
uib.no

U N I V E R S I T Y O F B E R G E N

On Sparsification for Computing Treewidth

Bart M. P. Jansen

Insert

«Academic unit»
on every page:

1 Go to the menu «Insert»

2 Choose: Date and time

3 Write the name of your

faculty or department in the

field «Footer»

4 Choose «Apply to all"

September 4th 2013, IPEC 2013, Sophia Antipolis

Algorithms Research Group

uib.no

Outline

Algorithms Research Group

Treewidth

Sparsification

• Sparsification lower bound for TREEWIDTH

• Quadratic-vertex kernel upper bound for TREEWIDTH [VC]

Results

Conclusion

2

uib.no

Treewidth

• Measure of how “tree-like” a graph is

Algorithms Research Group

3

uib.no

Treewidth

• Measure of how “tree-like” a graph is

– Decompose a graph into a tree decomposition of small
width to reveal its internal structure

Algorithms Research Group

3

uib.no

Treewidth

• Measure of how “tree-like” a graph is

– Decompose a graph into a tree decomposition of small
width to reveal its internal structure

– Dynamic programming solves many optimization problems
when a tree decomposition is known

Algorithms Research Group

3

uib.no

Treewidth

• Measure of how “tree-like” a graph is

– Decompose a graph into a tree decomposition of small
width to reveal its internal structure

– Dynamic programming solves many optimization problems
when a tree decomposition is known

– First step: find good tree decomposition

Algorithms Research Group

3

uib.no

Treewidth

• Measure of how “tree-like” a graph is

– Decompose a graph into a tree decomposition of small
width to reveal its internal structure

– Dynamic programming solves many optimization problems
when a tree decomposition is known

– First step: find good tree decomposition

• TREEWIDTH
Input: A graph G, an integer k
Question: Is the treewidth of G at most k?

Algorithms Research Group

3

uib.no

Treewidth

• Measure of how “tree-like” a graph is

– Decompose a graph into a tree decomposition of small
width to reveal its internal structure

– Dynamic programming solves many optimization problems
when a tree decomposition is known

– First step: find good tree decomposition

• TREEWIDTH
Input: A graph G, an integer k
Question: Is the treewidth of G at most k?

– NP-complete [Arnborg et al.’87]

Algorithms Research Group

3

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

Algorithms Research Group

4

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

• Density

.. of a CNF formula: ratio of clauses to variables

.. of a graph: ratio of edges to vertices

Algorithms Research Group

4

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

• Density

.. of a CNF formula: ratio of clauses to variables

.. of a graph: ratio of edges to vertices

• Work on sparsification

Algorithms Research Group

4

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

• Density

.. of a CNF formula: ratio of clauses to variables

.. of a graph: ratio of edges to vertices

• Work on sparsification

– Eppstein et al. @ J.ACM’97:
Sparsification to speed up dynamic graph algorithms

Algorithms Research Group

4

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

• Density

.. of a CNF formula: ratio of clauses to variables

.. of a graph: ratio of edges to vertices

• Work on sparsification

– Eppstein et al. @ J.ACM’97:
Sparsification to speed up dynamic graph algorithms

– Impagliazzo et al. @ JCSS’01:
Subexponential-time Sparsification Lemma for SATISFIABILITY

Algorithms Research Group

4

uib.no

Sparsification

• The task of making a problem instance less dense, without
changing its answer

• Density

.. of a CNF formula: ratio of clauses to variables

.. of a graph: ratio of edges to vertices

• Work on sparsification

– Eppstein et al. @ J.ACM’97:
Sparsification to speed up dynamic graph algorithms

– Impagliazzo et al. @ JCSS’01:
Subexponential-time Sparsification Lemma for SATISFIABILITY

– Dell & van Melkebeek @ STOC’10:
No nontrivial polynomial-time sparsification for d-CNF-SAT

Algorithms Research Group

4

uib.no

Sparsification for Computing Treewidth

• Given a graph G, we want to make it easier to find a good tree
decomposition of G

Algorithms Research Group

5

uib.no

Sparsification for Computing Treewidth

• Given a graph G, we want to make it easier to find a good tree
decomposition of G

• Main idea:

– quickly compute G’ which is “simpler” than G,

– such that minimum-width decomposition of G’ easily leads
to minimum-width decomposition of G

Algorithms Research Group

5

uib.no

Sparsification for Computing Treewidth

• Given a graph G, we want to make it easier to find a good tree
decomposition of G

• Main idea:

– quickly compute G’ which is “simpler” than G,

– such that minimum-width decomposition of G’ easily leads
to minimum-width decomposition of G

• Possible ways to make G’ provably simpler than G:

– Upper bound on the density of G’

– Upper bound on the vertex count of G’, in terms of
structural measures of G

Algorithms Research Group

5

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

– outputs (x’,k’) such that:

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

– outputs (x’,k’) such that:

• (x,k) ∈ Q iff (x’,k’) ∈ Q’

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

– outputs (x’,k’) such that:

• (x,k) ∈ Q iff (x’,k’) ∈ Q’

• |x’|, k’ ≤ f(k)

Algorithms Research Group

6

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

– outputs (x’,k’) such that:

• (x,k) ∈ Q iff (x’,k’) ∈ Q’

• |x’|, k’ ≤ f(k)

Algorithms Research Group

6

Poly-time mapping from
Q to Q’

preserves the answer

f(k)-size output bound

uib.no

Parameterized Complexity and Kernelization

• A parameterized problem is a subset Q ⊆ S* × ℕ

– For an instance (x,k) ∈ S* × ℕ, we call k the parameter

• Let Q, Q’ be parameterized problems and f: ℕ  ℕ

• A generalized kernelization of Q into Q’ with size f is

– an algorithm that takes (x,k) as input,

– runs in poly(|x| + k) time,

– outputs (x’,k’) such that:

• (x,k) ∈ Q iff (x’,k’) ∈ Q’

• |x’|, k’ ≤ f(k)

• It is a kernelization (or kernel) if Q = Q’

Algorithms Research Group

6

Poly-time mapping from
Q to Q’

preserves the answer

f(k)-size output bound

uib.no

Sparsification Analysis using Kernelization

• Based on the parameterization by vertex count:

– n-TREEWIDTH
Input: n ∈ ℕ, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

Algorithms Research Group

7

uib.no

Sparsification Analysis using Kernelization

• Based on the parameterization by vertex count:

– n-TREEWIDTH
Input: n ∈ ℕ, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

• An instance (G,k,n) can be encoded in O(n2) bits

Algorithms Research Group

7

uib.no

Sparsification Analysis using Kernelization

• Based on the parameterization by vertex count:

– n-TREEWIDTH
Input: n ∈ ℕ, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

• An instance (G,k,n) can be encoded in O(n2) bits

• Most relaxed form of polynomial-time sparsification:

– generalized kernel for n-TREEWIDTH of size O(n2-ε) for ε > 0

Algorithms Research Group

7

uib.no

Sparsification Analysis using Kernelization

• Based on the parameterization by vertex count:

– n-TREEWIDTH
Input: n ∈ ℕ, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

• An instance (G,k,n) can be encoded in O(n2) bits

• Most relaxed form of polynomial-time sparsification:

– generalized kernel for n-TREEWIDTH of size O(n2-ε) for ε > 0

Algorithms Research Group

7

Theorem. n-TREEWIDTH does not have a generalized kernel of
bitsize O(n2-ε), for any ε > 0, unless NP ⊆ coNP/poly

uib.no

Proof Technique

8

• Proof using cross-composition of bounded cost

– Introduced in the journal version of the paper on cross-composition
[Bodlaender, J, Kratsch ’12]

– Easier front-end to the complementary witness lemma of Dell & van
Melkebeek [STOC’10]

uib.no

Proof Technique

8

• Proof using cross-composition of bounded cost

– Introduced in the journal version of the paper on cross-composition
[Bodlaender, J, Kratsch ’12]

– Easier front-end to the complementary witness lemma of Dell & van
Melkebeek [STOC’10]

Corollary [Bodlaender et al.’12].
If there is a polynomial-time algorithm that:
• composes the OR of t2 similar size-s instances of an NP-hard problem,
• into an instance (G*,n*,k*) of n-TREEWIDTH with n* ∈ O(t · sO(1)),
then n-TREEWIDTH does not have a generalized kernel of bitsize O(n2-ε),
for any ε > 0, unless NP ⊆ coNP/poly

uib.no

Proof Technique

8

• Proof using cross-composition of bounded cost

– Introduced in the journal version of the paper on cross-composition
[Bodlaender, J, Kratsch ’12]

– Easier front-end to the complementary witness lemma of Dell & van
Melkebeek [STOC’10]

NP-hard
inputs

x1,1

x2,1

x…

xt,1

x1,2

x2,2

x …

xt,2

x…

x…

x…

x…

x1,t

x2,t

x …

xt,t

poly(s · t)-time

Corollary [Bodlaender et al.’12].
If there is a polynomial-time algorithm that:
• composes the OR of t2 similar size-s instances of an NP-hard problem,
• into an instance (G*,n*,k*) of n-TREEWIDTH with n* ∈ O(t · sO(1)),
then n-TREEWIDTH does not have a generalized kernel of bitsize O(n2-ε),
for any ε > 0, unless NP ⊆ coNP/poly

uib.no

Proof Technique

8

• Proof using cross-composition of bounded cost

– Introduced in the journal version of the paper on cross-composition
[Bodlaender, J, Kratsch ’12]

– Easier front-end to the complementary witness lemma of Dell & van
Melkebeek [STOC’10]

(G*,k*,n*)
n-TREEWIDTH

instance

n* ∈ O(t · sO(1))

NP-hard
inputs

x1,1

x2,1

x…

xt,1

x1,2

x2,2

x …

xt,2

x…

x…

x…

x…

x1,t

x2,t

x …

xt,t

poly(s · t)-time

Corollary [Bodlaender et al.’12].
If there is a polynomial-time algorithm that:
• composes the OR of t2 similar size-s instances of an NP-hard problem,
• into an instance (G*,n*,k*) of n-TREEWIDTH with n* ∈ O(t · sO(1)),
then n-TREEWIDTH does not have a generalized kernel of bitsize O(n2-ε),
for any ε > 0, unless NP ⊆ coNP/poly

uib.no

Proof Strategy

• Convenient source problem

Algorithms Research Group

9

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

Algorithms Research Group

9

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])

Algorithms Research Group

9

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])
– Turn rows into cliques to get a cobipartite graph

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])
– Turn rows into cliques to get a cobipartite graph

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])
– Turn rows into cliques to get a cobipartite graph

• Gadgets enforce an OR-gate through the cobipartite graph

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Proof Strategy

• Convenient source problem
– COBIPARTITE GRAPH ELIMINATION
– “Given a restricted type of cobipartite graph, does it have

treewidth at most k?”
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12])
– Turn rows into cliques to get a cobipartite graph

• Gadgets enforce an OR-gate through the cobipartite graph
– 10 pages of proof to make it work

Algorithms Research Group

9

A1 A2 A3 A4

B1 B2 B3 B4

uib.no

Consequences of the Lower Bound

Algorithms Research Group

10

uib.no

Consequences of the Lower Bound

Algorithms Research Group

10

Corollary 1. For every ε > 0 and every parameter P that does
not exceed the vertex count, TREEWIDTH [P] does not have a

kernel of bitsize O(k2-ε), unless NP ⊆ coNP/poly

uib.no

Consequences of the Lower Bound

• Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to …

Algorithms Research Group

10

Corollary 1. For every ε > 0 and every parameter P that does
not exceed the vertex count, TREEWIDTH [P] does not have a

kernel of bitsize O(k2-ε), unless NP ⊆ coNP/poly

uib.no

Consequences of the Lower Bound

• Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to …

• The constructed graph is cobipartite

– For cobipartite graphs, treewidth equals pathwidth

Algorithms Research Group

10

Corollary 1. For every ε > 0 and every parameter P that does
not exceed the vertex count, TREEWIDTH [P] does not have a

kernel of bitsize O(k2-ε), unless NP ⊆ coNP/poly

uib.no

Consequences of the Lower Bound

• Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to …

• The constructed graph is cobipartite

– For cobipartite graphs, treewidth equals pathwidth

Algorithms Research Group

10

Corollary 1. For every ε > 0 and every parameter P that does
not exceed the vertex count, TREEWIDTH [P] does not have a

kernel of bitsize O(k2-ε), unless NP ⊆ coNP/poly

Corollary 2. n-PATHWIDTH does not have a generalized kernel of
bitsize O(n2-ε), for any ε > 0, unless NP ⊆ coNP/poly

uib.no

Treewidth Parameterized by Vertex Cover

• TREEWIDTH [VC]
Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|
Question: Is the treewidth of G at most k?

Algorithms Research Group

11

uib.no

Treewidth Parameterized by Vertex Cover

• TREEWIDTH [VC]
Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|
Question: Is the treewidth of G at most k?

• Lower bound implies:

– No kernel with bitsize O(|X|2-ε) unless NP ⊆ coNP/poly

Algorithms Research Group

11

uib.no

Treewidth Parameterized by Vertex Cover

• TREEWIDTH [VC]
Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|
Question: Is the treewidth of G at most k?

• Lower bound implies:

– No kernel with bitsize O(|X|2-ε) unless NP ⊆ coNP/poly

• Previous-best was a kernel with O(|X|3) vertices

– Bodlaender, J, Kratsch [ICALP’11]

Algorithms Research Group

11

uib.no

Treewidth Parameterized by Vertex Cover

• TREEWIDTH [VC]
Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|
Question: Is the treewidth of G at most k?

• Lower bound implies:

– No kernel with bitsize O(|X|2-ε) unless NP ⊆ coNP/poly

• Previous-best was a kernel with O(|X|3) vertices

– Bodlaender, J, Kratsch [ICALP’11]

• We improve this to |X|2 vertices

Algorithms Research Group

11

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

Ĝ{u,v}

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

Ĝ{u,v}

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

Ĝ{u,v}

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

Ĝ{u,v}

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

Ĝ{u,v}

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

Ĝ{u,v,w}

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

Ĝ{u,v,w}

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

Ĝ{u,v,w}

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

• Let D(T) := maxv∈T deg(v)

Ĝ{u,v,w}

uib.no

Treewidth-Invariant Sets

Algorithms Research Group

12

• Kernel is based on treewidth-invariant sets

– Vertex set whose elimination has a
predictable effect on treewidth

• Consider a graph G with an independent set T

– Let ĜT be the result of eliminating T from G,
one vertex at a time (order does not matter)

– If ĜT is a minor of G – {z} for every z ∈ T, then
T is a treewidth-invariant set in G

• Let D(T) := maxv∈T deg(v)

Ĝ{u,v,w}

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

Algorithms Research Group

13

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

– If D(T) ≥ k + 1: output NO

Algorithms Research Group

13

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

– If D(T) ≥ k + 1: output NO

– Else reduce to ĜT

Algorithms Research Group

13

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

– If D(T) ≥ k + 1: output NO

– Else reduce to ĜT

• Invariance lemma shows that TW(G) ≤ k iff TW(ĜT) ≤ k,
reduction is safe

Algorithms Research Group

13

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

– If D(T) ≥ k + 1: output NO

– Else reduce to ĜT

• Invariance lemma shows that TW(G) ≤ k iff TW(ĜT) ≤ k,
reduction is safe

• Remaining issue: how to find treewidth-invariant sets?

– Seems hard in general

– NP-complete to test if a given set is treewidth-invariant!

Algorithms Research Group

13

uib.no

Reduction Based on Treewidth-Invariant Sets

• Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

– If D(T) ≥ k + 1: output NO

– Else reduce to ĜT

• Invariance lemma shows that TW(G) ≤ k iff TW(ĜT) ≤ k,
reduction is safe

• Remaining issue: how to find treewidth-invariant sets?

– Seems hard in general

– NP-complete to test if a given set is treewidth-invariant!

Algorithms Research Group

13

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

Algorithms Research Group

14

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

Algorithms Research Group

14

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

Algorithms Research Group

14

A

B

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

Algorithms Research Group

14

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

• A subset A’ ⊆ A is saturated by q-stars into B’ if we can assign
to each v ∈ A’ a set of q private neighbors from B’

Algorithms Research Group

14

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

• A subset A’ ⊆ A is saturated by q-stars into B’ if we can assign
to each v ∈ A’ a set of q private neighbors from B’

Algorithms Research Group

14

A’

B’

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

• A subset A’ ⊆ A is saturated by q-stars into B’ if we can assign
to each v ∈ A’ a set of q private neighbors from B’

Algorithms Research Group

14

q-Expansion Lemma [Fomin et al.@STACS’11]
Let m be the size of a maximum matching H. If |B| > m · q, then
there is a nonempty set T ⊆ B such that NH(T) is saturated by
q-stars into T. It can be found in polynomial time.

A’

B’

uib.no

q-Expansion Lemma

• Let H be a bipartite graph with partite sets A and B, and q ∈ ℕ

• A subset A’ ⊆ A is saturated by q-stars into B’ if we can assign
to each v ∈ A’ a set of q private neighbors from B’

Algorithms Research Group

14

q-Expansion Lemma [Fomin et al.@STACS’11]
Let m be the size of a maximum matching H. If |B| > m · q, then
there is a nonempty set T ⊆ B such that NH(T) is saturated by
q-stars into T. It can be found in polynomial time.

NH(T)

T

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X

Algorithms Research Group

15

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X

Algorithms Research Group

15

G

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X

Algorithms Research Group

15

X

G

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X
– HG,X has an edge between non-edge {p,q} and v ∈ V(G) – X,

if v is adjacent to both p and q in G

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X
– HG,X has an edge between non-edge {p,q} and v ∈ V(G) – X,

if v is adjacent to both p and q in G

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X
– HG,X has an edge between non-edge {p,q} and v ∈ V(G) – X,

if v is adjacent to both p and q in G
• Contracting v into p or q creates the edge {p,q}

Algorithms Research Group

15

X

G HG,X

uib.no

Finding Treewidth-Invariant Sets

• Given a graph G with vertex cover X, form a bipartite non-edge
connection graph HG,X
– One side corresponds to non-edges in G[X]
– One side consists of the independent set V(G) – X
– HG,X has an edge between non-edge {p,q} and v ∈ V(G) – X,

if v is adjacent to both p and q in G
• Contracting v into p or q creates the edge {p,q}

Algorithms Research Group

15

X

G HG,X

Lemma. If HG,X contains a set T ⊆ V(G) – X such that NH(T) can be
saturated by 2-stars into T, then T is a treewidth-invariant set

uib.no

Kernel Size Bound

Algorithms Research Group

16

• Maximum matching in HG,X has size at most |𝑋|
2

– Non-edge side has at most this many vertices

uib.no

Kernel Size Bound

Algorithms Research Group

16

q-Expansion Lemma [Fomin et al.@STACS’11]
Let m be the size of a maximum matching H. If |B| > m · q, then
there is a nonempty set T ⊆ B such that NH(T) is saturated by q-
stars into T. It can be found in polynomial time.

• Maximum matching in HG,X has size at most |𝑋|
2

– Non-edge side has at most this many vertices

uib.no

Kernel Size Bound

Algorithms Research Group

16

q-Expansion Lemma [Fomin et al.@STACS’11]
Let m be the size of a maximum matching H. If |B| > m · q, then
there is a nonempty set T ⊆ B such that NH(T) is saturated by q-
stars into T. It can be found in polynomial time.

• If |𝑋 | > 2 |𝑋|
2

, find a 2-expansion in poly-time and reduce

• Reduced instances have ≤ |X| + 2 |𝑋|
2

 = |X|2 vertices

– Encoding into O(|X|3) bits

• Maximum matching in HG,X has size at most |𝑋|
2

– Non-edge side has at most this many vertices

uib.no

Kernel Size Bound

Algorithms Research Group

16

q-Expansion Lemma [Fomin et al.@STACS’11]
Let m be the size of a maximum matching H. If |B| > m · q, then
there is a nonempty set T ⊆ B such that NH(T) is saturated by q-
stars into T. It can be found in polynomial time.

Theorem. TREEWIDTH [VC] has a kernel with |X|2 vertices that can
be encoded in O(|X|3) bits

• If |𝑋 | > 2 |𝑋|
2

, find a 2-expansion in poly-time and reduce

• Reduced instances have ≤ |X| + 2 |𝑋|
2

 = |X|2 vertices

– Encoding into O(|X|3) bits

• Maximum matching in HG,X has size at most |𝑋|
2

– Non-edge side has at most this many vertices

uib.no

Conclusion

Algorithms Research Group

17

• Main contributions

1. No nontrivial polynomial-time sparsification for TREEWIDTH
and PATHWIDTH, unless NP ⊆ coNP/poly

2. TREEWIDTH [VC] has a kernel with |X|2 vertices

uib.no

Conclusion

Algorithms Research Group

17

• Main contributions

1. No nontrivial polynomial-time sparsification for TREEWIDTH
and PATHWIDTH, unless NP ⊆ coNP/poly

2. TREEWIDTH [VC] has a kernel with |X|2 vertices

• Open problems

1. Are there graphs whose edge-count is superquadratic in their vertex cover
number, which do not have treewidth-invariant sets?

2. Which problems admit nontrivial polynomial-time sparsification?

3. Does TREEWIDTH [VC] have a kernel of bitsize O(|X|2)?

4. Does PATHWIDTH [VC] have a kernel with O(|X|2) vertices?

Algorithms Research Group

uib.no

Invariance Property

Algorithms Research Group

19

• Let D(T) := maxv∈T deg(v)

uib.no

Invariance Property

Algorithms Research Group

19

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

• Let D(T) := maxv∈T deg(v)

uib.no

Invariance Property

• Proof.

Algorithms Research Group

19

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

• Let D(T) := maxv∈T deg(v)

uib.no

Invariance Property

• Proof.

– (≥) G contains ĜT and a (D(T)+1)-clique as a minor

Algorithms Research Group

19

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

• Let D(T) := maxv∈T deg(v)

uib.no

Invariance Property

• Proof.

– (≥) G contains ĜT and a (D(T)+1)-clique as a minor

– (≤) Consider a tree decomposition T of ĜT

• For every v ∈ T, NG(v) exists in ĜT and forms a clique there

• So T has a bag containing NG(v)

Algorithms Research Group

19

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

• Let D(T) := maxv∈T deg(v)

uib.no

Invariance Property

• Proof.

– (≥) G contains ĜT and a (D(T)+1)-clique as a minor

– (≤) Consider a tree decomposition T of ĜT

• For every v ∈ T, NG(v) exists in ĜT and forms a clique there

• So T has a bag containing NG(v)

• Append a new bag with NG(v) U {v}, of size ≤ D(T) + 1

• Update independently for each v ∈ T

Algorithms Research Group

19

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{TW(ĜT), D(T)}

• Let D(T) := maxv∈T deg(v)

