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when a tree decomposition is known 
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• Given a graph G, we want to make it easier to find a good tree 
decomposition of G 

• Main idea: 

– quickly compute G’ which is “simpler” than G,  

– such that minimum-width decomposition of G’ easily leads 
to minimum-width decomposition of G 

• Possible ways to make G’ provably simpler than G: 

– Upper bound on the density of G’ 

– Upper bound on the vertex count of G’, in terms of 
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• Convenient source problem 
– COBIPARTITE GRAPH ELIMINATION 
– “Given a restricted type of cobipartite graph, does it have 

treewidth at most k?” 
– Based on Arnborg et al.’s NP-completeness proof for TREEWIDTH 

• Embed t2 instances into a t × 2 table (Dell & Marx [SODA’12]) 
– Turn rows into cliques to get a cobipartite graph 

• Gadgets enforce an OR-gate through the cobipartite graph 
– 10 pages of proof to make it work 
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Corollary 1. For every ε > 0 and every parameter P that does 
not exceed the vertex count, TREEWIDTH [P] does not have a 

kernel of bitsize O(k2-ε), unless NP ⊆ coNP/poly 

Corollary 2. n-PATHWIDTH does not have a generalized kernel of 
bitsize O(n2-ε), for any ε > 0, unless NP ⊆ coNP/poly 
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Parameter: |X| 
Question:  Is the treewidth of G at most k? 

• Lower bound implies: 

– No kernel with bitsize O(|X|2-ε) unless NP ⊆ coNP/poly 

• Previous-best was a kernel with O(|X|3) vertices 

– Bodlaender, J, Kratsch [ICALP’11]  

• We improve this to |X|2 vertices 
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Lemma. If T is a treewidth-invariant set in G,  
then TW(G) = max{TW(ĜT), D(T)} 
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Lemma. If HG,X contains a set T ⊆ V(G) – X such that NH(T) can be 
saturated by 2-stars into T, then T is a treewidth-invariant set 
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• Main contributions 

1. No nontrivial polynomial-time sparsification for TREEWIDTH 
and PATHWIDTH, unless NP ⊆ coNP/poly 

2. TREEWIDTH [VC] has a kernel with |X|2 vertices 

• Open problems 

1. Are there graphs whose edge-count is superquadratic in their vertex cover 
number, which do not have treewidth-invariant sets? 

2. Which problems admit nontrivial polynomial-time sparsification? 

3. Does TREEWIDTH [VC] have a kernel of bitsize O(|X|2)? 

4. Does PATHWIDTH [VC] have a kernel with O(|X|2) vertices? 
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– (≤) Consider a tree decomposition T of ĜT 

• For every v ∈ T, NG(v) exists in ĜT  and forms a clique there 

• So T has a bag containing NG(v) 

• Append a new bag with NG(v) U {v}, of size ≤ D(T) + 1 

• Update independently for each v ∈ T 
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