Bart Jansen

Vertex Cover Kernelization Revisited:

Upper and Lower Bounds for a Refined Parameter

Joint work with Hans Bodlaender

STACS 2011, Dortmund March 10th, 2011

Vertex Cover

- Input: Graph G, integer k
- Question: Does G have a vertex cover of size $\leq k$?

Vertex Cover

- Input: Graph G, integer k
- Question: Does G have a vertex cover of size $\leq k$?

Vertex Cover

- Input: Graph G, integer k
- Question: Does G have a vertex cover of size $\leq k$?

Preprocessing for Vertex Cover

- Preprocess by computing a small, equivalent instance in polynomial time
- Reduce (G, k) to an equivalent instance on $f(k)$ vertices

Preprocessing for Vertex Cover

- Preprocess by computing a small, equivalent instance in polynomial time
- Reduce (G, k) to an equivalent instance on $\mathrm{f}(\mathrm{k})$ vertices

```
O(K2)}\begin{array}{l}{\mathrm{ - Sam Buss [SIAM J. Comput. 1993]}}\\{\bullet\mathrm{ -High-degree rule}}
```


Preprocessing for Vertex Cover

- Preprocess by computing a small, equivalent instance in polynomial time
- Reduce (G, k) to an equivalent instance on $\mathrm{f}(\mathrm{k})$ vertices

O(k2) •Sam Buss [SIAM J. Comput. 1993]

- High-degree rule

2k

- Chen, Kanj and Jia [J. Algorithms 2001]
- Linear-programming theorem by Nemhauser and Trotter

Preprocessing for Vertex Cover

- Preprocess by computing a small, equivalent instance in polynomial time
- Reduce (G, k) to an equivalent instance on $\mathrm{f}(\mathrm{k})$ vertices

```
O(k2) \bulletSam Buss [SIAM J. Comput. 1993]
-High-degree rule
    2k - Chen, Kanj and Jia [J. Algorithms 2001]
    - Linear-programming theorem by Nemhauser and Trotter
    3k
        - Abu-Khzam, Fellows, Langston and Suters [Theory Comput. Syst. 2007]
        - Combinatorial algorithm by Crown Reduction
```


Preprocessing for Vertex Cover

- Preprocess by computing a small, equivalent instance in polynomial time
- Reduce (G, k) to an equivalent instance on $\mathrm{f}(\mathrm{k})$ vertices

```
O(k2
    - Sam Buss [SIAM J. Comput. 1993]
-High-degree rule
```

2K •Chen, Kanj and Jia [J. Algorithms 2001]

- Linear-programming theorem by Nemhauser and Trotter

3k

- Abu-Khzam, Fellows, Langston and Suters [Theory Comput. Syst. 2007]
- Combinatorial algorithm by Crown Reduction
- Evidence that factor 2 is optimal under UGC

Relevant values of \mathbf{k}

- Consider instance (G,k) of Vertex Cover
- Compute a 2-approximation set S in linear time - $\mathrm{VC}(\mathrm{G}) \leq|\mathrm{S}| \leq 2 \mathrm{VC}(\mathrm{G})$

Relevant values of \mathbf{k}

- Consider instance (G,k) of Vertex Cover
- Compute a 2-approximation set S in linear time - $\mathrm{VC}(\mathrm{G}) \leq|\mathrm{S}| \leq 2 \mathrm{VC}(\mathrm{G})$

$$
k<|S| / 2
$$

- $\mathrm{k}<\mathrm{VC}(\mathrm{G})$
- Output NO

Relevant values of \mathbf{k}

- Consider instance (G,k) of Vertex Cover
- Compute a 2-approximation set S in linear time - $\mathrm{VC}(\mathrm{G}) \leq|\mathrm{S}| \leq 2 \mathrm{VC}(\mathrm{G})$

$$
\begin{array}{r}
\mathrm{k}<|\mathrm{S}| / 2 \\
\text { - } \mathrm{k}<\mathrm{VC}(\mathrm{G}) \\
\text { - Output NO }
\end{array}
$$

$$
k \geq|S|
$$

- $\mathrm{k} \geq \mathrm{VC}(\mathrm{G})$
- Output YES

Relevant values of \mathbf{k}

- Consider instance (G,k) of Vertex Cover
- Compute a 2-approximation set S in linear time - $\mathrm{VC}(\mathrm{G}) \leq|\mathrm{S}| \leq 2 \mathrm{VC}(\mathrm{G})$

$$
\begin{aligned}
& k<|S| / 2 \\
& \text { - } \mathrm{k}<\mathrm{VC}(\mathrm{G}) \\
& \text { - Output NO }
\end{aligned}
$$

$$
k \geq|S|
$$

- $\mathrm{k} \geq \mathrm{VC}(\mathrm{G})$
- Output YES
- In interesting situations we have:
- $\mathrm{VC}(\mathrm{G}) / 2 \leq \mathrm{k} \leq 2 \mathrm{VC}(\mathrm{G})$

Relevant values of \mathbf{k}

- Consider instance (G,k) of Vertex Cover
- Compute a 2-approximation set S in linear time - $\mathrm{VC}(\mathrm{G}) \leq|\mathrm{S}| \leq 2 \mathrm{VC}(\mathrm{G})$

$$
\begin{array}{r}
\mathrm{k}<|\mathrm{S}| / 2 \\
\text { - } \mathrm{k}<\mathrm{VC}(\mathrm{G}) \\
\text { - Output NO }
\end{array}
$$

$$
k \geq|S|
$$

- $\mathrm{k} \geq \mathrm{VC}(\mathrm{G})$
- Output YES
- In interesting situations we have:
- $\mathrm{VC}(\mathrm{G}) / 2 \leq \mathrm{k} \leq 2 \mathrm{VC}(\mathrm{G})$
- So for relevant instances \mathbf{k} is $\mathbf{O}(\mathbf{V C}(\mathbf{G})$)

Alternative parameterizations

- Existing results guarantee that the size of instance (G, k) of Vertex Cover can be reduced to $\mathrm{O}(\mathrm{VC}(\mathrm{G})$) vertices
- In polynomial time, without changing the answer

Alternative parameterizations

- Existing results guarantee that the size of instance (G, k) of Vertex Cover can be reduced to $\mathrm{O}(\mathrm{VC}(\mathrm{G})$) vertices
- In polynomial time, without changing the answer
- $\mathrm{VC}(\mathrm{G})$ is just a measure of the complexity of a graph

Alternative parameterizations

- Existing results guarantee that the size of instance (G, k) of Vertex Cover can be reduced to $\mathrm{O}(\mathrm{VC}(\mathrm{G})$) vertices
- In polynomial time, without changing the answer
- $\mathrm{VC}(\mathrm{G})$ is just a measure of the complexity of a graph
- Take any measure Π which maps graphs to \boldsymbol{N}, and ask:
- Can we reduce an instance (G, k) to poly[$\Pi(\mathrm{G})$] vertices?

Alternative parameterizations

- Existing results guarantee that the size of instance (G, k) of Vertex Cover can be reduced to $\mathrm{O}(\mathrm{VC}(\mathrm{G})$) vertices
- In polynomial time, without changing the answer
- $\mathrm{VC}(\mathrm{G})$ is just a measure of the complexity of a graph
- Take any measure Π which maps graphs to \boldsymbol{N}, and ask:
- Can we reduce an instance (G, k) to poly[$\Pi(\mathrm{G})$] vertices?
- Stronger data reduction if we can ensure $\Pi(\mathrm{G}) \leq \mathrm{VC}(\mathrm{G})$

Graph parameters

- Vertex Cover Number VC(G)
- Size of a smallest set S such that G - S is edgeless

Graph parameters

- Vertex Cover Number VC(G)
- Size of a smallest set S such that G - S is edgeless

Graph parameters

- Vertex Cover Number VC(G)
- Size of a smallest set S such that G - S is edgeless

Graph parameters

- Vertex Cover Number VC(G)
- Size of a smallest set S such that $\mathrm{G}-\mathrm{S}$ is edgeless

> | Vertex Cover |
| :---: |
| Edgeless Graphs |

Graph parameters

- Feedback Vertex Set Number FVS(G)
- Size of a smallest set S such that $G-S$ is a forest (acyclic)

Graph parameters

- Feedback Vertex Set Number FVS(G)
- Size of a smallest set S such that $G-S$ is a forest (acyclic)

Graph parameters

- Feedback Vertex Set Number FVS(G)
- Size of a smallest set S such that $G-S$ is a forest (acyclic)

Graph parameters

- Feedback Vertex Set Number FVS(G)
- Size of a smallest set S such that G - S is a forest (acyclic)

Vertex Cover Edgeless Graphs

Graph parameters

- Feedback Vertex Set Number FVS(G)
- Size of a smallest set S such that $G-S$ is a forest (acyclic)

Vertex Cover Edgeless Graphs

A refined parameter

Feedback vtx Set
 Forests

Vertex Cover
Edgeless Graphs

A refined parameter

A refined parameter

- The difference can be arbitrarily large

A refined parameter

- The difference can be arbitrarily large
- The feedback vertex number is a refined parameter

Our results

1. The size of an instance can efficiently be reduced to a polynomial in the size of the minimum FVS

Our results

1. The size of an instance can efficiently be reduced to a polynomial in the size of the minimum FVS

O [min VC(G), FVS(G) $\left.{ }^{3}\right]$ vertices

Our results

1. The size of an instance can efficiently be reduced to a polynomial in the size of the minimum FVS

O [min VC(G), FVS(G) $\left.{ }^{3}\right]$ vertices

- In the language of parameterized complexity:
- Vertex Cover parameterized by the size of a feedback vertex set admits a cubic-vertex kernel

Our results

2. The Weighted Vertex Cover problem cannot be reduced to an instance on poly[$\mathrm{VC}(\mathrm{G})]$ vertices *

- (unless the polynomial hierarchy collapses)
- where $\operatorname{VC}(G)$ is the cardinality of a minimum vertex cover

Our results

2. The Weighted Vertex Cover problem cannot be reduced to an instance on poly[$\mathrm{VC}(\mathrm{G})]$ vertices *

- (unless the polynomial hierarchy collapses)
- where $\mathrm{VC}(\mathrm{G})$ is the cardinality of a minimum vertex cover
- Reduction to $\mathrm{O}(\mathrm{W}-\mathrm{VC}(\mathrm{G})$) vertices is possible

Our results

2. The Weighted Vertex Cover problem cannot be reduced to an instance on poly[$\mathrm{VC}(\mathrm{G})]$ vertices *

- (unless the polynomial hierarchy collapses)
- where $\operatorname{VC}(\mathrm{G})$ is the cardinality of a minimum vertex cover
- Reduction to $\mathrm{O}(\mathrm{W}-\mathrm{VC}(\mathrm{G})$) vertices is possible
- where $\mathrm{W}-\mathrm{VC}(\mathrm{G})$ is the weight of a minimum vertex cover [Chlebík and Chlebíková, Disc Appl M 2008]

Our results

2. The Weighted Vertex Cover problem cannot be reduced to an instance on poly[$\mathrm{VC}(\mathrm{G})]$ vertices *

- (unless the polynomial hierarchy collapses)
- where $\operatorname{VC}(\mathrm{G})$ is the cardinality of a minimum vertex cover
- Reduction to $\mathrm{O}(\mathrm{W}-\mathrm{VC}(\mathrm{G})$) vertices is possible
- where $\mathrm{W}-\mathrm{VC}(\mathrm{G})$ is the weight of a minimum vertex cover [Chlebík and Chlebíková, Disc Appl M 2008]
- Weighted Vertex Cover can be solved in $2^{\mathrm{VC}(\mathrm{G})}$ poly(n) time

Our results

2. The Weighted Vertex Cover problem cannot be reduced to an instance on poly[$\mathrm{VC}(\mathrm{G})]$ vertices *

- (unless the polynomial hierarchy collapses)
- where $\operatorname{VC}(\mathrm{G})$ is the cardinality of a minimum vertex cover
- Reduction to $\mathrm{O}(\mathrm{W}-\mathrm{VC}(\mathrm{G})$) vertices is possible
- where $\mathrm{W}-\mathrm{VC}(\mathrm{G})$ is the weight of a minimum vertex cover [Chlebík and Chlebíková, Disc Appl M 2008]
- Weighted Vertex Cover can be solved in $2^{\mathrm{VC}(\mathrm{G})}$ poly(n) time

Sketch of the reduction rules

THE UPPER BOUNDS

Outline of the reduction algorithm

- Input: an instance (G, k) of Vertex Cover

Outline of the reduction algorithm

- Input: an instance (G, k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

- This effectively deletes vertices, so $\operatorname{FVS}(G)$ is not increased

Outline of the reduction algorithm

- Input: an instance (G, k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

- This effectively deletes vertices, so FVS(G) is not increased

2) Compute a 2-approximate Feedback Vertex Set X

- [Bafna, Berman and Fujito, SIAM J Disc M 1999]

Outline of the reduction algorithm

- Input: an instance (G, k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

- This effectively deletes vertices, so FVS(G) is not increased

2) Compute a 2-approximate Feedback Vertex Set X

- [Bafna, Berman and Fujito, SIAM J Disc M 1999]

3) Use the structure of X within G to apply reduction rules

- When no rules apply, the instance is provably small

Change of perspective

- Instance (G, k) of Vertex Cover is equivalent to asking "Does G have an Independent Set of size $n-k$?"

Change of perspective

- Instance (G, k) of Vertex Cover is equivalent to asking "Does G have an Independent Set of size n - k ?"
- Reduction rules are easier to formulate in Independent Set perspective
- Interpret (G,k) as an instance (G, n - k) of Independent Set
- Apply reduction rules to obtain a small instance of Independent Set ($\mathrm{G}^{\prime}, \mathrm{n}^{\prime}$ - k^{\prime})
- Equivalent to the small Vertex Cover instance ($\mathrm{G}^{\prime}, \mathrm{k}^{\prime}$)

Structure of an instance: a canonical solution

- Let forest F:= G - X
- Maximum Independent Set (MIS) of F is poly-time computable

Structure of an instance: a canonical solution

- Let forest F := G - X
- Maximum Independent Set (MIS) of F is poly-time computable
- Canonical solution=MIS(F)

Structure of an instance: a canonical solution

- Let forest F:= G-X
- Maximum Independent Set (MIS) of F is poly-time computable
- Canonical solution=MIS(F)
- Better solutions may exist using some vertices of X

Structure of an instance:
 a canonical solution

- Let forest F := G - X
- Maximum Independent Set (MIS) of F is poly-time computable
- Canonical solution=MIS(F)
- Better solutions may exist using some vertices of X
- We can test the effect of using single vertex

Using vertices from X

- Consider using vertex v in X in an independent set

Using vertices from X

- Consider using vertex v in X in an independent set
- This IS cannot use any neighbors of v

Using vertices from X

- Consider using vertex v in X in an independent set
- This IS cannot use any neighbors of v

Using vertices from X

- Consider using vertex v in X in an independent set
- This IS cannot use any neighbors of v

Using vertices from X

- Consider using vertex v in X in an independent set
- This IS cannot use any neighbors of v
- Compare canonical solution to MIS(F - N(v))

Using vertices from X

- Consider using vertex vin X in an independent set
- This IS cannot use any neighbors of v
- Compare canonical solution to MIS(F - N(v))
- If difference $\geq|X|$:
- Solutions containing v are not better than canonical
- Delete v from the instance

Using vertices from X

- Consider using vertex vin X in an independent set
- This IS cannot use any neighbors of v
- Compare canonical solution to MIS(F - N(v))
- If difference $\geq|X|$:
- Solutions containing v are not better than canonical
- Delete v from the instance

Using pairs of vertices from X

- Different situation

Using pairs of vertices from X

- Different situation

Using pairs of vertices from X

- Different situation
- No single vertex triggers the reduction rule

Using pairs of vertices from X

- Different situation
- No single vertex triggers the reduction rule

Using pairs of vertices from X

- Different situation
- No single vertex triggers the reduction rule

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent
- Compare canonical solution to MIS(F - N(u,v))

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent
- Compare canonical solution to MIS(F - N(u,v))
- If difference $\geq|X|$:
- Solutions containing $\{u, v\}$ are not better than canonical

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent
- Compare canonical solution to MIS(F - N(u,v))
- If difference $\geq|X|$:
- Solutions containing $\{u, v\}$ are not better than canonical
- Exists optimal solution which does not use both

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent
- Compare canonical solution to MIS(F - N(u,v))
- If difference $\geq|X|$:
- Solutions containing $\{u, v\}$ are not better than canonical
- Exists optimal solution which does not use both
- Add edge $\{u, v\}$

Using pairs of vertices from X

- Consider using $\{u, v\}$ from X in the independent set
- Impossible if $\{u, v\}$ adjacent
- Compare canonical solution to MIS(F - N(u,v))
- If difference $\geq|X|$:
- Solutions containing $\{u, v\}$ are not better than canonical
- Exists optimal solution which does not use both
- Add edge $\{u, v\}$

Deleting trees from F: An example

- Consider this tree T in forest F

Deleting trees from F: An example

- Consider this tree T in forest F

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T
- Delete T, decrease k by MIS(T)

Deleting trees from F: An example

- Consider this tree T in forest F
- Any independent set in X can be augmented with MIS(T) vertices from T
- Delete T, decrease k by MIS(T)

Deleting trees from F: the rule

- If there is a tree T in the forest F, such that:
- for all non-adjacent pairs $\{u, v\}$ in X : $\operatorname{MIS}(T)=\operatorname{MIS}(T-N(u, v))$
- Then delete T from the instance, decrease k by MIS(T)
- Justified by the following lemma:
- If there is an independent set $\mathrm{X}^{\prime} \subseteq \mathrm{X}$ such that $\operatorname{MIS}(\mathrm{T})>\operatorname{MIS}\left(\mathrm{T}-\mathrm{N}\left(\mathrm{X}^{\prime}\right)\right)$
- then there is such a set of size at most 2

Overview of the reduction process

- Two more rules to simplify the trees in F
- Effect of the rules:
" For each vertex v in X, the amount you have to "pay" in F for using v is at most $|\mathrm{X}|$
- Similar for pairs of vertices in X
- But for each tree, some pair makes you pay in that tree

Overview of the reduction process

- Two more rules to simplify the trees in F
- Effect of the rules:
" For each vertex v in X, the amount you have to "pay" in F for using v is at most | $\mathrm{X} \mid$
- Similar for pairs of vertices in X
- But for each tree, some pair makes you pay in that tree
- Long proof shows that $|\mathrm{F}|$ is $\mathrm{O}\left(|\mathrm{X}|^{3}\right)$ after reduction
- Size of vertex set is $|X|+O\left(|X|^{3}\right)$

CONCLUSION AND DISCUSSION

Kernelizability of (Unweighted) Vertex Cover

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices
- Usage of vertex weights affects kernelizability

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices
- Usage of vertex weights affects kernelizability
- No polynomial kernel for weighted problem parameterized by VC-size (unless...)

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices
- Usage of vertex weights affects kernelizability
- No polynomial kernel for weighted problem parameterized by VC-size (unless...)
- Hierarchy of parameters to explore

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices
- Usage of vertex weights affects kernelizability
- No polynomial kernel for weighted problem parameterized by VC-size (unless...)
- Hierarchy of parameters to explore
- Open problems:
- Deletion distance to bipartite/outerplanar graphs
- Improve the degree of the polynomial: cubic to quadratic?

Conclusion

- We have studied data reduction for Vertex Cover using a "refined" parameter: Feedback Vertex Number
- Kernel with $\mathrm{O}\left(|X|^{3}\right)$ vertices
- Usage of vertex weights affects kernelizability
- No polynomial kernel for weighted problem parameterized by VC-size (unless...)
- Hierarchy of parameters to explore
- Open problems:
- Deletion distance to bipartite/outerplanar graphs
- Improve the degree of the polynomial: cubic to quadratic?
Thank you!

