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Vertex Cover

 Input: Graph G, integer k

 Question: Does G have a vertex cover of size ≤ k?

S is a Vertex Cover of G  Graph G – S is edgeless
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Preprocessing for Vertex Cover

 Preprocess by computing a small, equivalent instance in 
polynomial time

 Reduce (G,k) to an equivalent instance on f(k) vertices

 Evidence that factor 2 is optimal under UGC

•Sam Buss [SIAM J. Comput. 1993]

•High-degree ruleO(k2)

•Chen, Kanj and Jia [J. Algorithms 2001]

•Linear-programming theorem by Nemhauser and Trotter2k

•Abu-Khzam, Fellows, Langston and Suters [Theory Comput. Syst. 2007]
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Relevant values of k

 Consider instance (G,k) of Vertex Cover

 Compute a 2-approximation set S in linear time
 VC(G) ≤ |S| ≤ 2 VC(G)

 In interesting situations we have:
 VC(G) / 2 ≤ k ≤ 2 VC(G)

 So for relevant instances k is Θ(VC(G))

k < |S|/2

• k < VC(G)

• Output NO

k ≥ |S|

• k ≥ VC(G)

• Output YES
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Alternative parameterizations

 Existing results guarantee that the size of instance (G,k) of 
Vertex Cover can be reduced to O(VC(G)) vertices

 In polynomial time, without changing the answer
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Alternative parameterizations

 Existing results guarantee that the size of instance (G,k) of 
Vertex Cover can be reduced to O(VC(G)) vertices

 In polynomial time, without changing the answer

 VC(G) is just a measure of the complexity of a graph

 Take any measure  which maps graphs to N, and ask:

 Can we reduce an instance (G,k) to poly[ (G) ] vertices?

 Stronger data reduction if we can ensure (G) ≤ VC(G)
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 The difference can be arbitrarily large

 The feedback vertex number is a refined parameter

A refined parameter

Vertex Cover

Edgeless Graphs

Feedback vtx Set

Forests
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Our results

1. The size of an instance can efficiently be reduced to a 
polynomial in the size of the minimum FVS

(G,k) p-time O(FVS(G)3)
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Our results

1. The size of an instance can efficiently be reduced to a 
polynomial in the size of the minimum FVS

 In the language of parameterized complexity:

 Vertex Cover parameterized by the size of a feedback vertex 
set admits a cubic-vertex kernel

(G,k) p-time

O [min

VC(G), FVS(G)3 ]

vertices
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Our results

2. The Weighted Vertex Cover problem cannot be reduced to 
an instance on poly[VC(G)] vertices *

 (unless the polynomial hierarchy collapses)

 where VC(G) is the cardinality of a minimum vertex cover
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Our results

2. The Weighted Vertex Cover problem cannot be reduced to 
an instance on poly[VC(G)] vertices *

 (unless the polynomial hierarchy collapses)

 where VC(G) is the cardinality of a minimum vertex cover

 Reduction to O( (W-VC(G) ) vertices is possible

 where W-VC(G) is the weight of a minimum vertex cover 
[Chlebík and Chlebíková, Disc Appl M 2008]

 Weighted Vertex Cover can be solved in 2VC(G) poly(n) time

* This strenghtens the result as given in the paper
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THE UPPER BOUNDS

Sketch of the reduction rules
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Outline of the reduction algorithm

 Input: an instance (G,k) of Vertex Cover
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Outline of the reduction algorithm

 Input: an instance (G,k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

 This effectively deletes vertices, so FVS(G) is not increased
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Outline of the reduction algorithm

 Input: an instance (G,k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

 This effectively deletes vertices, so FVS(G) is not increased

2) Compute a 2-approximate Feedback Vertex Set X

 [Bafna, Berman and Fujito, SIAM J Disc M 1999]

 


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Outline of the reduction algorithm

 Input: an instance (G,k) of Vertex Cover

1) Apply the Nemhauser-Trotter reduction

 This effectively deletes vertices, so FVS(G) is not increased

2) Compute a 2-approximate Feedback Vertex Set X

 [Bafna, Berman and Fujito, SIAM J Disc M 1999]

3) Use the structure of X within G to apply reduction rules

 When no rules apply, the instance is provably small
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Change of perspective

 Instance (G,k) of Vertex Cover is equivalent to asking 
“Does G have an Independent Set of size n – k?”
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Change of perspective

 Instance (G,k) of Vertex Cover is equivalent to asking 
“Does G have an Independent Set of size n – k?”

 Reduction rules are easier to formulate in Independent Set 
perspective

 Interpret (G,k) as an instance (G, n – k) of Independent Set

 Apply reduction rules to obtain a small instance of 
Independent Set (G’, n’ – k’)

 Equivalent to the small Vertex Cover instance (G’, k’)
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Structure of an instance:
a canonical solution

 Let forest F := G – X

 Maximum Independent 
Set (MIS) of F is poly-time 
computable
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Structure of an instance:
a canonical solution

 Let forest F := G – X

 Maximum Independent 
Set (MIS) of F is poly-time 
computable

 Canonical solution=MIS(F)

 Better solutions may exist 
using some vertices of X

 We can test the effect of 
using single vertex

X

F := G - X
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Deleting trees from F: An example
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Deleting trees from F: the rule

 If there is a tree T in the forest F, such that:

 for all non-adjacent pairs {u,v} in X: 
MIS(T) = MIS(T – N(u,v))

 Then delete T from the instance, decrease k by MIS(T)

 Justified by the following lemma:

 If there is an independent set X’ ⊆ X such that 

MIS(T) > MIS(T – N(X’))

 then there is such a set of size at most 2
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Overview of the reduction process

 Two more rules to simplify the trees in F

 Effect of the rules:

 For each vertex v in X, the amount you have to “pay” in F for 
using v is at most |X|

 Similar for pairs of vertices in X

 But for each tree, some pair makes you pay in that tree


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Overview of the reduction process

 Two more rules to simplify the trees in F

 Effect of the rules:

 For each vertex v in X, the amount you have to “pay” in F for 
using v is at most |X|

 Similar for pairs of vertices in X

 But for each tree, some pair makes you pay in that tree

 Long proof shows that |F| is O(|X|3) after reduction

 Size of vertex set is |X| + O(|X|3)



81

CONCLUSION AND 
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