UNIVERSITY OF BERGEN

Algorithms Research Group

On Sparsification for Computing Treewidth

Bart M. P. Jansen

Outline

Treewidth

Sparsification

Results

- Sparsification lower bound for TREEWIDTH
- Quadratic-vertex kernel upper bound for TREEWIDTH [VC]

Conclusion

• Measure of how "tree-like" a graph is

- Measure of how "tree-like" a graph is
 - Decompose a graph into a tree decomposition of small width to reveal its internal structure

- Measure of how "tree-like" a graph is
 - Decompose a graph into a tree decomposition of small width to reveal its internal structure
 - Dynamic programming solves many optimization problems when a tree decomposition is known

- Measure of how "tree-like" a graph is
 - Decompose a graph into a tree decomposition of small width to reveal its internal structure
 - Dynamic programming solves many optimization problems when a tree decomposition is known
 - First step: find good tree decomposition

- Measure of how "tree-like" a graph is
 - Decompose a graph into a tree decomposition of small width to reveal its internal structure
 - Dynamic programming solves many optimization problems when a tree decomposition is known
 - First step: **find** good tree decomposition
- TREEWIDTH

Input: A graph G, an integer kQuestion: Is the treewidth of G at most k?

- Measure of how "tree-like" a graph is
 - Decompose a graph into a tree decomposition of small width to reveal its internal structure
 - Dynamic programming solves many optimization problems when a tree decomposition is known
 - First step: find good tree decomposition
- TREEWIDTH

Input:A graph G, an integer kQuestion:Is the treewidth of G at most k?

- NP-complete [Arnborg et al.'87]

• The task of making a problem instance less dense, without changing its answer

- The task of making a problem instance less dense, without changing its answer
- Density
 - .. of a CNF formula: ratio of clauses to variables
 - .. of a graph: ratio of edges to vertices

- The task of making a problem instance less dense, without changing its answer
- Density
 - .. of a CNF formula: ratio of clauses to variables
 - .. of a graph: ratio of edges to vertices
- Work on sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
 - .. of a CNF formula: ratio of clauses to variables
 - .. of a graph: ratio of edges to vertices
- Work on sparsification
 - Eppstein et al. @ J.ACM'97:

Sparsification to speed up dynamic graph algorithms

- The task of making a problem instance less dense, without changing its answer
- Density
 - .. of a CNF formula: ratio of clauses to variables
 - .. of a graph: ratio of edges to vertices
- Work on sparsification
 - Eppstein et al. @ J.ACM'97:
 Sparsification to speed up dynamic graph algorithms
 - Impagliazzo et al. @ JCSS'01:
 Subexponential-time Sparsification Lemma for SATISFIABILITY

- The task of making a problem instance less dense, without changing its answer
- Density
 - .. of a CNF formula: ratio of clauses to variables
 - .. of a graph: ratio of edges to vertices
- Work on sparsification
 - Eppstein et al. @ J.ACM'97:
 Sparsification to speed up dynamic graph algorithms
 - Impagliazzo et al. @ JCSS'01:
 Subexponential-time Sparsification Lemma for SATISFIABILITY
 - Dell & van Melkebeek @ STOC'10:
 No nontrivial polynomial-time sparsification for *d*-CNF-SAT

Sparsification for Computing Treewidth

• Given a graph G, we want to make it easier to find a good tree decomposition of G

Sparsification for Computing Treewidth

- Given a graph G, we want to make it easier to find a good tree decomposition of G
- Main idea:
 - quickly compute G' which is "simpler" than G,
 - such that minimum-width decomposition of G' easily leads to minimum-width decomposition of G

Sparsification for Computing Treewidth

- Given a graph G, we want to make it easier to find a good tree decomposition of G
- Main idea:
 - quickly compute G' which is "simpler" than G,
 - such that minimum-width decomposition of G' easily leads to minimum-width decomposition of G
- Possible ways to make G' provably simpler than G:
 - Upper bound on the density of G'
 - Upper bound on the vertex count of G', in terms of structural measures of G

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - For an instance $(x,k) \in \Sigma^* \times \mathbb{N}$, we call k the **parameter**

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - For an instance $(x,k) \in \Sigma^* \times \mathbb{N}$, we call k the **parameter**
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,
 - outputs (x',k') such that:

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,
 - outputs (x',k') such that:
 - $(x,k) \in \mathbb{Q}$ iff $(x',k') \in \mathbb{Q}'$

- A parameterized problem is a subset Q ⊆ Σ^{*} × N
 For an instance (x,k) ∈ Σ^{*} × N, we call k the parameter
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,
 - outputs (x',k') such that:
 - $(x,k) \in \mathbb{Q}$ iff $(x',k') \in \mathbb{Q}'$
 - $|x'|, k' \le f(k)$

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - For an instance $(x,k) \in \Sigma^* \times \mathbb{N}$, we call k the **parameter**
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,
 - outputs (x',k') such that:
 - $(x,k) \in \mathbb{Q}$ iff $(x',k') \in \mathbb{Q}'$
 - $|x'|, k' \le f(k)$

Poly-time mapping from Q to Q'

- preserves the answer
- f(k)-size output bound

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^* \times \mathbb{N}$
 - For an instance $(x,k) \in \Sigma^* \times \mathbb{N}$, we call k the **parameter**
- Let \mathbb{Q} , \mathbb{Q}' be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q' with size f is
 - an algorithm that takes (x,k) as input,
 - runs in poly(|x| + k) time,
 - outputs (x',k') such that:
 - $(x,k) \in \mathbb{Q}$ iff $(x',k') \in \mathbb{Q}'$
 - $|x'|, k' \le f(k)$
- It is a kernelization (or kernel) if Q = Q'

Poly-time mapping from Q to Q'

- preserves the answer
- f(k)-size output bound

- Based on the parameterization by vertex count:
 - *n*-Treewidth
 - **Input:** $n \in \mathbb{N}$, an n-vertex graph G, an integer k
 - Parameter: n
 - **Question:** Is the treewidth of G at most k?

- Based on the parameterization by vertex count:
 - *n*-Treewidth

Input:	$n \in \mathbb{N}$, an n-vertex graph G, an integer k
Parameter:	n
Question:	Is the treewidth of G at most k?

• An instance (G,k,n) can be encoded in $O(n^2)$ bits

- Based on the parameterization by vertex count:
 - *n*-Treewidth

Input:	$n \in \mathbb{N}$, an n-vertex graph G, an integer k
Parameter:	n
Question:	Is the treewidth of G at most k?

- An instance (G,k,n) can be encoded in O(n²) bits
- Most relaxed form of polynomial-time sparsification:
 - generalized kernel for *n*-TREEWIDTH of size $O(n^{2-\epsilon})$ for $\epsilon > 0$

- Based on the parameterization by vertex count:
 - *n*-Treewidth

Input:	$n \in \mathbb{N}$, an n-vertex graph G, an integer k
Parameter:	n
Question:	Is the treewidth of G at most k?

- An instance (G,k,n) can be encoded in O(n²) bits
- Most relaxed form of polynomial-time sparsification:
 - generalized kernel for *n*-TREEWIDTH of size $O(n^{2-\epsilon})$ for $\epsilon > 0$

Theorem. *n*-TREEWIDTH does not have a generalized kernel of bitsize $O(n^{2-\epsilon})$, for any $\epsilon > 0$, unless NP \subseteq coNP/poly

- Proof using **cross-composition of bounded cost**
 - Introduced in the journal version of the paper on cross-composition [Bodlaender, J, Kratsch '12]
 - Easier front-end to the complementary witness lemma of Dell & van Melkebeek [STOC'10]

Corollary [Bodlaender et al.'12].

If there is a polynomial-time algorithm that:

- composes the OR of t² similar size-s instances of an NP-hard problem,
- into an instance (G^*, n^*, k^*) of *n*-TREEWIDTH with $n^* \in O(t \cdot s^{O(1)})$, then *n*-TREEWIDTH does not have a generalized kernel of bitsize $O(n^{2-\varepsilon})$, for any $\varepsilon > 0$, unless NP \subseteq coNP/poly

Corollary [Bodlaender et al.'12].

If there is a polynomial-time algorithm that:

- composes the OR of t² similar size-s instances of an NP-hard problem,
- into an instance (G^*, n^*, k^*) of *n*-TREEWIDTH with $n^* \in O(t \cdot s^{O(1)})$, then *n*-TREEWIDTH does not have a generalized kernel of bitsize $O(n^{2-\varepsilon})$, for any $\varepsilon > 0$, unless NP \subseteq coNP/poly

Corollary [Bodlaender et al.'12].

If there is a polynomial-time algorithm that:

- composes the OR of t² similar size-s instances of an NP-hard problem,
- into an instance (G^*, n^*, k^*) of *n*-TREEWIDTH with $n^* \in \mathcal{O}(t \cdot s^{\mathcal{O}(1)})$, then *n*-TREEWIDTH does not have a generalized kernel of bitsize $\mathcal{O}(n^{2-\varepsilon})$, for any $\varepsilon > 0$, unless NP \subseteq coNP/poly

Algorithms Research Group

Proof Strategy

• Convenient source problem

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])
 - Turn rows into cliques to get a cobipartite graph

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])
 - Turn rows into cliques to get a cobipartite graph

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])
 - Turn rows into cliques to get a cobipartite graph
- Gadgets enforce an OR-gate through the cobipartite graph

- Convenient source problem
 - COBIPARTITE GRAPH ELIMINATION
 - "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
 - Based on Arnborg et al.'s NP-completeness proof for TREEWIDTH
- Embed t² instances into a t × 2 table (Dell & Marx [SODA'12])
 - Turn rows into cliques to get a cobipartite graph
- Gadgets enforce an OR-gate through the cobipartite graph
 - 10 pages of proof to make it work

Corollary 1. For every $\varepsilon > 0$ and every parameter Π that does not exceed the vertex count, TREEWIDTH [Π] does not have a kernel of bitsize $O(k^{2-\varepsilon})$, unless NP \subseteq coNP/poly

Corollary 1. For every $\varepsilon > 0$ and every parameter Π that does not exceed the vertex count, TREEWIDTH [Π] does not have a kernel of bitsize $O(k^{2-\varepsilon})$, unless NP \subseteq coNP/poly

• Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...

Corollary 1. For every $\varepsilon > 0$ and every parameter Π that does not exceed the vertex count, TREEWIDTH [Π] does not have a kernel of bitsize $O(k^{2-\varepsilon})$, unless NP \subseteq coNP/poly

- Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...
- The constructed graph is cobipartite
 - For cobipartite graphs, treewidth equals pathwidth

Corollary 1. For every $\varepsilon > 0$ and every parameter Π that does not exceed the vertex count, TREEWIDTH [Π] does not have a kernel of bitsize $O(k^{2-\varepsilon})$, unless NP \subseteq coNP/poly

- Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...
- The constructed graph is cobipartite
 - For cobipartite graphs, treewidth equals pathwidth

Corollary 2. *n*-PATHWIDTH does not have a generalized kernel of bitsize $O(n^{2-\epsilon})$, for any $\epsilon > 0$, unless NP \subseteq coNP/poly

TREEWIDTH [VC]
 Input: A graph G, vertex cover X of G, and an integer k
 Parameter: |X|

Question: Is the treewidth of G at most k?

- TREEWIDTH [VC]
 Input: A graph G, vertex cover X of G, and an integer k
 Parameter: |X|
 Question: Is the treewidth of G at most k?
- Lower bound implies:
 - − No kernel with **bitsize** $O(|X|^{2-ε})$ unless NP ⊆ coNP/poly

- TREEWIDTH [VC]
 Input: A graph G, vertex cover X of G, and an integer k
 Parameter: |X|
 Question: Is the treewidth of G at most k?
- Lower bound implies:
 - − No kernel with **bitsize** $O(|X|^{2-ε})$ unless NP ⊆ coNP/poly
- Previous-best was a kernel with $O(|X|^3)$ vertices
 - Bodlaender, J, Kratsch [ICALP'11]

- TREEWIDTH [VC]
 Input: A graph G, vertex cover X of G, and an integer k
 Parameter: |X|
 Question: Is the treewidth of G at most k?
- Lower bound implies:
 - − No kernel with **bitsize** $O(|X|^{2-ε})$ unless NP ⊆ coNP/poly
- Previous-best was a kernel with $O(|X|^3)$ vertices
 - Bodlaender, J, Kratsch [ICALP'11]
- We improve this to $|X|^2$ vertices

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on **treewidth-invariant sets**
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - − If \hat{G}_T is a minor of G − {z} for every z ∈ T, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - − If \hat{G}_T is a minor of G − {z} for every z ∈ T, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - − If \hat{G}_T is a minor of G − {z} for every z ∈ T, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - − If \hat{G}_T is a minor of G − {z} for every z ∈ T, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G
- Let $\Delta(T) := \max_{v \in T} \deg(v)$

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
 - Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
 - Let \hat{G}_T be the result of eliminating T from G, one vertex at a time (order does not matter)
 - If \hat{G}_T is a minor of G {z} for every $z \in T$, then T is a **treewidth-invariant set** in G

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

• Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:

- Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:
 - − If $\Delta(T) \ge k + 1$: output NO

- Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:
 - − If $\Delta(T) \ge k + 1$: output NO
 - Else reduce to \hat{G}_{T}

- Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:
 - − If $\Delta(T) \ge k + 1$: output NO
 - Else reduce to \hat{G}_{T}
- Invariance lemma shows that $TW(G) \le k$ iff $TW(\hat{G}_T) \le k$, reduction is safe

- Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:
 - − If $\Delta(T) \ge k + 1$: output NO
 - Else reduce to \hat{G}_{T}
- Invariance lemma shows that Tw(G) ≤ k iff Tw(Ĝ_T) ≤ k, reduction is safe
- Remaining issue: how to find treewidth-invariant sets?
 - Seems hard in general
 - NP-complete to test if a given set is treewidth-invariant!

- Consider an instance (G,k) of TREEWIDTH with a treewidthinvariant set T:
 - − If $\Delta(T) \ge k + 1$: output NO
 - Else reduce to \hat{G}_{T}
- Invariance lemm
 reduction is safe
- Remaining is:
 - Seems and in gener
 - NP-complete to

eewisch-invariant sets?

stigtreewidth-invariant!

 $(\hat{G}_{\tau}) \leq k,$

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset A' ⊆ A is saturated by q-stars into B' if we can assign to each v ∈ A' a set of q private neighbors from B'

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset A' ⊆ A is saturated by q-stars into B' if we can assign to each v ∈ A' a set of q private neighbors from B'

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset A' ⊆ A is saturated by q-stars into B' if we can assign to each v ∈ A' a set of q private neighbors from B'

q-Expansion Lemma [Fomin et al.@STACS'11] Let m be the size of a maximum matching H. If $|B| > m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_H(T)$ is saturated by q-stars into T. It can be found in polynomial time.

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset A' ⊆ A is saturated by q-stars into B' if we can assign to each v ∈ A' a set of q private neighbors from B'

q-Expansion Lemma [Fomin et al.@STACS'11] Let m be the size of a maximum matching H. If $|B| > m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_H(T)$ is saturated by q-stars into T. It can be found in polynomial time.

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$

• Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$

• Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$

• Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X
 - − $H_{G,X}$ has an edge between non-edge {p,q} and v ∈ V(G) − X, if v is adjacent to **both** p and q in G

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X
 - − $H_{G,X}$ has an edge between non-edge {p,q} and v ∈ V(G) − X, if v is adjacent to **both** p and q in G

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X
 - − $H_{G,X}$ has an edge between non-edge {p,q} and v ∈ V(G) − X, if v is adjacent to **both** p and q in G
 - Contracting v into p or q creates the edge {p,q}

15

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $H_{G,X}$
 - One side corresponds to **non-edges** in G[X]
 - One side consists of the **independent set** V(G) X
 - − $H_{G,X}$ has an edge between non-edge {p,q} and v ∈ V(G) − X, if v is adjacent to **both** p and q in G
 - Contracting v into p or q creates the edge {p,q}

- Maximum matching in $H_{G,X}$ has size at most $\binom{|X|}{2}$
 - Non-edge side has at most this many vertices

- Maximum matching in $H_{G,X}$ has size at most $\binom{|X|}{2}$
 - Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11] Let m be the size of a maximum matching H. If $|B| > m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_H(T)$ is saturated by qstars into T. It can be found in polynomial time.

- Maximum matching in $H_{G,X}$ has size at most $\binom{|X|}{2}$
 - Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11] Let m be the size of a maximum matching H. If $|B| > m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_H(T)$ is saturated by qstars into T. It can be found in polynomial time.

- If $|\overline{X}| > 2 \binom{|X|}{2}$, find a 2-expansion in poly-time and reduce
- Reduced instances have ≤ |X| + 2 (^{|X|}₂) = |X|² vertices
 Encoding into O(|X|³) bits

- Maximum matching in $H_{G,X}$ has size at most $\binom{|X|}{2}$
 - Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11] Let m be the size of a maximum matching H. If $|B| > m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_H(T)$ is saturated by qstars into T. It can be found in polynomial time.

- If $|\overline{X}| > 2 \binom{|X|}{2}$, find a 2-expansion in poly-time and reduce
- Reduced instances have ≤ |X| + 2 (^{|X|}₂) = |X|² vertices
 Encoding into O(|X|³) bits

Theorem. TREEWIDTH [VC] has a kernel with $|X|^2$ vertices that can be encoded in $O(|X|^3)$ bits

Conclusion

• Main contributions

1. No nontrivial polynomial-time sparsification for TREEWIDTH and PATHWIDTH, unless NP \subseteq coNP/poly

2. TREEWIDTH [VC] has a kernel with $|X|^2$ vertices

Conclusion

• Main contributions

1. No nontrivial polynomial-time sparsification for TREEWIDTH and PATHWIDTH, unless NP \subseteq coNP/poly

2. TREEWIDTH [VC] has a kernel with $|X|^2$ vertices

Open problems

1. Are there graphs whose edge-count is superquadratic in their vertex cover number, which do not have treewidth-invariant sets?

2. Which problems admit nontrivial polynomial-time sparsification?

3. Does TREEWIDTH [VC] have a kernel of bitsize $O(|X|^2)$?

4. Does PATHWIDTH [VC] have a kernel with $O(|X|^2)$ vertices?

Thank you!

UNIVERSITY OF BERGEN

Algorithms Research Group

Algorithms Research Group

Invariance Property

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Invariance Property

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

• Proof.

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

- Proof.
 - − (≥) G contains \hat{G}_T and a (Δ (T)+1)-clique as a minor

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

- Proof.
 - − (≥) G contains \hat{G}_T and a (Δ (T)+1)-clique as a minor
 - − (≤) Consider a tree decomposition Υ of \hat{G}_{T}
 - For every $v \in T$, $N_G(v)$ exists in \hat{G}_T and forms a clique there
 - So T has a bag containing $N_{G}(v)$

• Let $\Delta(T) := \max_{v \in T} \deg(v)$

Lemma. If T is a treewidth-invariant set in G, then $TW(G) = max{TW(\hat{G}_T), \Delta(T)}$

- Proof.
 - − (≥) G contains \hat{G}_T and a (Δ (T)+1)-clique as a minor
 - − (≤) Consider a tree decomposition Υ of \hat{G}_{T}
 - For every $v \in T$, $N_G(v)$ exists in \hat{G}_T and forms a clique there
 - So T has a bag containing $N_{G}(v)$
 - Append a new bag with $N_G(v) \cup \{v\}$, of size $\leq \Delta(T) + 1$
 - Update independently for each $v \in T$

