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A NEW CHARACTERIZATION OF FPT




Well-Quasi-Orders

A quasi-order is a transitive, reflexive, binary relation <
on a (usually infinite) set S.

— If x <y, then x precedes v.
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Well-Quasi-Orders

A quasi-order is a transitive, reflexive, binary relation <
on a (usually infinite) set S.

— If x <y, then x precedes v.

A quasi-order < is a well-quasi-order on S if
— for every infinite sequence x4, X5, ... over S,
— there are indices i<j such that x; < x;.

« SetLcSisalowerideal of S under < if
- vx,yeS:ifxelLandy <x, theny e L.

« A quasi-order IS polynomial if x < y can be tested in
poly(|x|+]y]|) time.

Universiteit Utrecht




The Obstruction Principle

If <isaWQOonS,andLESis alower ideal, then there is a
finite obstruction set OBs(L) € S, such that for all x € S:
X € Liff no element in OBs(L) precedes x.
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The Obstruction Principle

If <isaWQOonS, and L ESisalowerideal, then there is a
finite obstruction set OBs(L) € S, such that for all x € S:
X € L iff no element in OBS(L) precedes x.

 Decide membership in a lower ideal by testing containment
of an obstruction.

« Any elementy € S\ Lis an obstruction.

« An obstruction is minimal if all elements strictly preceding
it belong to L.
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Algorithmic Applications of WQO'’s

« Fellows & Langston, JACM 1988:
— k-PATH,
— k-VERTEX COVER,
— k-FEEDBACK VERTEX SET,
can be solved in O(n3) time, for each fixed k.
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Algorithmic Applications of WQO'’s

« Fellows & Langston, JACM 1988:
— k-PATH,
— k-VERTEX COVER,
— k-FEEDBACK VERTEX SET,

can be solved in O(n3) time, for each fixed k.

Obstruction principle Lower ideals EfﬂCIenF ST
testing

e Graphs are well- ® YES or NO instances e f(H)n3time for
guasi-ordered by are closed under each fixed graph H.
the minor relation. taking minors.

« Results led to the development of parameterized
complexity.

Universiteit Utrecht

13



The class FPT
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The class FPT

« A parameterized problem is a set Q € X" xN
— Each instance (x,k) € * XN has a parameter k.
— The size of an instance (x,k) is |x| + k.
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The class FPT

« A parameterized problem is a set Q € ¥* xN
— Each instance (x,k) € * XN has a parameter k.
— The size of an instance (x,k) is |x| + k.

Strongly Uniform FPT (Fixed-Parameter Tractable)

A parameterized problem Q is strongly uniform FPT if there is
an algorithm that decides whether (x,k) € Q in f(k)|x|¢ time.
(for a computable function f and constant c)
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The class FPT

« A parameterized problem is a set Q € ¥* xN
— Each instance (x,k) € * XN has a parameter k.
— The size of an instance (x,k) is |x| + k.

Strongly Uniform FPT (Fixed-Parameter Tractable)

A parameterized problem Q is strongly uniform FPT if there is
an algorithm that decides whether (x,k) € Q in f(k)|x|¢ time.
(for a computable function f and constant c)

« There are weaker notions. (non-uniform, non-computable f)
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Kernelization

« A kernel of size f(k) for a parameterized problem Qis a
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Kernelization

A kernel of size f(k) for a parameterized problem Qis a
polynomial-time algorithm that transforms (x,k) into (x’,k’),

— such that (x,k) in Qiff (x’,k’) in Q,
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Kernelization

« A kernel of size f(k) for a parameterized problem Qis a
polynomial-time algorithm that transforms (x,k) into (x’,k’),

— such that (x,k) in Qiff (x’,k’) in Q,
— and |x’|+k" is bounded by f(k).
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New characterization of FPT

For any parameterized problem Q ¢ =" xN, the following
statements are equivalent:
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statements are equivalent:

1. Problem Qis contained in strongly uniform FPT.

2. Problem Q is decidable and admits a kernel of
computable size.
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New characterization of FPT

« For any parameterized problem Q ¢ X* xN, the following
statements are equivalent:

1. Problem Qis contained in strongly uniform FPT.
2. Problem Q is decidable and admits a kernel of
computable size.

3. Problem Q is decidable and there is a polynomial-time
quasi-order < on X" XN and a computable function

f: N > N such that:
« The set Qis a lower ideal of ¥* XN under <.

« For every (x,k) ¢ Q, there is an obstruction
(x", k") € Q of size at most f(k) with (x’, k") =< (x,k).
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New characterization of FPT

3. Problem Q is decidable and there is a polynomial-time
quasi-order < on XN and a computable function
f: N = N such that:

« The set Qis a lower ideal of X* XN under <.

« For every (x,k) ¢ Q, there is an obstruction
(x’, k") ¢ Q of size at most f(k) with (x’, k") < (x,k).

Universiteit Utrecht 27




New characterization of FPT

-Implies that for every k, there is a finite obstruction set OBs(k)
containing instances of size < f(k):
*(x,k) in Q iff no element of OBs(k) precedes it.

3. Problem Q is decidable and there is a polynomial-time
quasi-order < on X" xN and a computable function
f: N> N such that:

« The set Qis a lower ideal of X* XN under <.

« For every (x,k) ¢ Q, there is an obstruction
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New characterization of FPT

-Implies that for every k, there is a finite obstruction set OBs(k)
containing instances of size < f(k):

*(x,k) in Q iff no element of OBs(k) precedes it.
*The obstruction-testing method that lies at the origins of FPT is not
just one way of obtaining FPT algorithms:

-all of FPT can be obtained this way.

3. Problem Q is decidable and there is a polynomial-time
quasi-order < on X" xN and a computable function
f: N> N such that:

« The set Qis a lower ideal of X* XN under <.

« For every (x,k) ¢ Q, there is an obstruction
(x’, k") ¢ Q of size at most f(k) with (x’, k") < (x,k).

:: hJ § Universiteit Utrecht 29



KERNEL SIZE VS. OBSTRUCTION SIZE
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Small kernels yield small obstructions

Problem Q is decidable and admits a kernel of size O(f(k))
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Small kernels yield small obstructions

Problem Q is decidable and admits a kernel of size O(f(k))

implies
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Small kernels yield small obstructions

« Problem Q is decidable and admits a kernel of size O(f(k))
implies

« Problem Q is decidable and there is a polynomial-time
quasi-order < on X" XN such that:

— The set Q is a lower ideal of ¥* XN under <.

— For every (x,k) ¢ Q, there is an obstruction
(x’,k") ¢ Qof size O(f(k)) with (x’ k") < (x,k).
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Small kernels yield small obstructions

« Problem Q is decidable and admits a kernel of size O(f(k))
implies

« Problem Q is decidable and there is a polynomial-time
quasi-order < on X" XN such that:

— The set Q is a lower ideal of ¥* XN under <.

— For every (x,k) ¢ Q, there is an obstruction
(x’,k") ¢ Qof size O(f(k)) with (x’ k") < (x,k).

Parameterized problems with polynomial kernels are
characterized by obstructions of polynomial size.
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Small kernels yield small obstructions

« Problem Q is decidable and admits a kernel of size O(f(k))
implies

« Problem Q is decidable and there is a polynomial-time
quasi-order < on X" XN such that:

— The set Q is a lower ideal of X* XN under <.

— For every (x
(x’,k’) & Qof

Parameterized problems with polynomial kernels are
characterized by obstructions of polynomial size.
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Obstruction size vs. kernel size

Polynomial bounds
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Obstruction size vs. kernel size

Polynomial bounds

—t k-VERTEX COVER

* Best known kernel has 2k — o(k) vertices [Lampis’11]
e Largest graph that is minor-minimal with vertex cover size k has 2k vertices
e VVertex Cover obstructions have been studied since 1964 [a-critical graphs: Erdés, Hajnal & Moon]
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Obstruction size vs. kernel size

Polynomial bounds

ﬁ

k-VERTEX COVER

* Best known kernel has 2k — o(k) vertices [Lampis’11]
e Largest graph that is minor-minimal with vertex cover size k has 2k vertices

e VVertex Cover obstructions have been studied since 1964 [a-critical graphs: Erdés, Hajnal & Moon]

ﬂ

k-F-MINOR-FREE DELETION (when ¥ contains a planar graph)

¢ Polynomial kernel [Fomin et al.’12]
e Minor-minimal obstructions have polynomial size
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Obstruction size vs. kernel size

Polynomial bounds

—t k-VERTEX COVER
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—L k-F-MINOR-FREE DELETION (when ¥ contains a planar graph)

¢ Polynomial kernel [Fomin et al.’12]
e Minor-minimal obstructions have polynomial size

—t TREEWIDTH parameterized by Vertex Cover

* O(vc3)-vertex kernel [Bodlaender et al.’11]
e Minor-minimal obstructions have |V| < O(vc3).
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Obstruction size vs. kernel size

Polynomial bounds

—t k-VERTEX COVER

* Best known kernel has 2k — o(k) vertices [Lampis’11]
e Largest graph that is minor-minimal with vertex cover size k has 2k vertices
e VVertex Cover obstructions have been studied since 1964 [a-critical graphs: Erdés, Hajnal & Moon]

k-F-MINOR-FREE DELETION (when ¥ contains a planar graph)

¢ Polynomial kernel [Fomin et al.’12]
e Minor-minimal obstructions have polynomial size

TREEWIDTH parameterized by Vertex Cover

* O(vc3)-vertex kernel [Bodlaender et al.’11]
e Minor-minimal obstructions have |V| < O(vc3).

g-COLORING parameterized by Vertex Cover

1oL L

* O(vc9)-vertex kernel [J+Kratsch’11]
e Vertex-minimal No-instances have vc®@ vertices.
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Obstruction size vs. kernel size

Superpolynomial bounds
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Obstruction size vs. kernel size

Superpolynomial bounds

—[ 3-COLORING parameterized by Feedback Vertex Set

* No polynomial kernel unless NP € coNP/poly. [J+Kratsch’11]
e Size of vertex-minimal No-instances is unbounded in Fvs number.
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Obstruction size vs. kernel size

Superpolynomial bounds

—[ 3-COLORING parameterized by Feedback Vertex Set |

* No polynomial kernel unless NP € coNP/poly. [J+Kratsch’11]
e Size of vertex-minimal No-instances is unbounded in Fvs number.

—[ k-RAMSEY |

|
* No polynomial kernel unless NP S coNP/poly. [Kratsch’12]

e Lower bound construction is based on a Turan-like host graph whose size
is superpolynomial in its parameter.
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Obstruction size vs. kernel size

Superpolynomial bounds

—[ 3-COLORING parameterized by Feedback Vertex Set

* No polynomial kernel unless NP € coNP/poly. [J+Kratsch’11]
e Size of vertex-minimal No-instances is unbounded in Fvs number.

—[ k-RAMSEY

* No polynomial kernel unless NP S coNP/poly. [Kratsch’12]

e Lower bound construction is based on a Turan-like host graph whose size
is superpolynomial in its parameter.

—[ k-PATHWIDTH

* No polynomial kernel unless NP € coNP/poly. [BodlaenderDFH’09]
e Minor-minimal obstructions with Q(3k) vertices.
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EXPLOITING OBSTRUCTIONS FOR
LOWER-BOUNDS ON KERNEL SIZES
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Composition algorithms
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Composition algorithms

NP-hard
inputs

X4q

Xy
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Composition algorithms

NP-hard
inputs

X4q

>
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Composition algorithms

NP-hard N ) >
inputs X1 Xy X, Xy

b *
Q-instance X -

<€ >
poly(n-log t)

~
AND-Cross-composition: (x*,k*) € Q iff all inputs are YES
OR-Cross-composition: (x*,k*) € Q iff some input is YES
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The k-Pathwidth problem

« The pathwidth of a graph measures how “path-like” it is
— Pathwidth does not increase when taking minors
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The k-Pathwidth problem

The pathwidth of a graph measures how “path-like” it is
— Pathwidth does not increase when taking minors

k-PATHWIDTH

Input: A graph G, an integer k.
Parameter: k.

Question: Is the pathwidth of G at most k?
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The k-Pathwidth problem

The pathwidth of a graph measures how “path-like” it is
— Pathwidth does not increase when taking minors

 Kk-PATHWIDTH
Input: A graph G, an integer k.
Parameter: k.
Question: Is the pathwidth of G at most k?

« Disjoint union acts as AND for question of “pathwidth < k?”:

— PW(G; UG, U ..U Gy) < k & Vi: PW(G;) =< k.
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The k-Pathwidth problem

The pathwidth of a graph measures how “path-like” it is
— Pathwidth does not increase when taking minors

 Kk-PATHWIDTH
Input: A graph G, an integer k.
Parameter: k.
Question: Is the pathwidth of G at most k?

« Disjoint union acts as AND for question of “pathwidth < k?”:
— PW(G; UG, U ..U Gy) < k & Vi: PW(G;) =< k.

« Trivial AND-composition for k-PATHWIDTH:
— Take disjoint union of t PATHWIDTH-instances.
« Ensure same value of k by padding.
— Output parameter value is k < n.
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The k-Pathwidth problem

The pathwidth of a graph measures how “path-like” it is
— Pathwidth does not increase when taking minors

 Kk-PATHWIDTH
Input: A graph G, an integer k.
Parameter: k.
Question: Is the pathwidth of G at most k?

« Disjoint union acts as AND for question of “pathwidth < k?”:
— PW(G; UG, U ..U Gy) < k & Vi: PW(G;) =< k.

« Trivial AND-composition for k-PATHWIDTH:
— Take disjoint union of t PATHWIDTH-instances.
« Ensure same value of k by padding.
— Output parameter value is k < n.

k-PATHWIDTH is AND-compositional and does not admit a polynomial
a kernel unless NP € coNP/poly. [BodlaenderDFH’09,Drucker’12]
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OR-Cross-composition

62



OR-Cross-composition

The pathwidth measure naturally behaves like an AND-gate
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OR-Cross-composition

 The pathwidth measure naturally behaves like an AND-gate

« By exploiting minimal obstructions to Pw<k with Q(3k)
vertices, we create an oR-Cross-composition of:

— t=3% instances of PW-IMPROVEMENT (G4,K), ... , (G, k)
— into one k-PATHWIDTH instance (G, k™) with k*<0O(n-log t),
— such that pw(G") < k™ iff some input i is YES.
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 The pathwidth measure naturally behaves like an AND-gate

« By exploiting minimal obstructions to Pw<k with Q(3k)
vertices, we create an oR-Cross-composition of:

— t=3% instances of PW-IMPROVEMENT (G4,K), ... , (G, k)
— into one k-PATHWIDTH instance (G, k™) with k*<0O(n-log t),
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« PATHWIDTH IMPROVEMENT
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Question: Is the pathwidth of G at most k-27
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OR-Cross-composition

 The pathwidth measure naturally behaves like an AND-gate

« By exploiting minimal obstructions to Pw<k with Q(3k)
vertices, we create an oR-Cross-composition of:

— t=3% instances of PW-IMPROVEMENT (G4,K), ... , (G, k)
— into one k-PATHWIDTH instance (G, k™) with k*<0O(n-log t),
— such that pw(G") < k™ iff some input i is YES.

e  PATHWIDTH IMPROVEMENTM

Input: An integer k, and a graph G of pathwidth < k-1.
Question: Is the pathwidth of G at most k-27
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Tree obstructions to Pathwidth

Kinnersley’'92 and TakahashiUK’94 independently proved:
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Tree obstructions to Pathwidth

Kinnersley’'92 and TakahashiUK’94 independently proved:

minimal obstruction

to pw=0
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Tree obstructions to Pathwidth
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Tree obstructions to Pathwidth

Kinnersley’'92 and TakahashiUK’94 independently proved:
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Tree obstructions to Pathwidth

« Kinnersley’92 and TakahashiUK’94 independently proved:

obstructions to pw=k, gives
minimal obstruction to pw=k+1
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Tree obstructions to Pathwidth

« Kinnersley’92 and TakahashiUK’94 independently proved:

obstructions to pw=Kk, gives
minimal obstruction to pw=k+1
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Tree obstructions to Pathwidth

Kinnersley’'92 and TakahashiUK’94 independently proved:
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Tree obstructions to Pathwidth

« Kinnersley’92 and TakahashiUK’94 independently proved:
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Tree obstructions to Pathwidth

Kinnersley’92 and TakahashiUK’94 independently proved:

7 3
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Tree obstructions to Pathwidth

Kinnersley’'92 and TakahashiUK’94 independently proved:

is minor-minimal

obstruction to pw=k
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Construction
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Construction

el lsleloelelels,

t=3s instances of PW-IMPROVEMENT with k=3
(each asking if Pw(G,) < k —2)
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Construction

Pathwidth is O(k-s) < O(n-log t
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Correctness sketch




Correctness sketch
P %P %P
& ¥ @) @)

Claim: some input i has Pw(G;) < k-2 = PW(G") < PW(T* ¢ k)




Correctness sketch

Claim: some input i has Pw(G;) < k-2 = PW(G") < PW(T* ¢ k)




Correctness sketch




Correctness sketch
P %P %P
& ¥ @) @)

Claim: all inputs have Pw(G)) > k-2 = Pw(G") = PW(T® © k)




Conclusion

Universiteit Utrecht

89



Conclusion

For each problem in FPT, there is a polynomial-time quasi-
order under which each No-instance (x,k) is preceded by an
f(k)-size obstruction
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Conclusion

« For each problem in FPT, there is a polynomial-time quasi-
order under which each No-instance (x,k) is preceded by an
f(k)-size obstruction

« Characterization suggests a connection between kernel
sizes and obstruction sizes
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Conclusion

« For each problem in FPT, there is a polynomial-time quasi-
order under which each No-instance (x,k) is preceded by an
f(k)-size obstruction

« Characterization suggests a connection between kernel
sizes and obstruction sizes

« Large obstructions form the crucial ingredient for OrR-cross-
composition into k-PATHWIDTH
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Conclusion

« For each problem in FPT, there is a polynomial-time quasi-
order under which each No-instance (x,k) is preceded by an
f(k)-size obstruction

« Characterization suggests a connection between kernel
sizes and obstruction sizes

« Large obstructions form the crucial ingredient for OrR-cross-
composition into k-PATHWIDTH

« Open problems:

OR-Cross-composition into k-TREEWIDTH?

L

Further relations between kernel and obstruction sizes?

L
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Conclusion

« For each problem in FPT, there is a polynomial-time quasi-
order under which each No-instance (x,k) is preceded by an
f(k)-size obstruction

« Characterization suggests a connection between kernel

=Cross-

THANK YOU!

OR-Cross-composition into k-

Further relations between kernel and obstruction sizes?
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