```
U N I V E R S I T Y O F B E R G E N
```

Algorithms Research Group

On Sparsification for Computing Treewidth

Bart M. P. Jansen

Outline

Treewidth

Sparsification

Results

- Sparsification lower bound for Treewidth
- Quadratic-vertex kernel upper bound for Treewidth [vc]

Conclusion

Treewidth

- Measure of how "tree-like" a graph is

Treewidth

- Measure of how "tree-like" a graph is
- Decompose a graph into a tree decomposition of small width to reveal its internal structure

Treewidth

- Measure of how "tree-like" a graph is
- Decompose a graph into a tree decomposition of small width to reveal its internal structure
- Dynamic programming solves many optimization problems when a tree decomposition is known

Treewidth

- Measure of how "tree-like" a graph is
- Decompose a graph into a tree decomposition of small width to reveal its internal structure
- Dynamic programming solves many optimization problems when a tree decomposition is known
- First step: find good tree decomposition

Treewidth

- Measure of how "tree-like" a graph is
- Decompose a graph into a tree decomposition of small width to reveal its internal structure
- Dynamic programming solves many optimization problems when a tree decomposition is known
- First step: find good tree decomposition
- Treewidth

Input: A graph G, an integer k
Question: Is the treewidth of G at most k ?

Treewidth

- Measure of how "tree-like" a graph is
- Decompose a graph into a tree decomposition of small width to reveal its internal structure
- Dynamic programming solves many optimization problems when a tree decomposition is known
- First step: find good tree decomposition
- Treewidth

Input: A graph G, an integer k
Question: Is the treewidth of G at most k ?

- NP-complete [Arnborg et al.'87]

Sparsification

- The task of making a problem instance less dense, without changing its answer

Sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

Sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices
- Work on sparsification

Sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices
- Work on sparsification
- Eppstein et al. @ J.ACM'97: Sparsification to speed up dynamic graph algorithms

Sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices
- Work on sparsification
- Eppstein et al. @ J.ACM'97: Sparsification to speed up dynamic graph algorithms
- Impagliazzo et al. @ JCSS’01: Subexponential-time Sparsification Lemma for SATISFIABILITY

Sparsification

- The task of making a problem instance less dense, without changing its answer
- Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices
- Work on sparsification
- Eppstein et al. @ J.ACM'97: Sparsification to speed up dynamic graph algorithms
- Impagliazzo et al. @ JCSS’01: Subexponential-time Sparsification Lemma for SATISFIABILITY
- Dell \& van Melkebeek @ STOC'10: No nontrivial polynomial-time sparsification for d-CNF-SAT

Sparsification for Computing Treewidth

- Given a graph G, we want to make it easier to find a good tree decomposition of G

Sparsification for Computing Treewidth

- Given a graph G, we want to make it easier to find a good tree decomposition of G
- Main idea:
- quickly compute G' which is "simpler" than G,
- such that minimum-width decomposition of G' easily leads to minimum-width decomposition of G

Sparsification for Computing Treewidth

- Given a graph G, we want to make it easier to find a good tree decomposition of G
- Main idea:
- quickly compute G^{\prime} which is "simpler" than G ,
- such that minimum-width decomposition of G^{\prime} easily leads to minimum-width decomposition of G
- Possible ways to make G^{\prime} provably simpler than G :
- Upper bound on the density of G'
- Upper bound on the vertex count of G^{\prime}, in terms of structural measures of G

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let \mathcal{Q}, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q^{\prime} with size f is

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q^{2} into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly(|x|+k) time,

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q^{2} into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly($|x|+k)$ time,
- outputs (x^{\prime}, k^{\prime}) such that:

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q^{2} into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly($|x|+k)$ time,
- outputs (x^{\prime}, k^{\prime}) such that:
- $(x, k) \in \mathbb{Q}$ iff $\left(x^{\prime}, k^{\prime}\right) \in \mathbb{Q}^{\prime}$

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q^{2} into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly($|x|+k)$ time,
- outputs $\left(x^{\prime}, k^{\prime}\right)$ such that:
- $(x, k) \in \mathbb{Q}$ iff $\left(x^{\prime}, k^{\prime}\right) \in \mathbb{Q}^{\prime}$
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly($|x|+k)$ time,
- outputs (x^{\prime}, k^{\prime}) such that:
- $(x, k) \in Q$ iff $\left(x^{\prime}, k^{\prime}\right) \in Q^{\prime}$
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$

Poly-time mapping from Q to Q'

- preserves the answer
- f(k)-size output bound

Parameterized Complexity and Kernelization

- A parameterized problem is a subset $\mathbb{Q} \subseteq \Sigma^{*} \times \mathbb{N}$
- For an instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$, we call k the parameter
- Let Q, Q^{\prime} be parameterized problems and f: $\mathbb{N} \rightarrow \mathbb{N}$
- A generalized kernelization of Q into Q^{\prime} with size f is
- an algorithm that takes (x, k) as input,
- runs in poly($|x|+k)$ time,
- outputs $\left(x^{\prime}, k^{\prime}\right)$ such that:
- $(x, k) \in Q$ iff $\left(x^{\prime}, k^{\prime}\right) \in Q^{\prime}$
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$

Poly-time mapping from Q to Q^{\prime}

- preserves the answer
- f(k)-size output bound
- It is a kernelization (or kernel) if $\mathbb{Q}=\mathbb{Q}^{\prime}$

Sparsification Analysis using Kernelization

- Based on the parameterization by vertex count:
- n-Treewidth

Input: $\quad n \in \mathbb{N}$, an n-vertex graph G, an integer k
Parameter:
Question:
Is the treewidth of G at most k ?

Sparsification Analysis using Kernelization

- Based on the parameterization by vertex count:
- n-Treewidth

Input: $\quad n \in \mathbb{N}$, an n-vertex graph G, an integer k
Parameter: n
Question:
Is the treewidth of G at most k ?

- An instance ($\mathrm{G}, \mathrm{k}, \mathrm{n}$) can be encoded in $\mathcal{O}\left(\mathrm{n}^{2}\right)$ bits

Sparsification Analysis using Kernelization

- Based on the parameterization by vertex count:
- n-TREEWIDTH Input: $\quad n \in \mathbb{N}$, an n-vertex graph G, an integer k

Parameter:
Question:
n
Is the treewidth of G at most k ?

- An instance ($\mathrm{G}, \mathrm{k}, \mathrm{n}$) can be encoded in $\mathcal{O}\left(\mathrm{n}^{2}\right)$ bits
- Most relaxed form of polynomial-time sparsification:
- generalized kernel for n-Treewidth of size $\mathcal{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ for $\varepsilon>0$

Sparsification Analysis using Kernelization

- Based on the parameterization by vertex count:
- n-Treewidth Input: $\quad n \in \mathbb{N}$, an n-vertex graph G, an integer k

Parameter:
Question:
n
Is the treewidth of G at most k ?

- An instance (G, k, n) can be encoded in $\mathcal{O}\left(n^{2}\right)$ bits
- Most relaxed form of polynomial-time sparsification:
- generalized kernel for n-Treewidih of size $\mathcal{O}\left(n^{2-\varepsilon}\right)$ for $\varepsilon>0$

Theorem. n-Treewidth does not have a generalized kernel of bitsize $\mathcal{O}\left(n^{2-\varepsilon}\right)$, for any $\varepsilon>0$, unless NP \subseteq coNP/poly

Proof Technique

- Proof using cross-composition of bounded cost
- Introduced in the journal version of the paper on cross-composition [Bodlaender, J, Kratsch '12]
- Easier front-end to the complementary witness lemma of Dell \& van Melkebeek [STOC'10]

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

- composes the OR of t^{2} similar size-s instances of an NP-hard problem,
- into an instance $\left(G^{*}, n^{*}, \mathrm{k}^{*}\right)$ of n-Treewidth with $n^{*} \in \mathcal{O}\left(t \cdot s^{\mathcal{O}(1)}\right)$, then n-Treewidth does not have a generalized kernel of bitsize $\mathcal{O}\left(n^{2-\varepsilon}\right)$, for any $\varepsilon>0$, unless $N P \subseteq$ coNP/poly

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

- composes the OR of t^{2} similar size-s instances of an NP-hard problem,
- into an instance $\left(\mathrm{G}^{*}, \mathrm{n}^{*}, \mathrm{k}^{*}\right)$ of n-Treewidth with $\mathrm{n}^{*} \in \mathcal{O}\left(\mathrm{t} \cdot \mathrm{s}^{\mathcal{O}(1)}\right)$, then n-Treewidth does not have a generalized kernel of bitsize $\mathcal{O}\left(n^{2-\varepsilon}\right)$, for any $\varepsilon>0$, unless $N P \subseteq$ coNP/poly

NP-hard inputs

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

- composes the OR of t^{2} similar size-s instances of an NP-hard problem,
- into an instance $\left(\mathrm{G}^{*}, \mathrm{n}^{*}, \mathrm{k}^{*}\right)$ of n-Treewidth with $\mathrm{n}^{*} \in \mathcal{O}\left(\mathrm{t} \cdot \mathrm{s}^{\mathcal{O}(1)}\right)$, then n-Treewidth does not have a generalized kernel of bitsize $\mathcal{O}\left(n^{2-\varepsilon}\right)$, for any $\varepsilon>0$, unless NP \subseteq coNP/poly

8

Proof Strategy

- Convenient source problem

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for TreEWIDTH

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for TreEWIDTH
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for Treewidth
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])

A1	A2	A3	A4
B1	B2	B3	B4

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for Treewidit
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for Treewidit
- Embed t ${ }^{2}$ instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])
- Turn rows into cliques to get a cobipartite graph

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for TreEWIDTH
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])
- Turn rows into cliques to get a cobipartite graph

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for TreEWIDTH
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])
- Turn rows into cliques to get a cobipartite graph
- Gadgets enforce an or-gate through the cobipartite graph

Proof Strategy

- Convenient source problem
- Cobipartite Graph Elimination
- "Given a restricted type of cobipartite graph, does it have treewidth at most k?"
- Based on Arnborg et al.'s NP-completeness proof for TreEWIDTH
- Embed t^{2} instances into a $\mathrm{t} \times 2$ table (Dell \& Marx [SODA'12])
- Turn rows into cliques to get a cobipartite graph
- Gadgets enforce an or-gate through the cobipartite graph
- 10 pages of proof to make it work

A1	A2 A3	A4
$\bigcirc \bigcirc$	$0 \rightarrow 000$	$\bigcirc \bigcirc$
$\bigcirc \bigcirc$		$\bigcirc \bigcirc$

Consequences of the Lower Bound

Consequences of the Lower Bound

Corollary 1. For every $\varepsilon>0$ and every parameter Π that does not exceed the vertex count, TrEEWIDTH [П] does not have a kernel of bitsize $\mathcal{O}\left(k^{2-\varepsilon}\right)$, unless NP \subseteq coNP/poly

Consequences of the Lower Bound

Corollary 1. For every $\varepsilon>0$ and every parameter Π that does not exceed the vertex count, Treewidth [П] does not have a kernel of bitsize $\mathcal{O}\left(\mathrm{k}^{2-\varepsilon}\right)$, unless NP \subseteq coNP/poly

- Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...

Consequences of the Lower Bound

Corollary 1. For every $\varepsilon>0$ and every parameter Π that does not exceed the vertex count, Treewidth [Π] does not have a kernel of bitsize $\mathcal{O}\left(\mathrm{k}^{2-\varepsilon}\right)$, unless $N P \subseteq$ coNP/poly

- Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...
- The constructed graph is cobipartite
- For cobipartite graphs, treewidth equals pathwidth

Consequences of the Lower Bound

Corollary 1. For every $\varepsilon>0$ and every parameter Π that does not exceed the vertex count, Treewidth [Π] does not have a kernel of bitsize $\mathcal{O}\left(\mathrm{k}^{-\varepsilon}\right)$, unless $\mathrm{NP} \subseteq$ coNP/poly

- Applies to parameterizations by Vertex Cover, Feedback Vertex Set, Vertex-Deletion Distance to ...
- The constructed graph is cobipartite
- For cobipartite graphs, treewidth equals pathwidth

Corollary 2. n-PATHWIDTH does not have a generalized kernel of bitsize $\mathcal{O}\left(n^{2-\varepsilon}\right)$, for any $\varepsilon>0$, unless NP \subseteq coNP/poly

Treewidth Parameterized by Vertex Cover

- Treewidth [vc]

Input: \quad A graph G, vertex cover X of G, and an integer k Parameter: |X|
Question: Is the treewidth of G at most k?

Treewidth Parameterized by Vertex Cover

- Treewidth [Vc]

Input: \quad A graph G, vertex cover X of G, and an integer k Parameter: |X|
Question: Is the treewidth of G at most k ?

- Lower bound implies:
- No kernel with bitsize $\mathcal{O}\left(|X|^{2-\varepsilon}\right)$ unless $N P \subseteq$ coNP/poly

Treewidth Parameterized by Vertex Cover

- Treewidth [vc]

Input: \quad A graph G, vertex cover X of G, and an integer k Parameter: |X|
Question: Is the treewidth of G at most k ?

- Lower bound implies:
- No kernel with bitsize $\mathcal{O}\left(|X|^{2-\varepsilon}\right)$ unless $N P \subseteq$ coNP/poly
- Previous-best was a kernel with $\mathcal{O}\left(|X|^{3}\right)$ vertices
- Bodlaender, J, Kratsch [ICALP'11]

Treewidth Parameterized by Vertex Cover

- Treewidth [vc]

Input: \quad A graph G, vertex cover X of G, and an integer k Parameter: |X|
Question: Is the treewidth of G at most k ?

- Lower bound implies:
- No kernel with bitsize $\mathcal{O}\left(|X|^{2-\varepsilon}\right)$ unless $N P \subseteq$ coNP/poly
- Previous-best was a kernel with $\mathcal{O}\left(|X|^{3}\right)$ vertices
- Bodlaender, J, Kratsch [ICALP'11]
- We improve this to $|X|^{2}$ vertices

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)
- If $\hat{\mathrm{G}}_{\mathrm{T}}$ is a minor of $\mathrm{G}-\{z\}$ for every $\mathrm{z} \in \mathrm{T}$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)
- If $\hat{\mathrm{G}}_{\mathrm{T}}$ is a minor of $\mathrm{G}-\{z\}$ for every $\mathrm{z} \in \mathrm{T}$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then
 T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then
 T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)

- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)

- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then
 T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let $\hat{\mathrm{G}}_{\mathrm{T}}$ be the result of eliminating T from G , one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then T is a treewidth-invariant set in G

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then
 T is a treewidth-invariant set in G
- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Treewidth-Invariant Sets

- Kernel is based on treewidth-invariant sets
- Vertex set whose elimination has a predictable effect on treewidth
- Consider a graph G with an independent set T
- Let \hat{G}_{T} be the result of eliminating T from G, one vertex at a time (order does not matter)
- If \hat{G}_{T} is a minor of $G-\{z\}$ for every $z \in T$, then
 T is a treewidth-invariant set in G
- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G, k) of Treewidth with a treewidthinvariant set T :

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G,k) of Treewidth with a treewidthinvariant set T:
- If $\Delta(T) \geq k+1$: output No

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G,k) of Treewidth with a treewidthinvariant set T:
- If $\Delta(T) \geq k+1$: output No
- Else reduce to \hat{G}_{T}

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G,k) of Treewidth with a treewidthinvariant set T:
- If $\Delta(T) \geq k+1$: output No
- Else reduce to \hat{G}_{T}
- Invariance lemma shows that $\mathrm{Tw}(\mathrm{G}) \leq \mathrm{k}$ iff $\mathrm{Tw}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right) \leq \mathrm{k}$, reduction is safe

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G,k) of Treewidth with a treewidthinvariant set T:
- If $\Delta(T) \geq k+1$: output No
- Else reduce to \hat{G}_{T}
- Invariance lemma shows that $T W(G) \leq k$ iff $T W\left(\hat{\mathrm{G}}_{\mathrm{T}}\right) \leq \mathrm{k}$, reduction is safe
- Remaining issue: how to find treewidth-invariant sets?
- Seems hard in general
- NP-complete to test if a given set is treewidth-invariant!

Reduction Based on Treewidth-Invariant Sets

- Consider an instance (G,k) of Treewidth with a treewidthinvariant set T:
- If $\Delta(T) \geq k+1$: output No
- Else reduce to \hat{G}_{T}

- Seemd nard in gene
- NP-complete to + etistreewidth-invariant!

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset $A^{\prime} \subseteq A$ is saturated by q-stars into B^{\prime} if we can assign to each $v \in A^{\prime}$ a set of q private neighbors from B^{\prime}

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset $A^{\prime} \subseteq A$ is saturated by q-stars into B^{\prime} if we can assign to each $v \in A^{\prime}$ a set of q private neighbors from B^{\prime}

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset $A^{\prime} \subseteq A$ is saturated by q-stars into B^{\prime} if we can assign to each $v \in A^{\prime}$ a set of q private neighbors from B^{\prime}

q-Expansion Lemma [Fomin et al.@STACS'11]
Let m be the size of a maximum matching H. If $|B|>m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_{H}(T)$ is saturated by q-stars into T. It can be found in polynomial time.

q-Expansion Lemma

- Let H be a bipartite graph with partite sets A and B, and $q \in \mathbb{N}$
- A subset $A^{\prime} \subseteq A$ is saturated by q-stars into B^{\prime} if we can assign to each $v \in A^{\prime}$ a set of q private neighbors from B^{\prime}

q-Expansion Lemma [Fomin et al.@STACS'11]
Let m be the size of a maximum matching H. If $|B|>m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_{H}(T)$ is saturated by q-stars into T. It can be found in polynomial time.

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{x}}$
- One side corresponds to non-edges in $\mathrm{G}[\mathrm{X}]$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{x}}$
- One side corresponds to non-edges in $\mathrm{G}[\mathrm{X}]$

$\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

$\{1,5\}$

$\{2,4\}$

$$
\{3,5\}
$$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
- One side corresponds to non-edges in $\mathrm{G}[\mathrm{X}]$
- One side consists of the independent set $V(G)-X$

$\mathrm{H}_{\mathrm{G}, \mathrm{X}}$

$\{1,5\}$

$\{2,4\}$

$$
\{3,5\}
$$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
- One side corresponds to non-edges in $G[X]$
- One side consists of the independent set $V(G)-X$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
- One side corresponds to non-edges in $\mathrm{G}[\mathrm{X}]$
- One side consists of the independent set $V(G)-X$
- $H_{G, X}$ has an edge between non-edge $\{p, q\}$ and $v \in V(G)-X$, if v is adjacent to both p and q in G

$\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
$\{1,5\}$
$\{2,4\}$
\square
$\{3,5\}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
- One side corresponds to non-edges in $G[X]$
- One side consists of the independent set $V(G)-X$
- $H_{G, X}$ has an edge between non-edge $\{p, q\}$ and $v \in V(G)-X$, if v is adjacent to both p and q in G

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X , form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$
- One side corresponds to non-edges in $G[X]$
- One side consists of the independent set $V(G)-X$
- $H_{G, X}$ has an edge between non-edge $\{p, q\}$ and $v \in V(G)-X$, if v is adjacent to both p and q in G
- Contracting v into p or q creates the edge $\{p, q\}$

Finding Treewidth-Invariant Sets

- Given a graph G with vertex cover X, form a bipartite non-edge connection graph $\mathrm{H}_{\mathrm{G}, \mathrm{x}}$
- One side corresponds to non-edges in $G[X]$
- One side consists of the independent set $V(G)-X$
- $\mathrm{H}_{G, X}$ has an edge between non-edge $\{p, q\}$ and $v \in V(G)-X$, if v is adjacent to both p and q in G
- Contracting v into p or q creates the edge $\{p, q\}$

Lemma. If $H_{G, X}$ contains a set $T \subseteq V(G)-X$ such that $N_{H}(T)$ can be saturated by 2-stars into T , then T is a treewidth-invariant set

Kernel Size Bound

- Maximum matching in $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$ has size at most $\binom{|X|}{2}$
- Non-edge side has at most this many vertices

Kernel Size Bound

- Maximum matching in $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$ has size at most $\binom{|X|}{2}$
- Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11]

Let m be the size of a maximum matching H. If $|B|>m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_{H}(T)$ is saturated by q stars into T. It can be found in polynomial time.

Kernel Size Bound

- Maximum matching in $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$ has size at most $\binom{|X|}{2}$
- Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11]

Let m be the size of a maximum matching H. If $|B|>m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_{H}(T)$ is saturated by q stars into T . It can be found in polynomial time.

- If $|\bar{X}|>2\binom{|X|}{2}$, find a 2-expansion in poly-time and reduce
- Reduced instances have $\leq|X|+2\binom{|X|}{2}=|X|^{2}$ vertices
- Encoding into $\mathrm{O}\left(|X|^{3}\right)$ bits

Kernel Size Bound

- Maximum matching in $\mathrm{H}_{\mathrm{G}, \mathrm{X}}$ has size at most $\binom{|X|}{2}$
- Non-edge side has at most this many vertices

q-Expansion Lemma [Fomin et al.@STACS'11]

Let m be the size of a maximum matching H. If $|B|>m \cdot q$, then there is a nonempty set $T \subseteq B$ such that $N_{H}(T)$ is saturated by q stars into T . It can be found in polynomial time.

- If $|\bar{X}|>2\binom{|X|}{2}$, find a 2-expansion in poly-time and reduce
- Reduced instances have $\leq|X|+2\binom{|X|}{2}=|X|^{2}$ vertices
- Encoding into $\mathcal{O}\left(|X|^{3}\right)$ bits

Theorem. Treewidth [vc] has a kernel with $|\mathrm{X}|^{2}$ vertices that can be encoded in $\mathcal{O}\left(|X|^{3}\right)$ bits

Conclusion

- Main contributions

1. No nontrivial polynomial-time sparsification for TreEWIDTH and PATHWIDTH, unless NP \subseteq coNP/poly
2. Treewidth [Vc] has a kernel with $|\mathrm{X}|^{2}$ vertices

Conclusion

- Main contributions

1. No nontrivial polynomial-time sparsification for TREEWIDTH and Pathwidth, unless NP \subseteq coNP/poly
2. Treewidth [Vc] has a kernel with $|\mathrm{X}|^{2}$ vertices

- Open problems

1. Are there graphs whose edge-count is superquadratic in their vertex cover number, which do not have treewidth-invariant sets?
2. Which problems admit nontrivial polynomial-time sparsification?
3. Does Treewidth [Vc] have a kernel of bitsize $\mathcal{O}\left(|X|^{2}\right)$?
4. Does Pathwidth [vc] have a kernel with $\mathcal{O}\left(|X|^{2}\right)$ vertices?
uib.no

Thank you!

UNIVERSITY OF BERGEN
Algorithms Research Group

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

- Proof.

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

- Proof.
$-(\geq) \mathrm{G}$ contains $\hat{\mathrm{G}}_{\mathrm{T}}$ and a $(\Delta(\mathrm{T})+1)$-clique as a minor

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

- Proof.
$-(\geq) \mathrm{G}$ contains $\hat{\mathrm{G}}_{\mathrm{T}}$ and $\mathrm{a}(\Delta(\mathrm{T})+1)$-clique as a minor
- (\leq) Consider a tree decomposition τ of \hat{G}_{T}
- For every $\mathrm{v} \in \mathrm{T}, \mathrm{N}_{\mathrm{G}}(\mathrm{v})$ exists in $\hat{\mathrm{G}}_{\mathrm{T}}$ and forms a clique there
- So Thas a bag containing $\mathrm{N}_{\mathrm{G}}(\mathrm{v})$

Invariance Property

- Let $\Delta(\mathrm{T}):=\max _{\mathrm{v} \in \mathrm{T}} \operatorname{deg}(\mathrm{v})$

Lemma. If T is a treewidth-invariant set in G , then $\operatorname{TW}(\mathrm{G})=\max \left\{\mathrm{TW}\left(\hat{\mathrm{G}}_{\mathrm{T}}\right), \Delta(\mathrm{T})\right\}$

- Proof.
$-(\geq) \mathrm{G}$ contains $\hat{\mathrm{G}}_{\mathrm{T}}$ and $\mathrm{a}(\Delta(\mathrm{T})+1)$-clique as a minor
- (\leq) Consider a tree decomposition τ of \hat{G}_{T}
- For every $\mathrm{v} \in \mathrm{T}, \mathrm{N}_{\mathrm{G}}(\mathrm{v})$ exists in $\hat{\mathrm{G}}_{\mathrm{T}}$ and forms a clique there
- So Thas a bag containing $N_{G}(v)$
- Append a new bag with $N_{G}(v) \cup\{v\}$, of size $\leq \Delta(T)+1$
- Update independently for each $v \in T$

