
Tutorial Activiti and SQL

Dirk Fahland

2IO71 DBL Information Systems

MySQL server

PAGE 1

Architecture of the System

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

process-related

information, e.g.

• customers,

• suppliers,

• items,

• orders,

• …

maintained by you

engine-related

information, e.g.

• users,

• roles,

• active process

instances,

• …

maintained by Activiti

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 2

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

First Example – Form Properties

 Open Eclipse

 Open project
example_bpmn_model1

 Open diagram
src/main/resources/
diagrams/CreateQuote.bpmn

 select task Add Quote

 open the Properties view

(see Tutorial 01 Activiti Basics)

 select Form

 the properties show a number of

form properties

 Activiti renders these properties

as form fields when the task is

created (to be executed by a user)

PAGE 3

First Example – Execution Listeners

 open Listeners in the Properties view

 there is a listener on event complete

 the listener is of Type expression

 the Implementation is an expression, preceded by the keyword sql:

 the entire query following after sql: gets executed when the task gets

completed

(= when the user clicks the “Complete” button of this task in the UI)

PAGE 4

First Example – SQL Expression in Listener

 entire query of Add Quote
INSERT INTO `quotes` (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`) VALUES
('${customer}','${item}',${itemprice/100},${quantity},
 ${itemprice/100 * quantity},
 ${execution.processInstanceId}
);

 what it does

• inserts a new row into table `quotes`

• where values for columns (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`) are specified

• the values in the query are set from variables, e.g., ${customer}, or

calculated from expressions, e.g., ${itemprice/100 * quantity}

• values of variables have been set by the user

(see Form Properties of this task)

PAGE 5

First Example – Expressions on Gateways

 variables can also be evaluated on arcs

 in CreateQuote.bpmn, select the arc between the two XOR-gateways

 open Main config

 the arc expression

${addAnother == ‘true’}

defines that this arc is only

taken when the variable

addAnother has been set to

true

PAGE 6

First Example – Try Yourself

 Log into Activiti and start the process Add Quote

 Fill in the Customer field in the start form of the Add Quote process

 Go to the Tasks tab in Activiti

 There will be an Add Quote task assigned to you

 Fill in Items, Price, and Quantity and choose whether another item

shall be added.

 Repeat until you are done (Add another item to this quote is unchecked)

 Log into MySQL and execute
SELECT * FROM `quotes`;

 The items that you’ve entered will show up in the query result

PAGE 7

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 8

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

Where can SQL queries can annotated

 INSERT, UPDATE, DELETE queries can be annotated

• as an Expression of a task listeners of any task, preferably a

listener of type complete

see also http://www.activiti.org/userguide/#taskListeners

 SELECT, INSERT, UPDATE, DELETE queries can be

annotated

• in a service task that has type Expression

• the result of the query can be stored in a variable

 … anywhere, where Activiti allows an expression

http://www.activiti.org/userguide/#apiExpressions

 an SQL expression must be preceded by the keyword
sql:

PAGE 9

http://www.activiti.org/userguide/
http://www.activiti.org/userguide/
http://www.activiti.org/userguide/

What can be used inside SQL queries

 each SQL query in an Activiti expression has to be a valid

SQL query

 values in an SQL query can be
• constants

• Activiti expressions using ${…}, i.e., no nesting of SQL queries

 examples:
• UPDATE `quotes` SET `state`='checking',

`handledBy`=${execution.processInstanceId}
WHERE `state`='added';

• UPDATE `quotes` SET `state`='${quoteOK}',
`itemprice`=${itemPrice},`quantity`=${quantity}
WHERE `id`=${quoteID};

• INSERT INTO `quotes` (`customer`, `item`, `itemprice`,
`quantity`, `totalprice`,`handledBy`)
VALUES ('${customer}', '${item}', ${itemprice/100},${quantity},
${itemprice/100 * quantity}, ${execution.processInstanceId});

PAGE 10

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with

database contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 11

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

Reading from the DB

 SELECT queries can be annotated

• in a Service Task of type Expression

 the result of the query can be stored in a variable

• in Default expressions of a Form of a User Task,

as follows…

PAGE 12

Populating Forms with DB Contents (1)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/CheckQuote.bpmn

 select task Check Quote and open Properties > Form

 the Default column contains expressions with SQL queries

PAGE 13

Populating Forms with DB Contents (2)

 for task Check Quote, the form property quoteID
• is of type enum

• has as default expression a query preceded by the keyword
sql_ui:

• query: SELECT `id` WHERE `state`='checking'

 when the user form is shown

• the query is executed, and

• the results of the query are shown in

a drop-down list

• from which the user can pick a value

PAGE 14

Populating Forms with DB Contents (3)

 for task Check Quote, the form property customerName
• is of type String (default type) and

• has as default expression a query preceded by the keyword
sql_ui:

• SELECT `customer` FROM `quotes` WHERE `id`=&{quoteID}

 the expression &{quoteID}
refers to the current value

in the field quoteID

 when a new value is set in

quoteID, the query gets

executed and the first returned

value is shown in customerName

PAGE 15

 a field with Readable=True and Writeable=False
will be read-only (values just displayed)

 a field with Writeable=True

will be pre-filled with a queried value,

the value can be changed by the user

 only values of the first column of a SELECT query will be

used to populate a field

 for field of type enum:

• all values will be put into the drop down list

 for other types (String, Long, Double):

• only the first value will be put into the field

PAGE 16

Populating Forms with DB Contents (4)

 default expressions with sql_ui: queries can refer to

values of any number of fields &{field1}, &{field2}, …

 the fields referred to in a query have to be defined before

the field that uses the query

•  there must not be a cycle of references

• use the Up and Down buttons to define a correct order of fields

PAGE 17

Populating Forms with DB Contents (5)

&{quoteID}

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on

Database contents

 Interactions between

processes

PAGE 18

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

PAGE 19

Trigger by Start Event (1)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/CheckQuote.bpmn

 select the start timer event and open Properties > Main config

 the Time cycle field has a value 0 0/1 * * * ?

= UNIX cron expression

 Activiti creates a new instance of this process every minute

PAGE 20

Trigger by Start Event (2)

 to create guarded start timer events:

• select the start timer event, go to Properties > Form

• create a form property with

− Id=sql_trigger and

− Default expression being an sql: query

 when the timer fires, the query gets executed

• if the result is empty, then no process instance is created

• otherwise, a new instance is created

 Example in CheckQuote.bpmn
• the sql_trigger in the start timer event has the expression

SELECT * FROM `quotes` WHERE `state`='added';

• a new instance will be created whenever there is a quote that is in state added

• to prevent creation of infinitely many instances, table quotes should be

updated so that it does not contain quotes in state added anymore

PAGE 21

Trigger by Start Event (3)

 Open Eclipse

 Open project example_bpmn_model1

 Open diagram src/main/resources/diagrams/WaitForEntry.bpmn

 select the Intermediate Catch Event

 the intermediate event pauses the process execution

until a signalX is raised (Properties > Main config > Signal ref)

 signals can be raised in various ways

see http://www.activiti.org/userguide/#bpmnEvents

PAGE 22

Trigger by Intermediate Event (1)

http://www.activiti.org/userguide/

 signals have to be defined

• unfortunately, the Activiti Designer has problems showing signal

definitions in the graphical editor

 to create/edit a signal definition

right click on the model file, Open With > XML Editor

PAGE 23

Trigger by Intermediate Event (2)

 to create/edit a signal definition

in the XML Editor, select the Source View

 every signal definition

• is a child of <definitions …>

• has the form

 <signal id=“idString” name=“text or SQL query”/>

• see http://www.activiti.org/userguide/#bpmnSignalEventDefinition

PAGE 24

Trigger by Intermediate Event (3)

http://www.activiti.org/userguide/
http://www.activiti.org/userguide/

 at any catch event, process execution will halt, and

 continue only when a signal of the referred signal id is

raised

 if signal name contains an sql: query, then

• Activiti regularly executes the query

• when the query returns a result, a signal of the given id is raised,

and any halted execution continues

PAGE 25

Trigger by Intermediate Event (4)

refers to

In this Tutorial

 First Example

 Writing to the DB

• where SQL queries can be

annotated

• what can be used

 Reading from

the DB

• populating forms with database

contents

 Triggers based on Database

contents

 Interactions between

processes

PAGE 26

MySQL server

Database

`acme`

Database

`activiti`

Activiti Engine

Process Model

A

SQL Queries

in the process model

 in project example_bpmn_model1

 processes CreateQuote.bpmn and CheckQuote.bpmn are interacting

PAGE 27

Interactions between processes

Database `acme`
INSERT

table `quotes`

CreateQuote.bpmn

CheckQuote.bpmn

triggered by SELECT

UPDATE UPDATE

Good Luck!

Dirk Fahland

2IO71 DBL Information Systems

