
FPT is Characterized by
Useful Obstruction Sets

Bart M. P. Jansen

Joint work with

Michael R. Fellows, Charles Darwin Univ.

June 21st 2013, WG 2013, Lübeck

A NEW CHARACTERIZATION OF FPT

2

Well-Quasi-Orders

• A quasi-order is a transitive, reflexive, binary relation ⪯
on a (usually infinite) set S.

– If x ⪯ y, then x precedes y.

3

Well-Quasi-Orders

• A quasi-order is a transitive, reflexive, binary relation ⪯
on a (usually infinite) set S.

– If x ⪯ y, then x precedes y.

• A quasi-order ⪯ is a well-quasi-order on S if

– for every infinite sequence x1, x2, … over S,

– there are indices i<j such that xi ⪯ xj.

4

Well-Quasi-Orders

• A quasi-order is a transitive, reflexive, binary relation ⪯
on a (usually infinite) set S.

– If x ⪯ y, then x precedes y.

• A quasi-order ⪯ is a well-quasi-order on S if

– for every infinite sequence x1, x2, … over S,

– there are indices i<j such that xi ⪯ xj.

• Set L ⊆ S is a lower ideal of S under ⪯ if

– ∀x,y ∈ S: if x ∈ L and y ⪯ x, then y ∈ L.

5

Well-Quasi-Orders

• A quasi-order is a transitive, reflexive, binary relation ⪯
on a (usually infinite) set S.

– If x ⪯ y, then x precedes y.

• A quasi-order ⪯ is a well-quasi-order on S if

– for every infinite sequence x1, x2, … over S,

– there are indices i<j such that xi ⪯ xj.

• Set L ⊆ S is a lower ideal of S under ⪯ if

– ∀x,y ∈ S: if x ∈ L and y ⪯ x, then y ∈ L.

• A quasi-order is polynomial if x ⪯ y can be tested in
poly(|x|+|y|) time.

6

The Obstruction Principle

7

If ⪯ is a WQO on S, and L ⊆ S is a lower ideal, then there is a
finite obstruction set OBS(L) ⊆ S, such that for all x ∈ S:
 x ∈ L iff no element in OBS(L) precedes x.

The Obstruction Principle

• Decide membership in a lower ideal by testing containment
of an obstruction.

8

If ⪯ is a WQO on S, and L ⊆ S is a lower ideal, then there is a
finite obstruction set OBS(L) ⊆ S, such that for all x ∈ S:
 x ∈ L iff no element in OBS(L) precedes x.

The Obstruction Principle

• Decide membership in a lower ideal by testing containment
of an obstruction.

• Any element y ∈ S \ L is an obstruction.

9

If ⪯ is a WQO on S, and L ⊆ S is a lower ideal, then there is a
finite obstruction set OBS(L) ⊆ S, such that for all x ∈ S:
 x ∈ L iff no element in OBS(L) precedes x.

The Obstruction Principle

• Decide membership in a lower ideal by testing containment
of an obstruction.

• Any element y ∈ S \ L is an obstruction.

• An obstruction is minimal if all elements strictly preceding
it belong to L.

10

If ⪯ is a WQO on S, and L ⊆ S is a lower ideal, then there is a
finite obstruction set OBS(L) ⊆ S, such that for all x ∈ S:
 x ∈ L iff no element in OBS(L) precedes x.

Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:

– k-PATH,

– k-VERTEX COVER,

– k-FEEDBACK VERTEX SET,

 can be solved in O(n3) time, for each fixed k.

11

Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:

– k-PATH,

– k-VERTEX COVER,

– k-FEEDBACK VERTEX SET,

 can be solved in O(n3) time, for each fixed k.

12

Obstruction principle

• Graphs are well-
quasi-ordered by
the minor relation.

Lower ideals

• YES or NO instances
are closed under
taking minors.

Efficient order
testing

• f(H)n3 time for
each fixed graph H.

Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:

– k-PATH,

– k-VERTEX COVER,

– k-FEEDBACK VERTEX SET,

 can be solved in O(n3) time, for each fixed k.

• Results led to the development of parameterized
complexity.

13

Obstruction principle

• Graphs are well-
quasi-ordered by
the minor relation.

Lower ideals

• YES or NO instances
are closed under
taking minors.

Efficient order
testing

• f(H)n3 time for
each fixed graph H.

The class FPT

14

The class FPT

• A parameterized problem is a set Q ⊆ *×N

– Each instance (x,k) ∈ *×N has a parameter k.

– The size of an instance (x,k) is |x| + k.

15

The class FPT

• A parameterized problem is a set Q ⊆ *×N

– Each instance (x,k) ∈ *×N has a parameter k.

– The size of an instance (x,k) is |x| + k.

16

Strongly Uniform FPT (Fixed-Parameter Tractable)
A parameterized problem Q is strongly uniform FPT if there is
an algorithm that decides whether (x,k) ∈ Q in f(k)|x|c time.
(for a computable function f and constant c)

The class FPT

• A parameterized problem is a set Q ⊆ *×N

– Each instance (x,k) ∈ *×N has a parameter k.

– The size of an instance (x,k) is |x| + k.

• There are weaker notions. (non-uniform, non-computable f)

17

Strongly Uniform FPT (Fixed-Parameter Tractable)
A parameterized problem Q is strongly uniform FPT if there is
an algorithm that decides whether (x,k) ∈ Q in f(k)|x|c time.
(for a computable function f and constant c)

Kernelization

• A kernel of size f(k) for a parameterized problem Q is a

polynomial-time algorithm that transforms (x,k) into (x’,k’),

18

Kernelization

• A kernel of size f(k) for a parameterized problem Q is a

polynomial-time algorithm that transforms (x,k) into (x’,k’),

19

 , k’ Poly-time , k

Kernelization

• A kernel of size f(k) for a parameterized problem Q is a

polynomial-time algorithm that transforms (x,k) into (x’,k’),

– such that (x,k) in Q iff (x’,k’) in Q,

20

 , k’ Poly-time , k

Kernelization

• A kernel of size f(k) for a parameterized problem Q is a

polynomial-time algorithm that transforms (x,k) into (x’,k’),

– such that (x,k) in Q iff (x’,k’) in Q,

– and |x’|+k’ is bounded by f(k).

21

 , k’ Poly-time , k

≤ f(k)

New characterization of FPT

22

• For any parameterized problem Q ⊆ *×N, the following

statements are equivalent:

New characterization of FPT

23

• For any parameterized problem Q ⊆ *×N, the following

statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.

New characterization of FPT

24

• For any parameterized problem Q ⊆ *×N, the following

statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.

2. Problem Q is decidable and admits a kernel of

computable size.

New characterization of FPT

25

• For any parameterized problem Q ⊆ *×N, the following

statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.

2. Problem Q is decidable and admits a kernel of

computable size.

3. Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N and a computable function
f: N  N such that:

• The set Q is a lower ideal of *×N under ⪯.

• For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k).

New characterization of FPT

26

• For any parameterized problem Q ⊆ *×N, the following

statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.

2. Problem Q is decidable and admits a kernel of

computable size.

3. Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N and a computable function
f: N  N such that:

• The set Q is a lower ideal of *×N under ⪯.

• For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k).

New characterization of FPT

27

3. Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N and a computable function
f: N  N such that:

• The set Q is a lower ideal of *×N under ⪯.

• For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k).

New characterization of FPT

28

3. Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N and a computable function
f: N  N such that:

• The set Q is a lower ideal of *×N under ⪯.

• For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k).

•Implies that for every k, there is a finite obstruction set OBS(k)
containing instances of size ≤ f(k):

•(x,k) in Q iff no element of OBS(k) precedes it.

New characterization of FPT

29

3. Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N and a computable function
f: N  N such that:

• The set Q is a lower ideal of *×N under ⪯.

• For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size at most f(k) with (x’,k’) ⪯ (x,k).

•Implies that for every k, there is a finite obstruction set OBS(k)
containing instances of size ≤ f(k):

•(x,k) in Q iff no element of OBS(k) precedes it.

•The obstruction-testing method that lies at the origins of FPT is not
just one way of obtaining FPT algorithms:

•all of FPT can be obtained this way.

KERNEL SIZE VS. OBSTRUCTION SIZE

30

Small kernels yield small obstructions

• Problem Q is decidable and admits a kernel of size O(f(k))

31

Small kernels yield small obstructions

• Problem Q is decidable and admits a kernel of size O(f(k))

implies

32

Small kernels yield small obstructions

• Problem Q is decidable and admits a kernel of size O(f(k))

implies

• Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N such that:

– The set Q is a lower ideal of *×N under ⪯.

– For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size O(f(k)) with (x’,k’) ⪯ (x,k).

33

Small kernels yield small obstructions

• Problem Q is decidable and admits a kernel of size O(f(k))

implies

• Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N such that:

– The set Q is a lower ideal of *×N under ⪯.

– For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size O(f(k)) with (x’,k’) ⪯ (x,k).

34

Parameterized problems with polynomial kernels are
characterized by obstructions of polynomial size.

Small kernels yield small obstructions

• Problem Q is decidable and admits a kernel of size O(f(k))

implies

• Problem Q is decidable and there is a polynomial-time
quasi-order ⪯ on *×N such that:

– The set Q is a lower ideal of *×N under ⪯.

– For every (x,k) ∉ Q, there is an obstruction
(x’,k’) ∉ Q of size O(f(k)) with (x’,k’) ⪯ (x,k).

35

Parameterized problems with polynomial kernels are
characterized by obstructions of polynomial size.

Reverse is false, assuming NP ⊄ coNP/poly.
(Kratsch & Walhström, 2011)

Obstruction size vs. kernel size
Polynomial bounds

36

Obstruction size vs. kernel size
Polynomial bounds

37

• Best known kernel has 2k – o(k) vertices [Lampis’11]

• Largest graph that is minor-minimal with vertex cover size k has 2k vertices

• Vertex Cover obstructions have been studied since 1964 [-critical graphs: Erdős, Hajnal & Moon]

k-VERTEX COVER

Obstruction size vs. kernel size
Polynomial bounds

38

• Best known kernel has 2k – o(k) vertices [Lampis’11]

• Largest graph that is minor-minimal with vertex cover size k has 2k vertices

• Vertex Cover obstructions have been studied since 1964 [-critical graphs: Erdős, Hajnal & Moon]

k-VERTEX COVER

• Polynomial kernel [Fomin et al.’12]

• Minor-minimal obstructions have polynomial size

k-F-MINOR-FREE DELETION (when F contains a planar graph)

Obstruction size vs. kernel size
Polynomial bounds

39

• Best known kernel has 2k – o(k) vertices [Lampis’11]

• Largest graph that is minor-minimal with vertex cover size k has 2k vertices

• Vertex Cover obstructions have been studied since 1964 [-critical graphs: Erdős, Hajnal & Moon]

k-VERTEX COVER

• Polynomial kernel [Fomin et al.’12]

• Minor-minimal obstructions have polynomial size

k-F-MINOR-FREE DELETION (when F contains a planar graph)

• O(VC3)-vertex kernel [Bodlaender et al.’11]

• Minor-minimal obstructions have |V| ≤ O(VC3).

TREEWIDTH parameterized by Vertex Cover

Obstruction size vs. kernel size
Polynomial bounds

40

• Best known kernel has 2k – o(k) vertices [Lampis’11]

• Largest graph that is minor-minimal with vertex cover size k has 2k vertices

• Vertex Cover obstructions have been studied since 1964 [-critical graphs: Erdős, Hajnal & Moon]

k-VERTEX COVER

• Polynomial kernel [Fomin et al.’12]

• Minor-minimal obstructions have polynomial size

k-F-MINOR-FREE DELETION (when F contains a planar graph)

• O(VC3)-vertex kernel [Bodlaender et al.’11]

• Minor-minimal obstructions have |V| ≤ O(VC3).

TREEWIDTH parameterized by Vertex Cover

• O(vcq)-vertex kernel [J+Kratsch’11]

• Vertex-minimal NO-instances have vc (q) vertices.

q-COLORING parameterized by Vertex Cover

Obstruction size vs. kernel size
Superpolynomial bounds

41

Obstruction size vs. kernel size
Superpolynomial bounds

42

• No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch’11]
• Size of vertex-minimal NO-instances is unbounded in FVS number.

3-COLORING parameterized by Feedback Vertex Set

Obstruction size vs. kernel size
Superpolynomial bounds

43

• No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch’11]
• Size of vertex-minimal NO-instances is unbounded in FVS number.

3-COLORING parameterized by Feedback Vertex Set

• No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch’12]
• Lower bound construction is based on a Turán-like host graph whose size

is superpolynomial in its parameter.

k-RAMSEY

Obstruction size vs. kernel size
Superpolynomial bounds

44

• No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch’11]
• Size of vertex-minimal NO-instances is unbounded in FVS number.

3-COLORING parameterized by Feedback Vertex Set

• No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch’12]
• Lower bound construction is based on a Turán-like host graph whose size

is superpolynomial in its parameter.

k-RAMSEY

• No polynomial kernel unless NP ⊆ coNP/poly. [BodlaenderDFH’09]

• Minor-minimal obstructions with (3k) vertices.

k-PATHWIDTH

EXPLOITING OBSTRUCTIONS FOR
LOWER-BOUNDS ON KERNEL SIZES

45

Composition algorithms

46

Composition algorithms

47

NP-hard
inputs x1 x2 x.. xt

Composition algorithms

48

NP-hard
inputs x1 x2 x.. xt

n

Composition algorithms

49

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Composition algorithms

50

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

Composition algorithms

51

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

Composition algorithms

52

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

AND-Cross-composition: (x*,k*) ∈ Q iff all inputs are YES
OR-Cross-composition: (x*,k*) ∈ Q iff some input is YES

Composition algorithms

53

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

poly-time poly(k)-size kernel

Composition algorithms

54

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

poly-time poly(k)-size kernel

Composition algorithms

55

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

x’ k'

poly-time poly(k)-size kernel

Composition algorithms

56

poly(n · t)-time composition

NP-hard
inputs x1 x2 x.. xt

n

Q-instance x* k*

poly(n·log t)

x’ k'

poly(n·log t)

The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
– Pathwidth does not increase when taking minors

57

The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
– Pathwidth does not increase when taking minors

• k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

58

The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
– Pathwidth does not increase when taking minors

• k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

• Disjoint union acts as AND for question of “pathwidth ≤ k?”:

– PW(G1 ⊍ G2 ⊍ … ⊍ Gt) ≤ k  ∀i: PW(Gi) ≤ k.

59

The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
– Pathwidth does not increase when taking minors

• k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

• Disjoint union acts as AND for question of “pathwidth ≤ k?”:

– PW(G1 ⊍ G2 ⊍ … ⊍ Gt) ≤ k  ∀i: PW(Gi) ≤ k.

• Trivial AND-composition for k-PATHWIDTH:

– Take disjoint union of t PATHWIDTH-instances.
• Ensure same value of k by padding.

– Output parameter value is k ≤ n.

60

k-PATHWIDTH is AND-compositional and does not admit a polynomial

kernel unless NP ⊆ coNP/poly. [BodlaenderDFH’09,Drucker’12]

The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
– Pathwidth does not increase when taking minors

• k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

• Disjoint union acts as AND for question of “pathwidth ≤ k?”:

– PW(G1 ⊍ G2 ⊍ … ⊍ Gt) ≤ k  ∀i: PW(Gi) ≤ k.

• Trivial AND-composition for k-PATHWIDTH:

– Take disjoint union of t PATHWIDTH-instances.
• Ensure same value of k by padding.

– Output parameter value is k ≤ n.

61

OR-Cross-composition

62

OR-Cross-composition

• The pathwidth measure naturally behaves like an AND-gate

63

OR-Cross-composition

• The pathwidth measure naturally behaves like an AND-gate

• By exploiting minimal obstructions to PW≤k with (3k)
vertices, we create an OR-Cross-composition of:

– t=3s instances of PW-IMPROVEMENT (G1,k), … , (Gt,k)

– into one k-PATHWIDTH instance (G*,k*) with k*≤O(n·log t),

– such that PW(G*) ≤ k* iff some input i is YES.

64

OR-Cross-composition

• The pathwidth measure naturally behaves like an AND-gate

• By exploiting minimal obstructions to PW≤k with (3k)
vertices, we create an OR-Cross-composition of:

– t=3s instances of PW-IMPROVEMENT (G1,k), … , (Gt,k)

– into one k-PATHWIDTH instance (G*,k*) with k*≤O(n·log t),

– such that PW(G*) ≤ k* iff some input i is YES.

• PATHWIDTH IMPROVEMENT

 Input: An integer k, and a graph G of pathwidth ≤ k-1.

 Question: Is the pathwidth of G at most k-2?

65

OR-Cross-composition

• The pathwidth measure naturally behaves like an AND-gate

• By exploiting minimal obstructions to PW≤k with (3k)
vertices, we create an OR-Cross-composition of:

– t=3s instances of PW-IMPROVEMENT (G1,k), … , (Gt,k)

– into one k-PATHWIDTH instance (G*,k*) with k*≤O(n·log t),

– such that PW(G*) ≤ k* iff some input i is YES.

• PATHWIDTH IMPROVEMENT

 Input: An integer k, and a graph G of pathwidth ≤ k-1.

 Question: Is the pathwidth of G at most k-2?

66

NP-hard.

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

67

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

68

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

69

K2 is the unique
minimal obstruction

to PW=0

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

70

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

71

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

72

Joining 3 minimal tree-
obstructions to PW=k, gives

minimal obstruction to PW=k+1

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

73

Joining 3 minimal tree-
obstructions to PW=k, gives

minimal obstruction to PW=k+1

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

74

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

75

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

76

Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved:

77

Ternary tree of height k,
with 1 extra layer of leaves,

is minor-minimal
obstruction to PW=k

Construction

78

Construction

79

t=3s instances of PW-IMPROVEMENT with k=3
(each asking if PW(Gi) ≤ k – 2)

Construction

80

Obstruction with 3s leaves,
inflated by factor k

Pathwidth is O(k·s) ≤ O(n·log t)

Construction

81

Construction

82

Construction

83

Output G* asking for pathwidth k*
1 less than inflated obstruction

Correctness sketch

84

Correctness sketch

85

Claim: some input i has PW(Gi) ≤ k-2  PW(G*) < PW(Ts ◊ k)

Correctness sketch

86

Claim: some input i has PW(Gi) ≤ k-2  PW(G*) < PW(Ts ◊ k)

Correctness sketch

87

Correctness sketch

88

Claim: all inputs have PW(Gi) > k-2  PW(G*) ≥ PW(Ts ◊ k)

Conclusion

89

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

90

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

• Characterization suggests a connection between kernel
sizes and obstruction sizes

91

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

• Characterization suggests a connection between kernel
sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-
composition into k-PATHWIDTH

92

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

• Characterization suggests a connection between kernel
sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-
composition into k-PATHWIDTH

• Open problems:

93

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

• Characterization suggests a connection between kernel
sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-
composition into k-PATHWIDTH

• Open problems:

94

OR-Cross-composition into k-TREEWIDTH?

Further relations between kernel and obstruction sizes?

Conclusion

• For each problem in FPT, there is a polynomial-time quasi-
order under which each NO-instance (x,k) is preceded by an
f(k)-size obstruction

• Characterization suggests a connection between kernel
sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-
composition into k-PATHWIDTH

• Open problems:

95

OR-Cross-composition into k-TREEWIDTH?

Further relations between kernel and obstruction sizes?

