UNIVERSITY O F B ERGEN

Algorithms Research Group

On Sparsification for Computing Treewidth

Bart M. P. Jansen

September 4th 2013, IPEC 2013, Sophia Antipolis

Algorithms Research Group

Outline

[Treewidth

[Sparsification

[Results

e Sparsification lower bound for TREEWIDTH
e Quadratic-vertex kernel upper bound for TREEWIDTH [VvC]

[Conclusion

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

— Decompose a graph into a tree decomposition of small
width to reveal its internal structure

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

— Decompose a graph into a tree decomposition of small
width to reveal its internal structure

— Dynamic programming solves many optimization problems
when a tree decomposition is known

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

— Decompose a graph into a tree decomposition of small
width to reveal its internal structure

— Dynamic programming solves many optimization problems
when a tree decomposition is known

— First step: find good tree decomposition

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

— Decompose a graph into a tree decomposition of small
width to reveal its internal structure

— Dynamic programming solves many optimization problems
when a tree decomposition is known

— First step: find good tree decomposition

e TREEWIDTH
Input: A graph G, an integer k
Question: Is the treewidth of G at most k?

Algorithms Research Group

Treewidth

e Measure of how “tree-like” a graph is

— Decompose a graph into a tree decomposition of small
width to reveal its internal structure

— Dynamic programming solves many optimization problems
when a tree decomposition is known

— First step: find good tree decomposition

e TREEWIDTH
Input: A graph G, an integer k
Question: Is the treewidth of G at most k?

— NP-complete [Arnborg et al.”87]

Algorithms Research Group
Sparsification

e The task of making a problem instance less dense, without
changing its answer

Algorithms Research Group
Sparsification

e The task of making a problem instance less dense, without
changing its answer

e Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

Algorithms Research Group
Sparsification

e The task of making a problem instance less dense, without
changing its answer

e Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

e Work on sparsification

Algorithms Research Group
Sparsification

e The task of making a problem instance less dense, without
changing its answer

e Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

e Work on sparsification

— Eppstein et al. @ J.LACM’97:
Sparsification to speed up dynamic graph algorithms

Algorithms Research Group
Sparsification

e The task of making a problem instance less dense, without
changing its answer

e Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

e Work on sparsification

— Eppstein et al. @ J.LACM’97:
Sparsification to speed up dynamic graph algorithms

— Impagliazzo et al. @ JCSS’01:
Subexponential-time Sparsification Lemma for SATISFIABILITY

Algorithms Research Group

Sparsification

The task of making a problem instance less dense, without
changing its answer

Density
.. of a CNF formula: ratio of clauses to variables
.. of a graph: ratio of edges to vertices

Work on sparsification

— Eppstein et al. @ J.LACM’97:
Sparsification to speed up dynamic graph algorithms

— Impagliazzo et al. @ JCSS’01:
Subexponential-time Sparsification Lemma for SATISFIABILITY

— Dell & van Melkebeek @ STOC’10:
No nontrivial polynomial-time sparsification for d-CNF-SAT

Algorithms Research Group

Sparsification for Computing Treewidth

e Given a graph G, we want to make it easier to find a good tree
decomposition of G

Algorithms Research Group

Sparsification for Computing Treewidth

e Given a graph G, we want to make it easier to find a good tree
decomposition of G

e Main idea:
— quickly compute G’ which is “simpler” than G,

— such that minimum-width decomposition of G’ easily leads
to minimum-width decomposition of G

Algorithms Research Group

Sparsification for Computing Treewidth

e Given a graph G, we want to make it easier to find a good tree
decomposition of G

e Main idea:
— quickly compute G’ which is “simpler” than G,

— such that minimum-width decomposition of G’ easily leads
to minimum-width decomposition of G

e Possible ways to make G’ provably simpler than G:
— Upper bound on the density of G’

— Upper bound on the vertex count of G’, in terms of
structural measures of G

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is
— an algorithm that takes (x,k) as input,

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is
— an algorithm that takes (x,k) as input,

— runs in poly(|x| + k) time,

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is
— an algorithm that takes (x,k) as input,
— runs in poly(|x| + k) time,
— outputs (x’,k’) such that:

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is
— an algorithm that takes (x,k) as input,
— runs in poly(|x| + k) time,
— outputs (x’,k’) such that:
e (x,k) € Qiff (x' k') € Q’

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is
— an algorithm that takes (x,k) as input,
— runs in poly(|x| + k) time,
— outputs (x’,k’) such that:
e (x,k) € Qiff (x' k') € Q’
o |X'], k" <f(k)

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is

— an algorithm that takes (x,k) as input,\
Poly-time mapping from

— runs in poly(|x| + k) time, O to O
— outputs (x’,k’) such that: y
e (x,k) €Qiff (x',k') € Q’ — preserves the answer

o |X'], k" <f(k) — f(k)-size output bound

Algorithms Research Group

Parameterized Complexity and Kernelization

e A parameterized problem is a subset Q € X" x N
— For an instance (x,k) € X* x N, we call k the parameter

e LetQ, Q be parameterized problemsand f: N 2> N

e A generalized kernelization of Q into Q’ with size f is

— an algorithm that takes (x,k) as input,\

Poly-time mapping from

— runs in poly(|x| + k) time, Qto

— outputs (x’,k’) such that: y
e (x,k) €Qiff (x',k') € Q’ — preserves the answer
o |X'], k" <f(k) — f(k)-size output bound

e [tis a kernelization (or kernel) if Q = Q’

Algorithms Research Group

Sparsification Analysis using Kernelization

e Based on the parameterization by vertex count:

— n-TREEWIDTH
Input: n € N, an n-vertex graph G, an integer k
Parameter: n

Question: Is the treewidth of G at most k?

Algorithms Research Group

Sparsification Analysis using Kernelization

e Based on the parameterization by vertex count:

— n-TREEWIDTH
Input: n € N, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

e Aninstance (G,k,n) can be encoded in O(n?) bits

Algorithms Research Group

Sparsification Analysis using Kernelization

e Based on the parameterization by vertex count:

— n-TREEWIDTH
Input: n € N, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

e Aninstance (G,k,n) can be encoded in O(n?) bits

e Most relaxed form of polynomial-time sparsification:
— generalized kernel for n-TREEWIDTH of size O(n?¢) for € >0

Algorithms Research Group

Sparsification Analysis using Kernelization

e Based on the parameterization by vertex count:

— n-TREEWIDTH
Input: n € N, an n-vertex graph G, an integer k
Parameter: n
Question: Is the treewidth of G at most k?

e Aninstance (G,k,n) can be encoded in O(n?) bits

e Most relaxed form of polynomial-time sparsification:
— generalized kernel for n-TREEWIDTH of size O(n?¢) for € >0

Theorem. n-TREEWIDTH does not have a generalized kernel of
bitsize O(n%¢), for any € > 0, unless NP € coNP/poly

Proof Technique

e Proof using cross-composition of bounded cost

— Introduced in the journal version of the paper on cross-composition
[Bodlaender, J, Kratsch '12]

— Easier front-end to the complementary witness lemma of Dell & van
Melkebeek [STOC 10]

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

* composes the or of t2 similar size-s instances of an NP-hard problem,
* into aninstance (G",n",k") of n-TREEWIDTH with n* € O(t - s°(1)),

then n-TREEWIDTH does not have a generalized kernel of bitsize O(n%¢),
for any € >0, unless NP S coNP/poly

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

* composes the oR of t? similar size-s instances of an NP-hard problem,
* into aninstance (G",n",k") of n-TREEWIDTH with n* € O(t - s°(1)),

then n-TREEWIDTH does not have a generalized kernel of bitsize O(n%¢),
for any € > 0, unless NP € coNP/poly

NP-hard
inputs

poly(s - t)-time

Proof Technique

Corollary [Bodlaender et al.’12].

If there is a polynomial-time algorithm that:

* composes the oR of t? similar size-s instances of an NP-hard problem,
* into aninstance (G",n",k") of n-TREEWIDTH with n* € O(t - s°(1)),

then n-TREEWIDTH does not have a generalized kernel of bitsize O(n%¢),
for any € > 0, unless NP € coNP/poly

NP-hard
inputs
poly(s - t)-time
n-TREEWIDTH * % L F
instance (G ’k’)

\\ J

Y
8 n* € O(t - s°W)

Algorithms Research Group

Proof Strategy

e Convenient source problem

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t? instances into at x 2 table (Dell & Marx [SODA’12])

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t? instances into at x 2 table (Dell & Marx [SODA’12])

Al A2 A3 A4

B1 B2 B3 B4

Proof Strategy

e Convenient source problem

— COBIPARTITE GRAPH ELIMINATION

Algorithms Research Group

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t? instances into at x 2 table (Dell & Marx [SODA’12])

Al
OO O
OIOX®.

A2
OO O
OO0

A3
OO O
00O

A4
OO O
OIOX®.

Proof Strategy

e Convenient source problem

— COBIPARTITE GRAPH ELIMINATION

Algorithms Research Group

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t? instances into at x 2 table (Dell & Marx [SODA’12])

— Turn rows into cliques to get a cobipartite graph

Al
OO O
OIOX®.

A2
OO O
OO0

A3
OO O
00O

A4
OO O
OIOX®.

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t?instances into a t x 2 table (Dell & Marx [SODA’12])
— Turn rows into cliques to get a cobipartite graph

A2 A3 A4
OO0 QOO
OIOX®.

Al
OO O
00 000

B3

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t?instances into a t x 2 table (Dell & Marx [SODA’12])
— Turn rows into cliques to get a cobipartite graph

e (Gadgets enforce an OrR-gate through the cobipartite graph

A2 A3 A4
OO0 QOO
OIOX®.

Al
OO O
00 000

B3

Algorithms Research Group

Proof Strategy

e Convenient source problem
— COBIPARTITE GRAPH ELIMINATION

— “Given a restricted type of cobipartite graph, does it have
treewidth at most k?”

— Based on Arnborg et al.”s NP-completeness proof for TREEWIDTH

e Embed t?instances into a t x 2 table (Dell & Marx [SODA’12])
— Turn rows into cliques to get a cobipartite graph

e (Gadgets enforce an OrR-gate through the cobipartite graph
— 10 pages of proof to make it work

A2

A3 A4
OO0 QOO
OIOX®.

Al
OO O
00 000

B3

Consequences of the Lower Bound

10

Algorithms Research Group

Algorithms Research Group

Consequences of the Lower Bound

Corollary 1. For every € > 0 and every parameter I1 that does
not exceed the vertex count, TREEWIDTH [II] does not have a
kernel of bitsize O(k?¢), unless NP € coNP/poly

10

Algorithms Research Group

Consequences of the Lower Bound

Corollary 1. For every € > 0 and every parameter I1 that does
not exceed the vertex count, TREEWIDTH [II] does not have a
kernel of bitsize O(k?¢), unless NP € coNP/poly

e Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to ...

10

Algorithms Research Group

Consequences of the Lower Bound

Corollary 1. For every € > 0 and every parameter I1 that does
not exceed the vertex count, TREEWIDTH [II] does not have a
kernel of bitsize O(k?¢), unless NP € coNP/poly

e Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to ...

e The constructed graph is cobipartite
— For cobipartite graphs, treewidth equals pathwidth

10

Algorithms Research Group

Consequences of the Lower Bound

Corollary 1. For every € > 0 and every parameter I1 that does
not exceed the vertex count, TREEWIDTH [II] does not have a
kernel of bitsize O(k?¢), unless NP € coNP/poly

e Applies to parameterizations by Vertex Cover, Feedback
Vertex Set, Vertex-Deletion Distance to ...

e The constructed graph is cobipartite
— For cobipartite graphs, treewidth equals pathwidth

Corollary 2. n-PATHWIDTH does not have a generalized kernel of
bitsize O(n%¢), for any € > 0, unless NP € coNP/poly

10

Algorithms Research Group

Treewidth Parameterized by Vertex Cover

e TREEWIDTH [vC]

Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|

Question: Is the treewidth of G at most k?

11

Algorithms Research Group

Treewidth Parameterized by Vertex Cover

e TREEWIDTH [vC]

Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|

Question: Is the treewidth of G at most k?

e Lower bound implies:

— No kernel with bitsize O(|X]|?%) unless NP S coNP/poly

11

Algorithms Research Group

Treewidth Parameterized by Vertex Cover

e TREEWIDTH [vC]

Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|

Question: Is the treewidth of G at most k?

e Lower bound implies:
— No kernel with bitsize O(|X]|?%) unless NP S coNP/poly

e Previous-best was a kernel with O(|X|3) vertices
— Bodlaender, J, Kratsch [ICALP’11]

11

Algorithms Research Group

Treewidth Parameterized by Vertex Cover

e TREEWIDTH [vC]

Input: A graph G, vertex cover X of G, and an integer k
Parameter: |X|

Question: Is the treewidth of G at most k?

e Lower bound implies:
— No kernel with bitsize O(|X]|?%) unless NP S coNP/poly

e Previous-best was a kernel with O(|X|3) vertices
— Bodlaender, J, Kratsch [ICALP’11]

e We improve this to |X|? vertices

11

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

12

Algorithms Research Group

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
{u

predictable effect on treewidth Al

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
{u

predictable effect on treewidth Al

e Consider a graph G with an independent set T)

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
predictable effect on treewidth u

e Consider a graph G with an independent set T @‘D

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

V)

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter) C

— If GT is @ minor of G — {z} for every z € T, then ”
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a
predictable effect on treewidth

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
{u

predictable effect on treewidth VWi

e Consider a graph G with an independent set T

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then
T is a treewidth-invariant set in G

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
predictable effect on treewidth u

e Consider a graph G with an independent set T m

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then @
T is a treewidth-invariant set in G

,V,W}

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
predictable effect on treewidth u

e Consider a graph G with an independent set T m

— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then b
T is a treewidth-invariant set in G

,V,W}

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
predictable effect on treewidth u

e Consider a graph G with an independent set T ;9
— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then @
T is a treewidth-invariant set in G

,V,W}

e Let A(T) := max . deg(v)

12

Algorithms Research Group

Treewidth-Invariant Sets

e Kernel is based on treewidth-invariant sets

— Vertex set whose elimination has a G
predictable effect on treewidth u

e Consider a graph G with an independent set T ;9
— Let G; be the result of eliminating T from G,
one vertex at a time (order does not matter)

— If GT is @ minor of G — {z} for every z € T, then @
T is a treewidth-invariant set in G

,V,W}

e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

12

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

13

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

— If A(T) 2 k + 1: output NO

13

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

— If A(T) 2 k + 1: output NO
— Else reduce to G,

13

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

— If A(T) 2 k + 1: output NO
— Else reduce to G,

e Invariance lemma shows that Tw(G) < k iff Tw(G;) <k,
reduction is safe

13

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

— If A(T) 2 k + 1: output NO
— Else reduce to G,

e Invariance lemma shows that Tw(G) < k iff Tw(G;) <k,
reduction is safe

e Remaining issue: how to find treewidth-invariant sets?

— Seems hard in general
— NP-complete to test if a given set is treewidth-invariant!

13

Algorithms Research Group

Reduction Based on Treewidth-Invariant Sets

e Consider an instance (G,k) of TREEWIDTH with a treewidth-
invariant set T:

— If A(T) 2 k + 1: output NO
— Else reduce to G;

e |nvariance lemme
reduction is safe

* Remainingi e S ccy-invariant sets?

— NP-complete to < ot ictreewidth-invariant!

13

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

14

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

NS

14

Algorithms Researc h Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

A AT

N I N, NS, L . N

8O O DYVVO

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

NS

14

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

e Asubset A" € Ais saturated by g-stars into B’ if we can assign
to each v € A’ a set of q private neighbors from B’

INANSS W}

14

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,and g € N

e Asubset A" € Ais saturated by g-stars into B’ if we can assign
toeachv e A’ asetof g private neighbors from B’

A’
|\\\k

TR

14

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,andg €N

e Asubset A" € Ais saturated by g-stars into B’ if we can assign
toeachv e A’ asetof g private neighbors from B’

A’
|\\\§

TR

g-Expansion Lemma [Fomin et al. @STACS’11]
Let m be the size of a maximum matching H. If |[B| >m - g, then
there is a nonempty set T € B such that N,(T) is saturated by
g-stars into T. It can be found in polynomial time.

14

Algorithms Research Group

g-Expansion Lemma

e Let H be a bipartite graph with partite sets Aand B,andg €N

e Asubset A" € Ais saturated by g-stars into B’ if we can assign
to each v € A’ a set of q private neighbors from B’

T (SR

I\\\

EEAN S

g-Expansion Lemma [Fomin et al. @STACS’11]
Let m be the size of a maximum matching H. If |[B| >m - g, then
there is a nonempty set T € B such that N,(T) is saturated by
g-stars into T. It can be found in polynomial time.

14

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

15

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]

{1,4}

{1,5}

{24}

{3,5}

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) — X

{1,4}

{1,5}

{24}

{3,5}

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) — X

) (W

{1,5}

{24}

: (3,5) (2)

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) —

« has an edge between non- edge {p,q}and v € V(G) —
|f v |s adjacentto both pandqin G

) (W

{1,5}

{24}

: (3,5) (2)

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) —

« has an edge between non- edge {p,q}and v € V(G) —
|f v |s adjacentto both pandqin G

{14}

@L

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) —

« has an edge between non- edge {p,q}and v € V(G) —
|f v |s adjacentto both pandqin G

e Contracting vinto p or g creates the edge {p,q}

{14}

@L

Algorithms Research Group

Finding Treewidth-Invariant Sets

e Given a graph G with vertex cover X, form a bipartite non-edge
connection graph Hg

— One side corresponds to non-edges in G[X]
— One side consists of the independent set V(G) —

« has an edge between non- edge {p,q}and v € V(G) —
|f v |s adjacentto both pandqin G

e Contracting vinto p or g creates the edge {p,q}

N H

=

{24}

Lemma. If Hg , contains a set T € V(G) — X such that N,,(T) can be .
saturated by 2-stars into T, then T is a treewidth-invariant set @

<Y,

15\ A / \ / wa r?o

Kernel Size Bound

* Maximum matching in Hg y has size at most (l)z(l)

— Non-edge side has at most this many vertices

16

Algorithms Research Group

Algorithms Research Group

Kernel Size Bound

* Maximum matching in Hg y has size at most (l)z(l)

— Non-edge side has at most this many vertices

g-Expansion Lemma [Fomin et al. @STACS’11]
Let m be the size of a maximum matching H. If |[B| >m - g, then
there is a nonempty set T € B such that N,(T) is saturated by g-
stars into T. It can be found in polynomial time.

16

Algorithms Research Group

Kernel Size Bound

* Maximum matching in Hg y has size at most (l)z(l)

— Non-edge side has at most this many vertices

g-Expansion Lemma [Fomin et al. @STACS’11]
Let m be the size of a maximum matching H. If |[B| >m - g, then
there is a nonempty set T € B such that N,(T) is saturated by g-
stars into T. It can be found in polynomial time.

e If|X]|>2 1X] , find a 2-expansion in poly-time and reduce
2

e Reduced instances have < | X]| + 2(”2”) = | X|?% vertices
— Encoding into O(| X|3) bits

16

Algorithms Research Group

Kernel Size Bound

* Maximum matching in Hg y has size at most (l)z(l)

— Non-edge side has at most this many vertices

g-Expansion Lemma [Fomin et al. @STACS’11]
Let m be the size of a maximum matching H. If |[B| >m - g, then
there is a nonempty set T € B such that N,(T) is saturated by g-
stars into T. It can be found in polynomial time.

e If|X]|>2 (l)z(l), find a 2-expansion in poly-time and reduce
e Reduced instances have < | X]| + 2(”2”) = | X|?% vertices
— Encoding into O(| X|3) bits

Theorem. TREEWIDTH [vc] has a kernel with |X|? vertices that can
be encoded in O(|X]|3) bits

16 uib.no

Algorithms Research Group

Conclusion

e Main contributions
7 N
1. No nontrivial polynomial-time sparsification for TREEWIDTH

and PATHWIDTH, unless NP € coNP/poly
N
=

2. TREEWIDTH [vc] has a kernel with |X]|? vertices

.

17

Conclusion

Main contributions

/

.

.
-

1. No nontrivial polynomial-time sparsification for TREEWIDTH
and PATHWIDTH, unless NP € coNP/poly

Algorithms Research Group

2. TREEWIDTH [vc] has a kernel with |X]|? vertices

e Open problems

17

p

1. Are there graphs whose edge-count is superquadratic in their vertex cover
number, which do not have treewidth-invariant sets?

.
s

A\
-

2. Which problems admit nontrivial polynomial-time sparsification?

3. Does TREEWIDTH [vc] have a kernel of bitsize O(|X]?)?

I

|

.
s

4. Does PATHWIDTH [vc] have a kernel with O(|X|?) vertices?

UNIVERSITY OF BERGEN

Algorithms Research Group

Invariance Property

e Let A(T) := max . deg(v)

19

Algorithms Research Group

Invariance Property
e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

19

Algorithms Research Group

Invariance Property
e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

e Proof.

19

Algorithms Research Group

Algorithms Research Group

Invariance Property
e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

e Proof.
— (2) G contains G; and a (A(T)+1)-clique as a minor

19

Algorithms Research Group

Invariance Property
e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

e Proof.
— (2) G contains G; and a (A(T)+1)-clique as a minor
— (<) Consider a tree decomposition T of G;

e Foreveryv € T, N.(v) exists in G; and forms a clique there
 So T has a bag containing N;(v)

19

Algorithms Research Group

Invariance Property
e Let A(T) := max . deg(v)

Lemma. If T is a treewidth-invariant set in G,
then TW(G) = max{Tw(G,), A(T)}

e Proof.
— (2) G contains G; and a (A(T)+1)-clique as a minor
— (<) Consider a tree decomposition T of G;
e Foreveryv € T, N.(v) exists in G; and forms a clique there
 So T has a bag containing N;(v)
e Append a new bag with N¢(v) U {v}, of size < A(T) +1
e Update independently foreachv €T

19

