NO-instances is unbounded in FVS number. 

3-COLORING parameterized by Feedback Vertex Set 

• No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch’12] 
• Lower bound construction is based on a Turán-like host graph whose size 

is superpolynomial in its parameter. 

k-RAMSEY 

• No polynomial kernel unless NP ⊆ coNP/poly. [BodlaenderDFH’09] 

• Minor-minimal obstructions with (3k) vertices. 

k-PATHWIDTH 



EXPLOITING OBSTRUCTIONS FOR 
LOWER-BOUNDS ON KERNEL SIZES 

45 



Composition algorithms 

46 



Composition algorithms 

47 

NP-hard 
inputs x1 x2 x.. xt 



Composition algorithms 

48 

NP-hard 
inputs x1 x2 x.. xt 

n 



Composition algorithms 

49 

 
 

poly(n · t)-time composition 

NP-hard 
inputs x1 x2 x.. xt 

n 



Composition algorithms 

50 

 
 

poly(n · t)-time composition 

NP-hard 
inputs x1 x2 x.. xt 

n 

Q-instance x* k* 



Composition algorithms 

51 

 
 

poly(n · t)-time composition 

NP-hard 
inputs x1 x2 x.. xt 

n 

Q-instance x* k* 

poly(n·log t) 



Composition algorithms 

52 

 
 

poly(n · t)-time composition 

NP-hard 
inputs x1 x2 x.. xt 

n 

Q-instance x* k* 

poly(n·log t) 

AND-Cross-composition: (x*,k*) ∈ Q iff all inputs are YES 
OR-Cross-composition: (x*,k*) ∈ Q iff some input is YES 
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• The pathwidth of a graph measures how “path-like” it is 
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k-PATHWIDTH is AND-compositional and does not admit a polynomial 

kernel unless NP ⊆ coNP/poly. [BodlaenderDFH’09,Drucker’12] 
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– t=3s instances of PW-IMPROVEMENT (G1,k), … , (Gt,k) 
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– such that PW(G*) ≤ k* iff some input i is YES. 
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Ternary tree of height k, 
with 1 extra layer of leaves, 

is minor-minimal 
obstruction to PW=k 
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t=3s instances of PW-IMPROVEMENT with k=3  
(each asking if PW(Gi) ≤ k – 2) 



Construction 
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Obstruction with 3s leaves, 
inflated by factor k 

Pathwidth is O(k·s) ≤ O(n·log t) 
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Output G* asking for pathwidth k* 
1 less than inflated obstruction 
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