

FPT is Characterized by Useful Obstruction Sets

Bart M. P. Jansen

Joint work with Michael R. Fellows, Charles Darwin Univ.

Universiteit Utrecht

A NEW CHARACTERIZATION OF FPT

- A quasi-order is a transitive, reflexive, binary relation ≤ on a (usually infinite) set S.
 - If $x \le y$, then x **precedes** y.

- A quasi-order is a transitive, reflexive, binary relation ≤ on a (usually infinite) set S.
 - If $x \le y$, then x **precedes** y.
- A quasi-order ≤ is a well-quasi-order on S if
 - for every infinite sequence x₁, x₂, ... over S,
 - there are indices i<j such that $x_i \leq x_i$.

- A quasi-order is a transitive, reflexive, binary relation ≤ on a (usually infinite) set S.
 - If $x \le y$, then x **precedes** y.
- A quasi-order ≤ is a well-quasi-order on S if
 - for every infinite sequence x₁, x₂, ... over S,
 - there are indices i<j such that $x_i \leq x_j$.
- Set L ⊆ S is a lower ideal of S under ≤ if
 - ∀x,y ∈ S: if x ∈ L and y \leq x, then y ∈ L.

- A quasi-order is a transitive, reflexive, binary relation ≤ on a (usually infinite) set S.
 - If $x \le y$, then x **precedes** y.
- A quasi-order ≤ is a well-quasi-order on S if
 - for every infinite sequence x₁, x₂, ... over S,
 - there are indices i<j such that $x_i \leq x_j$.
- Set L ⊆ S is a lower ideal of S under ≤ if
 - $\forall x,y \in S$: if $x \in L$ and $y \leq x$, then $y \in L$.
- A quasi-order is polynomial if x ≤ y can be tested in poly(|x|+|y|) time.

If \leq is a WQO on S, and L \subseteq S is a lower ideal, then there is a **finite obstruction set** OBS(L) \subseteq S, such that for all $x \in$ S: $x \in$ L iff no element in OBS(L) precedes x.

If \leq is a WQO on S, and L \subseteq S is a lower ideal, then there is a **finite obstruction set** OBS(L) \subseteq S, such that for all $x \in$ S: $x \in$ L iff no element in OBS(L) precedes x.

 Decide membership in a lower ideal by testing containment of an obstruction.

If \leq is a WQO on S, and L \subseteq S is a lower ideal, then there is a **finite obstruction set** OBS(L) \subseteq S, such that for all $x \in$ S: $x \in$ L iff no element in OBS(L) precedes x.

- Decide membership in a lower ideal by testing containment of an obstruction.
- Any element y ∈ S \ L is an obstruction.

If \leq is a WQO on S, and L \subseteq S is a lower ideal, then there is a **finite obstruction set** OBS(L) \subseteq S, such that for all $x \in$ S: $x \in$ L iff no element in OBS(L) precedes x.

- Decide membership in a lower ideal by testing containment of an obstruction.
- Any element y ∈ S \ L is an obstruction.
- An obstruction is minimal if all elements strictly preceding it belong to L.

Algorithmic Applications of WQO's

- Fellows & Langston, JACM 1988:
 - k-PATH,
 - k-Vertex Cover,
 - k-FEEDBACK VERTEX SET, can be solved in $O(n^3)$ time, for each fixed k.

Algorithmic Applications of WQO's

- Fellows & Langston, JACM 1988:
 - -k-PATH,
 - k-Vertex Cover,
 - k-FEEDBACK VERTEX SET, can be solved in $O(n^3)$ time, for each fixed k.

Obstruction principle

 Graphs are wellquasi-ordered by the minor relation.

Lower ideals

 YES or NO instances are closed under taking minors.

Efficient order testing

• f(H)n³ time for each fixed graph H.

Algorithmic Applications of WQO's

- Fellows & Langston, JACM 1988:
 - k-PATH,
 - k-Vertex Cover,
 - k-FEEDBACK VERTEX SET, can be solved in $O(n^3)$ time, for each fixed k.

Obstruction principle

 Graphs are wellquasi-ordered by the minor relation.

Lower ideals

 YES or NO instances are closed under taking minors.

Efficient order testing

• f(H)n³ time for each fixed graph H.

Results led to the development of parameterized complexity.

- A parameterized problem is a set $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a parameter k.
 - The **size** of an instance (x,k) is |x| + k.

- A parameterized problem is a set $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a parameter k.
 - The **size** of an instance (x,k) is |x| + k.

Strongly Uniform FPT (Fixed-Parameter Tractable)

A parameterized problem \mathbb{Q} is strongly uniform FPT if there is an algorithm that decides whether $(x,k) \in \mathbb{Q}$ in $f(k)|x|^c$ time. (for a computable function f and constant c)

- A parameterized problem is a set $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a parameter k.
 - The **size** of an instance (x,k) is |x| + k.

Strongly Uniform FPT (Fixed-Parameter Tractable)

A parameterized problem \mathbb{Q} is strongly uniform FPT if there is an algorithm that decides whether $(x,k) \in \mathbb{Q}$ in $f(k)|x|^c$ time. (for a computable function f and constant c)

There are weaker notions. (non-uniform, non-computable f)

 A kernel of size f(k) for a parameterized problem Q is a polynomial-time algorithm that transforms (x,k) into (x',k'),

 A kernel of size f(k) for a parameterized problem Q is a polynomial-time algorithm that transforms (x,k) into (x',k'),

- A kernel of size f(k) for a parameterized problem Q is a polynomial-time algorithm that transforms (x,k) into (x',k'),
 - such that (x,k) in Q iff (x',k') in Q,

- A kernel of size f(k) for a parameterized problem Q is a polynomial-time algorithm that transforms (x,k) into (x',k'),
 - such that (x,k) in Q iff (x',k') in Q,
 - and |x'|+k' is bounded by f(k).

• For any parameterized problem $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:

- For any parameterized problem $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:
 - 1. Problem Q is contained in strongly uniform FPT.

- For any parameterized problem $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:
 - 1. Problem Q is contained in strongly uniform FPT.
 - 2. Problem Q is decidable and admits a **kernel** of computable size.

- For any parameterized problem $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:
 - 1. Problem Q is contained in strongly uniform FPT.
 - 2. Problem Q is decidable and admits a **kernel** of computable size.
 - 3. Problem $\mathbb Q$ is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb N$ and a computable function $f: \mathbb N \to \mathbb N$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every $(x,k) \notin \mathbb{Q}$, there is an **obstruction** $(x',k') \notin \mathbb{Q}$ of size at most f(k) with $(x',k') \leq (x,k)$.

- For any parameterized problem $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:
 - 1. Problem Q is contained in strongly uniform **FPT**.
 - 2. Problem Q is decidable and admits a **kernel** of computable size.
 - 3. Problem Q is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \to \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every $(x,k) \notin \mathbb{Q}$, there is an **obstruction** $(x',k') \notin \mathbb{Q}$ of size at most f(k) with $(x',k') \leq (x,k)$.

- 3. Problem \mathbb{Q} is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \to \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every $(x,k) \notin \mathbb{Q}$, there is an **obstruction** $(x',k') \notin \mathbb{Q}$ of size at most f(k) with $(x',k') \leq (x,k)$.

- •Implies that for every k, there is a **finite** obstruction set OBS(k) containing instances of size \leq f(k):
 - •(x,k) in Q iff no element of OBS(k) precedes it.

- 3. Problem \mathbb{Q} is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \to \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every (x,k) ∉ Q, there is an **obstruction** (x',k') ∉ Q of size at most f(k) with (x',k') ≤ (x,k).

- Implies that for every k, there is a **finite** obstruction set OBS(k) containing instances of size ≤ f(k):
 - •(x,k) in Q iff no element of OBS(k) precedes it.
- •The obstruction-testing method that lies at the origins of FPT is not just one way of obtaining FPT algorithms:
 - all of FPT can be obtained this way.
 - 3. Problem \mathbb{Q} is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \to \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every $(x,k) \notin \mathbb{Q}$, there is an **obstruction** $(x',k') \notin \mathbb{Q}$ of size at most f(k) with $(x',k') \leq (x,k)$.

KERNEL SIZE VS. OBSTRUCTION SIZE

Problem Q is decidable and admits a kernel of size O(f(k))

Problem Q is decidable and admits a kernel of size O(f(k))

implies

Problem Q is decidable and admits a kernel of size O(f(k))

implies

- Problem Q is decidable and there is a polynomial-time quasi-order \leq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set \mathbb{Q} is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every (x,k) ∉ Q, there is an obstruction (x',k') ∉ Q of size O(f(k)) with (x',k') ≤ (x,k).

Problem Q is decidable and admits a kernel of size O(f(k))

implies

- Problem Q is decidable and there is a polynomial-time quasi-order \leq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set \mathbb{Q} is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every $(x,k) \notin \mathbb{Q}$, there is an obstruction $(x',k') \notin \mathbb{Q}$ of size $\mathcal{O}(f(k))$ with $(x',k') \leq (x,k)$.

Parameterized problems with polynomial kernels are characterized by obstructions of polynomial size.

Problem Q is decidable and admits a kernel of size O(f(k))

implies

- Problem Q is decidable and there is a polynomial-time quasi-order \leq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq .
 - For every (x)
 (x',k') ∉ Q of

 Reverse is f
 (Krain of the content of the content

Reverse is false, assuming NP ⊄ coNP/poly. (Kratsch & Walhström, 2011)

Parameterized problems with polynomial kernels are characterized by obstructions of polynomial size.

Obstruction size vs. kernel size

Polynomial bounds

Polynomial bounds

k-Vertex Cover

- Best known kernel has 2k o(k) vertices [Lampis'11]
- Largest graph that is minor-minimal with vertex cover size k has 2k vertices
 - Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]

Polynomial bounds

k-Vertex Cover

- Best known kernel has 2k o(k) vertices [Lampis'11]
- Largest graph that is minor-minimal with vertex cover size k has 2k vertices
 - Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]

k- \mathcal{F} -Minor-Free Deletion (when \mathcal{F} contains a planar graph)

- Polynomial kernel [Fomin et al.'12]
- Minor-minimal obstructions have polynomial size

Polynomial bounds

k-Vertex Cover

- Best known kernel has 2k o(k) vertices [Lampis'11]
- Largest graph that is minor-minimal with vertex cover size k has 2k vertices
 - Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]

k- \mathcal{F} -Minor-Free Deletion (when \mathcal{F} contains a planar graph)

- Polynomial kernel [Fomin et al.'12]
- Minor-minimal obstructions have polynomial size

TREEWIDTH parameterized by Vertex Cover

- O(vc³)-vertex kernel [Bodlaender et al.'11]
- Minor-minimal obstructions have $|V| \le O(vc^3)$.

Polynomial bounds

k-Vertex Cover

- Best known kernel has 2k o(k) vertices [Lampis'11]
- Largest graph that is minor-minimal with vertex cover size k has 2k vertices
 - Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]

k- \mathcal{F} -Minor-Free Deletion (when \mathcal{F} contains a planar graph)

- Polynomial kernel [Fomin et al.'12]
- Minor-minimal obstructions have polynomial size

TREEWIDTH parameterized by Vertex Cover

- O(vc³)-vertex kernel [Bodlaender et al.'11]
- Minor-minimal obstructions have $|V| \le O(vc^3)$.

q-Coloring parameterized by Vertex Cover

- O(vcq)-vertex kernel [J+Kratsch'11]
- Vertex-minimal NO-instances have $vc^{\theta(q)}$ vertices.

Superpolynomial bounds

Superpolynomial bounds

3-Coloring parameterized by Feedback Vertex Set

- No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch'11]
- Size of vertex-minimal No-instances is unbounded in FVS number.

Superpolynomial bounds

3-Coloring parameterized by Feedback Vertex Set

- No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch'11]
- Size of vertex-minimal No-instances is unbounded in FVS number.

k-RAMSEY

- No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch'12]
- Lower bound construction is based on a Turán-like host graph whose size is superpolynomial in its parameter.

Superpolynomial bounds

3-Coloring parameterized by Feedback Vertex Set

- No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch'11]
- Size of vertex-minimal No-instances is unbounded in FVS number.

k-RAMSEY

- No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch'12]
- Lower bound construction is based on a Turán-like host graph whose size is superpolynomial in its parameter.

k-Pathwidth

- No polynomial kernel unless NP \subseteq coNP/poly. [BodlaenderDFH'09]
- Minor-minimal obstructions with $\Omega(3^k)$ vertices.

EXPLOITING OBSTRUCTIONS FOR LOWER-BOUNDS ON KERNEL SIZES

NP-hard inputs

X₁

 X_2

X..

 \mathbf{X}_{t}

NP-hard inputs

NP-hard inputs

AND-Cross-composition: $(x^*,k^*) \in \mathbb{Q}$ iff all inputs are YES OR-Cross-composition: $(x^*,k^*) \in \mathbb{Q}$ iff some input is YES

- The pathwidth of a graph measures how "path-like" it is
 - Pathwidth does not increase when taking minors

- The pathwidth of a graph measures how "path-like" it is
 - Pathwidth does not increase when taking minors
- k-Pathwidth

Input: A graph G, an integer k.

Parameter: k.

Question: Is the pathwidth of G at most k?

- The pathwidth of a graph measures how "path-like" it is
 - Pathwidth does not increase when taking minors
- k-Pathwidth

Input: A graph G, an integer k.

Parameter: k.

Question: Is the pathwidth of G at most k?

- Disjoint union acts as AND for question of "pathwidth ≤ k?":
 - PW(G₁ \cup G₂ \cup ... \cup G_t) ≤ k \Leftrightarrow ∀i: PW(G_i) ≤ k.

- The pathwidth of a graph measures how "path-like" it is
 - Pathwidth does not increase when taking minors
- *k*-Pathwidth

Input: A graph G, an integer k.

Parameter: k.

Question: Is the pathwidth of G at most k?

- Disjoint union acts as AND for question of "pathwidth ≤ k?":
 - PW(G₁ \cup G₂ \cup ... \cup G_t) ≤ k \Leftrightarrow ∀i: PW(G_i) ≤ k.
- Trivial AND-composition for k-PATHWIDTH:
 - Take disjoint union of t Pathwidth-instances.
 - Ensure same value of k by padding.
 - Output parameter value is k ≤ n.

- The pathwidth of a graph measures how "path-like" it is
 - Pathwidth does not increase when taking minors
- k-Pathwidth

Input: A graph G, an integer k.

Parameter: k.

Question: Is the pathwidth of G at most k?

- Disjoint union acts as AND for question of "pathwidth ≤ k?":
 - PW(G₁ \cup G₂ \cup ... \cup G_t) ≤ k \Leftrightarrow ∀i: PW(G_i) ≤ k.
- Trivial AND-composition for k-PATHWIDTH:
 - Take disjoint union of t Pathwidth-instances.
 - Ensure same value of k by padding.
 - Output parameter value is k ≤ n.

k-PATHWIDTH is AND-compositional and does not admit a polynomial kernel unless NP ⊆ coNP/poly. [BodlaenderDFH'09,Drucker'12]

The pathwidth measure naturally behaves like an AND-gate

- The pathwidth measure naturally behaves like an AND-gate
- By exploiting minimal obstructions to Pw≤k with Ω(3^k) vertices, we create an or-Cross-composition of:
 - $t=3^{s}$ instances of PW-IMPROVEMENT $(G_1,k), ..., (G_t,k)$
 - into one k-Pathwidth instance (G*,k*) with k*≤ $O(n \cdot \log t)$,
 - such that $PW(G^*) \le k^*$ iff **some** input i is YES.

- The pathwidth measure naturally behaves like an AND-gate
- By exploiting minimal obstructions to Pw≤k with Ω(3^k) vertices, we create an or-Cross-composition of:
 - t=3s instances of PW-IMPROVEMENT (G_1 ,k), ..., (G_t ,k)
 - into one k-Pathwidth instance (G*,k*) with k*≤ $O(n \cdot \log t)$,
 - such that $PW(G^*) \le k^*$ iff **some** input i is YES.
- PATHWIDTH IMPROVEMENT

Input: An integer k, and a graph G of pathwidth \leq k-1.

Question: Is the pathwidth of G at most k-2?

- The pathwidth measure naturally behaves like an AND-gate
- By exploiting minimal obstructions to Pw≤k with Ω(3^k) vertices, we create an or-Cross-composition of:
 - $t=3^{s}$ instances of PW-IMPROVEMENT $(G_1,k), ..., (G_t,k)$
 - into one k-PATHWIDTH instance (G*,k*) with k*≤0(n·log t),
 - such that $PW(G^*) \le k^*$ iff **some** input i is YES.

NP-hard.

PATHWIDTH IMPROVEMENT

Input: An integer k, and a graph G of pathwidth \leq k-1.

Question: Is the pathwidth of G at most k-2?

Kinnersley'92 and TakahashiUK'94 independently proved:

Joining 3 minimal treeobstructions to PW=k, gives minimal obstruction to PW=k+1

Kinnersley'92 and TakahashiUK'94 independently proved:

Joining 3 minimal treeobstructions to PW=k, gives minimal obstruction to PW=k+1

t=3s instances of PW-IMPROVEMENT with k=3 (each asking if $PW(G_i) \le k-2$)

Obstruction with 3^s leaves, inflated by factor k Pathwidth is $O(k \cdot s) \le O(n \cdot \log t)$

Claim: some input i has $PW(G_i) \le k-2 \Rightarrow PW(G^*) < PW(T^s \diamondsuit k)$

Claim: some input i has $PW(G_i) \le k-2 \Rightarrow PW(G^*) < PW(T^s \diamondsuit k)$

Claim: all inputs have $PW(G_i) > k-2 \rightarrow PW(G^*) \ge PW(T^s \diamondsuit k)$

 For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction

- For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
- Characterization suggests a connection between kernel sizes and obstruction sizes

- For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
- Characterization suggests a connection between kernel sizes and obstruction sizes
- Large obstructions form the crucial ingredient for OR-crosscomposition into k-PATHWIDTH

- For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
- Characterization suggests a connection between kernel sizes and obstruction sizes
- Large obstructions form the crucial ingredient for OR-crosscomposition into k-PATHWIDTH
- Open problems:

- For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
- Characterization suggests a connection between kernel sizes and obstruction sizes
- Large obstructions form the crucial ingredient for OR-crosscomposition into k-PATHWIDTH
- Open problems:

OR-Cross-composition into *k*-Treewidth?

Further relations between kernel and obstruction sizes?

- For each problem in FPT, there is a polynomial-time quasiorder under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
- Characterization suggests a connection between kernel sizes and obstruction
- Large com

THANK YOU!

Open pro.

OR-Cross-composition into *K*-TREEWIDTH?

Further relations between kernel and obstruction sizes?

-cross-