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Abstract

We report on a case study on control-flow analysis of business process mod-
els. We checked 735 industrial business process models from financial services,
telecommunications, and other domains. We investigated these models for
soundness (absence of deadlock and lack of synchronization) using three dif-
ferent approaches: the business process verification tool Woflan, the Petri net
model checker LoLA, and a recently developed technique based on SESE decom-
position. We evaluate the various techniques used by these approaches in terms
of their ability of accelerating the check. Our results show that industrial busi-
ness process models can be checked in a few milliseconds, which enables tight
integration of modeling with control-flow analysis. We also briefly compare the
diagnostic information delivered by the different approaches and report some
first insights from industrial applications.

1. Introduction

Various studies have shown that many business process models contain
control-flow errors such as deadlocks, see for example [1] for an overview. Such
errors obstruct the correct simulation, code generation, and execution of these
models. Therefore, detecting and removing control-flow errors becomes cru-
cial in view of the increasing popularity of these use cases. Preventing errors
by using a restricted, for example a purely block-oriented modeling language
is rarely an option because a model typically needs to reflect the real causal
process structures present in an enterprise.

In this paper, we are interested in checking business process models for
the classical notion of soundness [2, 3], which entails the absence of deadlocks
and lack of synchronization, which are explained in more detail later. Our
interest in soundness is motivated by an increased need in creating business
process models not only for documentation purposes, but also for an input into
a translation and code generation process where, for instance, WS-BPEL code
is generated. Classical soundness is used for example as a precondition to map a
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process modeled in a graph-based language, such as UML Activity Diagrams or
BPMN, into WS-BPEL in a way that preserves the execution semantics and the
structure of the process, cf. [4]. This use case requires a process to be checked
in a relatively short amount of time, say 500 ms or less, because checks are to
be performed on each major modification, at least on each save operation on
the process model. Moreover, entire libraries of up to several hundred processes
have to be checked when models are exchanged between modeling tools. Short
response times make it possible to integrate control-flow analysis tightly with
modeling such that errors are found at the earliest possible time, which would
allow the user to relate an error to the latest change in the model. Furthermore,
use cases such as code generation from models also require that an analysis
produces sufficient diagnostic information to allow the user to locate and repair
the detected errors.

A variety of techniques for checking soundness exists in the literature. They
differ in their completeness, worst-case complexity, and quality of diagnostic
information returned. Most techniques can be easily combined to optimize
performance. The most flexible technique is state space exploration. It is most
likely applicable to other similar use cases, such as checking a relaxed notion
of soundness or checking more expressive languages supporting OR-joins and
other advanced synchronization constructs. However, state space exploration
suffers from the state space explosion problem, i. e., the fact that the number
of reachable states can be exponential in the size of the process model. On the
other hand, many business process models have a simple structure, for instance,
they are sequential to a large extent, hence they do not necessarily have a large
state space.

At the onset of our project, it was not clear from the literature how large
the state spaces of control-flow models of realistic business processes are and
hence which additional techniques are needed to check their soundness as fast
as required by our use case. It was open whether such a check can be performed
in the required time and in such a way that sufficient diagnostic information is
obtained. In addition, given the variety of available approaches, it was unclear
which would be the most suitable techniques.

In this case study, we investigated three approaches implemented in three
different tools as outlined in Fig. 1:

1. The Petri net model checker LoLA [5], from which we used CTL model
checking with partial order reduction.

2. The business process verification tool Woflan [3], which uses a mixture of
Petri net analysis techniques, most notably structural Petri net reduction
and S-coverability analysis, as well as a form of state space exploration
based on coverability trees.

3. The process validation technique used in IBM WebSphere Business Mod-
eler, which combines SESE decomposition [6] with heuristics and state
space exploration.

The data set for our case study was a large collection of process libraries available
in the IBM WebSphere Business Modeler tool. The first two approaches required

2



SESE
decomposition

liveness check
(reduced state space)

safeness check
(reduced state space)

soundness check
(plain state space)

matches
structural heuristics?

translation

translation

Petri net

SESE fragments analysis result

✔ /

analysis result

workflow graph

A

B

C

choice depends on SESE fragment

always perform both checks 

sound counterexample

✗
✗

✔ /
sound counterexample

✗

extension to 
workflow net

structural 
reduction

reduced workflow networkflow net

trivial workflow net?

soundness check
(structure and
state space)

analysis result

✔ /
sound structural information

analysis result

✔
sound

choice depends on net structure

for each SESE fragment

LoLA

Woflan

IBM WebSphere Business Modeler / SESE approach

Compiler

business process
model

✗

Figure 1: Three different approaches and tools to check soundness.

a translation of these models into Petri nets, whereas for the third approach,
the models were translated into workflow graphs.

We obtained the following results: Based on the 735 process models that we
analyzed, soundness of industrial business process models can be decided in a few
milliseconds per process. Although many processes are simple enough that state
space exploration alone would be sufficient to decide soundness, this method is
not sufficient in general. However, all three approaches perform similarly fast,
meeting the above-mentioned performance requirements. This implies that one
can focus on different requirements such as the quality of the returned diagnostic
information when deciding for a soundness-checking technique. Our study also
shows that there is a high percentage of unsound models, confirming the need
for better tool support for execution-aware modeling.

Previous studies [7, 8, 3] on checking soundness or the similar notion of EPC
soundness of realistic business process models concentrate on error findings
and error prediction. These studies do not report runtimes for the analysis.
Mendling [9] reports an average analysis time of 1.8 secs and maximal time
of 142 secs for checking the EPC soundness of 604 processes. His technique
of using structural reduction rules that operate directly on the process model
does not find all violations of soundness. A postprocessing with state space
exploration is not included in these runtimes. The same set of processes was also
checked for relaxed soundness [10] with a reported runtime of 46 secs per process
on average [9, 1]; however, no maximal times are reported. Recent work [11]
extends control-flow analysis to more advanced synchronization constructs such
as OR-joins and cancellation regions, but so far no empirical results have been
reported. A preliminary and incomplete version of the SESE decomposition
technique that used heuristics only, but did not include state space exploration,
was partially evaluated on a different set of data [6].
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This paper extends a previously published conference contribution [12]. It
is organized as follows: In Sect. 2, we discuss the data used in this study, their
translation into workflow graphs and Petri nets, and the notion of soundness.
Sections 3, 4, and 5 present the three approaches together with the results
they achieved on the data. In Sect. 6, we report first insights from applying
our techniques in industrial settings. In Sect. 7, we review the results in a
comparison of the three approaches and draw conclusions.

2. Selecting the Empirical Data and Preparing the Case Study

2.1. Sampling the process data

We scanned a large set of real-world data available to the IBM team for
our practical validation of the soundness-checking approaches and tools. These
data mostly resulted from modeling activities in customer projects within an
SOA context where processes were captured with the final goal of implementing
them in a Service-Oriented Architecture. The models covered various industry
domains such as financial services, automotive, telecommunications, construc-
tion, supply chain, health care, and customer relationship management. We
also looked at large collections of reference processes that were created using
different modeling styles, i. e., different ways of capturing data and control-flow
at varying level of granularity. All models were available in the IBM WebSphere
Business Modeler tool represented in a language that currently combines ele-
ments from UML Activity Diagrams and the Business Process Modeling Nota-
tion (BPMN), but some of them had originally been created in other tools first
and then imported into the IBM product.

It turned out that only some of the model collections were useful for our
purposes. Many process models are in fact quite small, as good modeling prac-
tice suggests an appropriate structuring of processes into subprocesses, and are
therefore not a challenge for our soundness-checking approaches. Others, in
particular those created in other tools, might not have been created with the
appropriate notion of soundness in mind or might have been created by novice
users and consequently turned out to be syntactically incomplete and therefore
flawed in such a way that it made no sense to consider them further. In the
course of our experimental studies, we therefore reduced our initial test set of
approximately 3000 models to 5 libraries of 735 different models in total. We
completely anonymized the data in these models; for instance, task names would
be replaced by enumerations t1, t2, . . ., and named these libraries A, B1, B2, B3,
and C. These anonymized libraries, which have been stripped off all semantics
and represent only purely structural information, were the input for the tools
LoLA, Woflan, and the SESE approach. Libraries B1, B2, and B3 partially
overlap—hence their similar names—as they represent a series of models from
the same domain created over a period of two years, in which a library changed
to the next by adding more process models and refining all models. The number
of 735 different processes therefore counts only the latest library in this series,
which is B3 with 421 processes, together with the 282 processes from library A
and 32 processes from library C.
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Table 1: Static data of the process libraries in the case study.

A B1 B2 B3 C

Avg. / max. number of nodes 14 / 46 17 / 69 16 / 67 18 / 83 27 / 118
Avg. / max. number of edges 33 / 127 29 / 147 31 / 202 33 / 195 33 / 145

Avg. / max. node inflow 2.52 / 13 1.76 / 15 1.90 / 69 1.86 / 27 1.84 / 4
Avg. / max. node outflow 1.03 / 8 0.94 / 13 0.99 / 15 1.05 / 30 1.83 / 4

Table 1 characterizes the data from our process libraries in terms of the
number of nodes that represent tasks, subprocesses, gateways, start and end
events, and the number of edges that represent control- and data-flow connec-
tions between nodes. The inflow and outflow numbers capture the branching
degree that occurs in the models. For libraries B1 and B2 the average out-
flow is smaller than 1, because many end events occurring in these models have
outflow 0.

We show an average-sized example from library C in Fig. 2 to illustrate a
typical process model in our collection. We split the flow into two parts: the
end of the left flow continues at the beginning of the right flow. This pro-
cess model contains 21 tasks representing elementary, not further distinguished
process steps, 16 gateways to encode XOR-splits and -joins, and 51 edges repre-
senting data- and control-flow connections. A task can have multiple incoming
and outgoing edges that encode implicit AND-splits and -joins of the control
and data flows. The example model also contains several cycles: There is a
large cycle that spans almost the entire process and there are three smaller cy-
cles within this large cycle — two of them are nested within each other, whereas
the third occurs at the end of the process.

2.2. Translation into workflow graphs and Petri nets

Data-flow constructs in the language of the current version of IBM Web-
Sphere Business Modeler are similar to UML activity diagrams. Here, we only
consider explicit data-flow connections and no repositories, because each such
connection implies a control-flow connection. Control-flow constructs are visu-
alized in BPMN.

The translation of the process models into the format required by the sound-
ness checkers focuses on the following modeling elements: start and end events,
tasks, subprocesses, control-flow, input and output sets of tasks (explained sub-
sequently), and gateways. Data-flow is ignored during the translation, which
means that each explicit data-flow connection is replaced by a control-flow con-
nection. Data-flow connections from and to repositories were not considered
at all. The current language supported by IBM WebSphere Business Modeler
contains XOR- and AND-gateways as well as an OR-split, but no OR-join. The
translation is well-known and therefore not repeated here; details are provided
elsewhere [13].

A task can have multiple incoming and outgoing edges (inputs and outputs)
that can be grouped into sets. Input and output sets of tasks are translated
into gateway logic as illustrated in Fig. 3. In this figure, task A has inputs a, b
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Figure 2: Example of an average-sized process model (left) and its translation into a Petri net
(right).
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grouped into one set and inputs c, d, e grouped into another set with the meaning
that A can execute if it either receives a and b as input or c, d, and e. The
alternative output sets of task A are f, g, h and i, j, k. Furthermore, a modeler
can specify which input set activates which output set, but this information was
not provided in any of the models in our data. For the translation, we therefore
assumed that each input set can potentially activate each output set.

The presence of an input or output is expressed by placing a token on an
edge between two nodes. Tokens move through the process as a task or gateway
executes, taking the process from one state to another state in the usual way. In
the middle of Fig. 3, we see the translation of task A into a workflow graph [2, 6],
which is a control-flow graph containing only gateways and tasks. To the right,
we see the resulting Petri net. Figure 2 illustrates the translation for an entire
process: the process model to the left translates into the Petri net to the right.
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Figure 3: Translation of a task with disjoint input and output sets (left) into the corresponding
workflow graph (center) and Petri net patterns (right).

In general, input and output sets can overlap which would lead to non-free-
choice Petri nets [14] as a result of the translation [13]. However, none of the
syntactically valid process models from our test set used overlapping inputs or
output sets. Therefore, the translation will only return free-choice nets in our
case study. This makes it possible to benefit from fast analysis techniques for
free-choice Petri nets, which are applied by Woflan as explained in Sect. 4, and
for workflow graphs as explained in Sect. 5.

Process models with multiple sinks. Each process model has one or more start
events and one or more end events. Process execution begins by placing one
token on each edge leaving a start event. The process terminates when only
edges that enter an end event carry a token. The translation into Petri nets
generates an initially marked source place for each start event and a sink place
for each end event.

Some Petri net-based soundness analysis techniques such as Woflan (pre-
sented in Sect. 4) pose syntactic restrictions on the Petri nets that can be
analyzed: a workflow net is a Petri net with a unique start place, a unique sink
place, and each transition of the net lies on a path from source to sink place [15].

Only a few process models from our libraries have a unique end event, hence
only a few of the resulting Petri nets would have a single sink place and thus
would be workflow nets. However, a net N with multiple sinks can be extended
to a workflow net N ′ using the algorithm of Kiepuszewski et al. [16, Proof of
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Figure 4: A net with multiple sinks (top) and its extension to a workflow net with a unique
sink (bottom) by the algorithm of Fig. 5.

Theorem 5.1]. This algorithm adds new edges to N , which cause every sink
place of N to be marked in every execution. All sink places of N are then
synchronized by a final transition, which produces a token on a fresh unique
sink place. Figure 4 depicts an example.

The algorithmic definition of the extension was given implicitly originally.
We provide an explicit pseudocode algorithm in Figure 5. Figure 4 illustrates
the algorithm for the sink place p8. The set backwards(p8) comprises the places
p1 to p4, p6 and p8 and the transitions t1, t3 to t6 and t8 and is highlighted
in light gray. Transitions t2 and t9 (highlighted dark gray) consume from a
place in backwards(p8) but p8 cannot be reached from t2 or t9. In other words,
an occurrence of t2 or t9 interrupts a token on its way to p8. The new edges
(t2, p8) and (t9, p8) ensure that the token still reaches p8. The same is done
correspondingly for all other sink places of the net. Thus, t∗ is eventually
enabled which leads to a single token on the unique sink place p∗.

Kiepuszewski et al. [16] show that soundness is preserved by the extension
assuming that the original net N is a free-choice Petri net. As we discussed in
Sect. 2, all processes in our data have the free-choice property. It is also not
difficult to prove that the extension also preserves unsoundness. Extending N
only requires a depth-first search in N for each of its sink places.

Tool support. Two different translations into workflow graphs and Petri nets
were implemented independently, although the free-choice Petri nets could also
be directly obtained from the workflow graphs by a well-known construction [2].

The tool that translates the original process models to Petri nets also im-
plements the algorithm for extending a Petri net with multiple sink places to a
Petri net with a unique sink place [16] as well as structural Petri net reduction
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input: A free-choice Petri net N = (P, T, F ) with places P , transitions T ,
and flow edges F .

output: A Petri net with a unique sink place.
begin

for each sink place p of N do
let backwards(p) be the set of all nodes having a path to p

along the edges F of N
for each place q ∈ backwards(p) do

for each transition t having an edge (q, t) ∈ F do
if t 6∈ backwards(p) then

add edge (t, p) to F
add a fresh transition t∗ to N
add edge (p, t∗) to N , for each sink place p of N
add a fresh place p∗ to N
add edge (t∗, p∗) to N

end

Figure 5: Algorithm for creating a unique sink place for a free-choice Petri net.

rules [17], which have been applied in the course of our case study. In addi-
tion, the translation to Petri nets can be configured regarding properties of the
input (e. g., consider only processes with disjoint input and output sets), the
applied translation (e. g., regarding the termination semantics of a process and
the intended correctness criterion), and the output into various Petri net file
formats.

The translation tool to Petri nets as well as the process models used in this
case study are available at http://www.service-technology.org/soundness
in their original format of IBM WebSphere Business Modeler and as Petri nets
in different formats including PNML [18].

2.3. Soundness

Soundness was initially defined for workflow nets [15]. Its main condition is
that a safe termination state always remains reachable during the execution of
the workflow. A state is said to be a termination state of a Petri net if each
token is on a sink place. A termination state is safe if no sink place contains
more than one token. Furthermore, a transition of a Petri net is said to be dead
if there is no reachable state that enables it. A Petri net is sound if (1) for each
reachable state s, there exists a safe termination state that is reachable from s
and (2) no transition is dead.

The same definition can be applied to workflow graphs. However in work-
flow graphs and, equivalently, free-choice Petri nets, the situation simplifies and
soundness can be characterized in terms of two types of local errors, viz. local
deadlock and lack of synchronization. Figure 6 shows a workflow graph without
any tasks, which is taken from the middle part of the process in Fig. 2 and to
which we added a start and an end event. This process model contains a lack of
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Figure 6: A workflow graph with deadlock and lack of synchronization errors.

synchronization error as well as a local deadlock, which are not so easy to spot
in the first place.

A local deadlock is a reachable state s of the process that has a token on an
incoming edge e of an AND-join such that each state that is in turn reachable
from s also contains a token on e, i. e., the token is ‘stuck’ on e. A local deadlock
arises for example, if two alternative paths are merged by an AND-join or if an
AND-join occurs as an entry to a cycle. In the example in Fig. 6, a deadlock
occurs when a token travels the yes edge leaving the XOR-split D1. Eventually,
this token will reach the AND-join J via the upper incoming edge. However, no
other token will ever arrive at the lower incoming edge of J .

A reachable state s contains a lack of synchronization if there is an edge that
has more than one token in s. If such an edge contained a task, this task would
be executed twice. A lack of synchronization arises for example, if two parallel
paths are merged by an XOR-join or if the exit of a cycle is an AND-split. In
the example in Fig. 6, a lack of synchronization occurs when a token travels the
no edge leaving the XOR-split D1. This token will activate the AND-split F ,
which leads to a token reaching the XOR-join M2 and another token traveling
the cycle D2,M1, D1, F . This can result in multiple tokens on the edge from
F to M2. A lack of synchronization in a Petri net is usually called an unsafe
state.

For our different approaches in the paper to check soundness, we will exploit
several equivalent characterizations of soundness. If G is a workflow graph or a
free-choice Petri net, then the following statements are equivalent:

• G is sound.

• G has neither a local deadlock nor a lack of synchronization.

• For each reachable state s of G, there is a safe termination state that is
reachable from s.

• For each reachable state s of G, there is a termination state that is reach-
able from s and G has no lack of synchronization.

• G has no lack of synchronization and no global deadlock, where a global
deadlock is a reachable state s that is no termination state such that there
is no state s′ 6= s that is reachable from s.

Further formalization of these statements can be found elsewhere [2, 3, 16, 6].
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Soundness in the process data. Table 2 summarizes the results of our analysis
for the Petri nets describing the control-flow of the processes in our libraries.
On average, only 46% of all process models are sound ranging from 37% for
library B1 to 53% for library A. Row 4 shows the number of processes with more
than one million reachable states, which include error states, and processes that
have infinitely many reachable states such as the process shown in Fig. 6. To
exclude those, we measured the size of the state space of each sound process,
which is always finite, which still returned a few processes with more than one
million states. The average values, however, suggest that such processes are
rare.

Table 2: Dynamic data of the process libraries in the case study.

A B1 B2 B3 C

Processes in library 282 288 363 421 32
sound 152 107 161 207 15
unsound 130 181 202 214 17

Processes with >1000000 states 26 19 29 38 7
Processes with >1000000 states (only sound) 0 1 4 4 0

Avg. number of states (only sound, <1000000 states) 26 71 322 4911 680
Max. number of states (only sound, <1000000 states) 213 2363 28641 588507 8370

Figure 7: Number of states visited until first error.

Next, we measured the hardness of instantaneous verification in our data.
For each process, we explored the states of the corresponding workflow graph
until discovering a control-flow error or, when no error exists, until all states have
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been visited. If we visited more than 100000 states, we stopped the exploration
and classified the process as intractable. Reaching this threshold correlates
with a runtime of at least a few seconds which is not acceptable in the use
case of instantenous verification as described in Sect. 1. Thus, the number
of visited states roughly corresponds to the ‘effort’ needed to check soundness
using plain state space exploration. Figure 7 depicts the number of visited states
for the processes in libraries A, B3, and C with respect to the maximum level
of concurrency. The maximum level of concurrency is given by the maximum
number of tokens that occur in a single reachable non-error state of the workflow
graph. This number indicates to which extent plain state space exploration faces
the state space explosion problem in the respective process. We used the last
characterization of soundness from the enumeration above for this measurement.

Altogether, we observed that most of the processes have a relatively small
state space: less than 9% of the processes have more than 100 states, less than
3% have more than 1000 states. Only a small portion of the state space needs
to be visited in order to find the error for unsound processes. The number of
visited states for sound models correlates with the level of concurrency. Using
plain state space exploration, we could not analyze sound processes with a level
of concurrency above 15: a sound process having 15 concurrent task sequences
of length 2 already has a state space of at least 315 = 14, 348, 907 states. In the
following sections, we will discuss techniques which allow us to analyze processes
beyond this bound.

3. State Space Verification with LoLA

LoLA [5] is a tool that decides numerous properties of a given Petri net
by an inspection of the state space. To make state space inspection feasible,
it offers several state space reduction techniques. The subsequently described
experiments were carried out with version 1.11 of LoLA [19].

Soundness as a model-checking problem. Process models are translated into
Petri nets prior to the verification as sketched in Sect. 2.2. To verify soundness,
LoLA works in two runs on the resulting Petri nets. In the first run, it checks
for local deadlocks. In the second run, it checks for lack of synchronization.
This order is motivated by the observation that it is cheaper in terms of run
time and memory consumption to qualify a model as unsound due to a local
deadlock rather than due to a lack of synchronization. Subsequently, we explain
the reasons for this behavior in more detail.

A process has no local deadlock if and only if a termination state is reach-
able from every reachable state. The latter can be easily expressed as a state
predicate in LoLA, which we call termination. To check this predicate, LoLA
has several options.

The first option is to express this predicate as a formula AG EF termination
in the temporal logic CTL [20] and to use LoLA’s CTL model checker. Infor-
mally, AG represents “in every reachable state. . . ” whereas EF means “. . . there
exists an execution where eventually. . . ”. In LoLA, a CTL formula is verified
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by a nested depth-first search for counterexample or witness paths. For the
formula above, LoLA searches for a counterexample path that leads from the
initial state to a state from which no termination state is reachable. The process
has no local deadlock if LoLA cannot find such a path. LoLA is able to verify
the property on a reduced state space, which means that it computes only a
subset of the reachable states in such a way that the reduced system satisfies
the given formula if and only if the original system does. The applied technique
is known as partial order reduction.

Partial order reduction occurs in several different, independently evolved
flavors such as the stubborn set method [21], the persistence set method [22], or
the ample set method [23]. LoLA uses variations of the stubborn set method
which performs best on Petri net models. Partial order reduction has originally
been developed for the temporal logic LTL. Unfortunately, AG EF type formulae
cannot be expressed in LTL and therefore, CTL is used in this case. A partial
order reduction for CTL is significantly less powerful than the one known for
LTL [24]. If a CTL formula uses no other operators than AG and EF, LoLA
additionally exploits the improvements reported in [25, 26]. In any case, LoLA
verifies properties on-the-fly while the state space is being generated.

The second option to check termination is a special algorithm for AG EF
type temporal logic properties. This algorithm is based on the observation that
a property AG EF ϕ can be rewritten as “In every terminal strongly connected
component of the state space, there exists a state satisfying ϕ”. Consequently,
LoLA first computes a subset of the state space that, by construction, contains
elements of every terminal strongly connected component, but not necessarily all
elements of the components. Then, it picks one state from each such component
and verifies reachability of a ϕ-state. The advantage of this procedure is that
variations of partial order reductions [27, 28] can be used that yield significantly
better reduction than the generic CTL preserving methods mentioned above.
As soon as LoLA detects a violation, it stops and returns the violating state.
Once an error state has been found, a reachability check is used to produce a
trace to this error state.

Lack of synchronization, i. e., unsafeness of states, can be expressed in LoLA
as the state predicate

∨
p∈P m(p) > 1, where P is the set of places of the Petri

net. As this set can become very large, e. g., on our test data, a maximum of
275 places occurred, we simplified this predicate to optimize performance. We
can assert by construction for several places in the Petri net that they cannot
obtain more than one token unless a preceding place is also able to do so. In
essence, only places that represent an XOR-join or an exit of a cycle need to be
considered. The resulting state predicate is checked for reachability by LoLA.
If the predicate is satisfied, a lack of synchronization is identified and LoLA
produces a trace to the error state.

Although LoLA’s partial order reduction specifically addresses reachabil-
ity queries, the given formula typically yields only a marginal reduction. The
method described in [28] requires that certain transitions need to be fired in
every state of the reduced state space. For a state predicate m(p) > 1 this is
just the set of those transitions that put tokens onto p, but for formulae of the
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Table 3: Impact of order of soundness checks using LoLA.

A B1 B2 B3 C

Processes 282 288 363 421 33
Complete number of checks 564 576 726 842 66

Actual required checks (first check for lack of synchronization) 529 476 606 711 58
Actual required checks (first check for deadlock) 434 395 524 625 49

shape ϕ ∨ ψ it is the union of sets that are sufficient for ϕ and ψ, respectively.
For deeper insights, we refer the reader to [28]. As the unsafeness predicate
involves many places of the Petri net, there is not much room for partial order
reduction. This explains why we first check for local deadlocks and only then
for lack of synchronization. This order, however, has the twist that some of the
nets that exhibit lack of synchronization actually have infinitely many reachable
states. In this case, our local deadlock algorithm may not terminate. Fortu-
nately, LoLA has a switch that causes any state space generation to be stopped
if an unsafe state is generated during the first run to find local deadlocks. A
state is unsafe if a single place contains more than one token, which indicates a
lack of synchronization in the original process model. This simultaneous check
for lack of synchronization in the first run prevents that LoLA tries to generate
an infinite state space and also optimizes performance for finite state spaces. If
an unsafe state is found, a trace to this state is returned immediately.

The partial order reduction for the first run only preserves deadlocks, but not
lack of synchronization. Therefore, some lack of synchronization errors might
remain undetected. Thus, if no error has been detected during the first run,
LoLA is invoked a second time on each net, this time explicitly checking for
lack of synchronization.

Table 3 summarizes the impact of the order of the checks on the required
number of checks for the process libraries. For each process, two checks are re-
quired in principle. When we check for lack of synchronization first, we already
detect some unsound processes and could skip the subsequent check for dead-
locks. When we change the order of the checks, we actually detect all unsound
processes during the first check. The subsequent check only made sure that the
sound processes indeed did not contain any lack of synchronization.

For the example depicted in Fig. 2, LoLA detects a lack of synchronization
in the first run, concludes that the net is unsound, and returns an error trace
consisting of 36 states.

Experimental setup. After translating the process models into Petri nets with
our compiler [13, 29], we performed the two checks explained above. We ran
the experiments on a notebook with a 2.16 GHz processor and 2 GB RAM. We
set a bound of one million states for each net and classified a net as intractable
if this bound was reached.

Experimental results. The Petri nets that we obtained have about 5.5 times
more nodes and edges when compared to the original models, see Table 1. This
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Table 4: Analysis statistics for LoLA.

A B1 B2 B3 C

Intractable processes (no partial order reduction) 0 2 5 4 0

using partial order reduction
Avg. number of explored states 50.42 40.60 37.52 60.76 127.28
Max. number of explored states 187 1591 1591 6467 1469

Avg. length of error trace 30.24 10.81 12.12 11.21 53.17
Max. length of error trace 67 110 75 103 120

Analysis time for library [ms] 2680 2356 3184 3878 305
Analysis time for library (struct. reduced) [ms] 2523 2192 3025 3575 275

is caused by the more fine-grained representation of the process logic in Petri
nets as illustrated by Fig. 3 where 1 task node translates to 18 Petri net nodes.
The largest net with 558 nodes and 607 edges results from a process model in
library C.

Without partial order reduction, not all nets could be analyzed, see row 1
of Table 4. When partial order reduction is used, no intractable process is
left. In fact, the largest explored state space consists of only 6467 states. On
average, only around 100 states need to be explored. The overhead of applying
partial order reduction is more than compensated by its effect to only generate a
small fraction of the states. For those processes that could be analyzed without
partial order reduction, analysis times are up to 10 times longer. During the
experiments, LoLA never consumed more than 2 MB of memory, which enables
an unobtrusive verification process, which was an open question before running
the experiments. Table 4 summarizes the results.

In a variant of the experiments, we also applied structural Petri net reduction
rules [17] to each Petri net before checking it with LoLA. These rules reduce
the size of the net, while preserving soundness. The last row of Table 4 shows
that structural net reduction has almost no effect on the runtime. Note that
the numbers do not contain the time spent on structural reduction.

The longest error trace contains 120 Petri net states. When mapped to the
original process model, this trace corresponds to a sequence of 40 tasks.

4. Soundness Verification with Woflan

Woflan [3] is a tool for verifying the soundness of business processes modeled
as Petri nets. It poses syntactic restrictions on the Petri nets it can analyze,
requiring that the net is a workflow net [15]. Section 2.2 presented an algorithm
for extending any process model from our libraries to a workflow net while
preserving soundness. In our experiments, we checked soundness with Woflan
on these extended models.

The tool Woflan. Woflan implements a complex algorithm [3] to check sound-
ness. It uses various techniques from Petri net structure theory as well as state
space exploration. If the workflow net is a free-choice net, which is the case in
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our experiments, Woflan’s algorithm reduces to the following procedure (recall
also Fig. 1):

(1) First, soundness-preserving structural reduction rules from Petri net the-
ory [17] reduce the size of the input. If the resulting net is trivial, i. e., it has
only one transition, Woflan immediately concludes that it is sound. (2) Oth-
erwise, Woflan checks the S-coverability of the net [3] to exploit the following
properties: (2a) A free-choice Petri net that is not S-coverable is unsound, and
Woflan quits; the unsoundness can be caused by a deadlock or a lack of synchro-
nization. (2b) A Petri net that is S-coverable has no lack of synchronization,
but may contain a local deadlock [3]. (3) If step (2b) applies, Woflan searches
for local deadlocks — in Petri net terms a dead or a non-live transition — by
state space exploration, which amounts to constructing the net’s coverability
graph. The techniques underlying steps (2) and (3) have exponential worst-case
complexity in the size of the net.

Woflan provides two kinds of diagnostic information in this setting: If step
(2a) applies, it returns a list of places that are not S-coverable which contribute
to a deadlock or a lack of synchronization. If Woflan detects a deadlock in step
(3), it returns a list of dead and non-live transitions that create this deadlock.

Experimental setup. We verified the workflow nets resulting from the translation
with a command-line version of Woflan in a batch on a notebook with a 1.66 GHz
processor and 2 GB RAM. We ran the experiments twice, the first time without
applying structural reduction, the second time with. Aiming at instantaneous
verification, we interrupted Woflan if the verification time exceeded 5000 ms. In
these cases, we classified the process as intractable for the analysis.

Experimental results. Table 5 summarizes the results of our Woflan experi-
ments. Our first analysis on the unreduced workflow nets was intractable for
46% of library A and for 19%–28% of libraries B1 to B3. The size of these nets
corresponds to the numbers presented for LoLA in Sect. 3. Surprisingly, the
analysis became intractable mostly when Woflan checked S-coverability — the
technique’s exponential worst-case complexity explains this observation. If S-
coverability completed successfully, proving absence of deadlocks by state space
exploration was tractable in all, but 11 cases. Library C was analyzed com-
pletely and fairly quickly, see Table 5, row 4. The structure of its models seems
to be more suitable for Woflan. We observed that without capping analysis after
5000 ms, Woflan’s analysis frequently required between 15 minutes and more
than 1 hour per process.

In the second experiment, we allowed Woflan to apply structural Petri net
reduction rules before the analysis, which on average reduced nets in size by a
factor 5. The largest net, which resulted from a process in library B3, has 74
nodes and 232 edges. About a third of all models were reduced to the trivial
workflow net, see Table 5, row 5. Thus, structural reduction alone identified
53% (libraries A and C) to 80% (libraries B) of all sound processes. Woflan
classified about two thirds of the remaining nets as unsound by proving that a
net is not S-coverable and free-choice. These nets constitute almost 100% of all
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Table 5: Analysis statistics for Woflan.

A B1 B2 B3 C

1) Without structural reduction
Intractable processes 129 54 77 119 0

due to S-coverability 129 53 74 112 0
due to state space exploration 0 1 3 7 0

Analysis time [ms] 860812 288218 429343 755875 2375

2) With structural reduction - no intractable processes
Sound by structural reduction 81 79 134 162 8
Unsound by S-coverability 130 176 197 210 11

explored state spaces 71 32 32 49 8
Max. number of explored states 8 7 8 8 12

Analysis time per library [ms] 1120 1305 1795 2315 165
per process [ms], avg. / max. 3.97 / 20 4.55 / 40 4.94 / 91 5.50 / 1142 6.11 / 90

unsound models. For example as Table 2 shows, library B3 has 213 unsound
processes, out of which 210 are not S-coverable. Only for the remaining nets —
between 9% (library B2) and 25% (libraries A and C) of the processes — a state
space of at most 12 states was explored to complete the analysis. Woflan checks
soundness of a process in about 4 to 6 ms on average, with a maximum runtime
of less than 91 ms. The one exception in library B3 ran into the exponential
worst-case complexity of the S-coverability check, see Table 5, row 10.

Diagnostic information. Interpreting Woflan’s diagnostic information on the
original process model is not trivial. Woflan succeeds in an efficient analysis
by structurally reducing the original process model. If the S-coverability check
determines that the reduced net is unsound, then the readily available diagnos-
tic information is the set of places that are not S-coverable. This set of places
can be mapped back to the original process model by identifying for each place
of the reduced model the corresponding places of the original model. Unfor-
tunately, expanding the diagnostic information to the original model may hide
the concrete source or location of the error. For instance, in the workflow net
that corresponds to the model of Fig. 6, Woflan reports all places to be not
S-coverable.

Woflan may compute additional diagnostic information upon user request.
A counterexample trace can be easily obtained when Woflan checks for dead
or non-live transitions by state space exploration in step (3) of the algorithm.
If Woflan determines unsoundness by a failed S-coverability check in step (2a),
then a counterexample trace has to be constructed explicitly in a separate run
of the tool [3].

To estimate the additional effort for computing diagnostic information, es-
pecially counterexample traces in case of non S-coverable processes, we ran the
experiments again and enforced the construction of a counterexample trace by
Woflan. We always applied structural reduction rules prior to the analysis. The
obtained picture is quite diverse, see Table 6.

For libraries A and C, generating additional diagnostic information suc-
ceeded with practically no additional effort. For library B1, the additional effort
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Table 6: Generating diagnostic information by Woflan.

A B1 B2 B3 C

1) Standard analysis - structural reduction applied, per process
analysis time [ms] avg. / max. 3.4 / 16 3.6 / 31 3.9 / 31 4.3 / 110 6.8 / 47
explored states avg. / max. 1.2 / 8 0.7 / 7 0.7 / 8 0.8 / 8 2 / 12

2) Analysis and additional diagnostic information - structural reduction applied, per process
intractable 0 0 2 5 0
tractable

analysis time [ms] avg. / max. 3.4 / 16 5.1 / 250 5.5 / 250 20 / 4672 6.8 / 62
explored states avg. / max. 5 / 26 34 / 1927 38 / 1927 96 / 16404 16 / 128

was moderate, whereas for libraries B2 and B3 the generation required signifi-
cant additional effort for some processes compared to the standard analysis. In
more detail, generating a counterexample trace turned out to be practically in-
feasible for 2 processes of B2 and 5 processes of B3, i. e., requiring substantially
more than 5000 ms to complete. Among all tractable processes, libraries B1 and
B2 exhibit a similar complexity with respect to diagnostic information. Analysis
time increases slightly to at most 250 ms per process which is still very fast. In
these cases, about 34–38 states were explored on average and 1927 states in the
worst case compared to 8 states in the standard analysis. For library B3, analy-
sis time grows close to 5000 ms in the worst case, but is still at moderate 20 ms
per process in the average case. Here, about 96 states were explored on average
with a maximum of 16404 states compared to 8 states in the standard analysis.
The shortest counterexample traces in the reduced models ranged from 2 to 8
steps. Woflan computes by default all counterexample traces. The largest trace
in a structurally reduced net consisted of 30 steps (library B3).

We conclude that Woflan’s soundness analysis largely benefits from sophis-
ticated structural analysis techniques. In the standard analysis, S-coverability
checking alone does not sufficiently speed up the analysis for instantaneous veri-
fication of free-choice Petri nets. However, this technique becomes very powerful
in combination with Petri net reduction rules. For up to 91% of our examples,
soundness or unsoundness was proven alone by these two techniques. Only in
the remaining cases, a fairly simple state space exploration was required.

In a concrete application, a user may choose to quickly check for soundness
of a process model. If the model is unsound, Woflan may generate detailed
diagnostic information upon request. Woflan efficiently generates further struc-
tural information such as mismatches between AND-splits and XOR-joins. In
those cases, where meaningful diagnostic information comes only by behavioral
analysis like counterexample traces, Woflan has to construct a state space of
the model [3]. Because Woflan does not implement partial order reduction, it
then faces the state space explosion problem which it avoids in standard analy-
sis. As a result, running time for providing diagnostic information can increase
substantially.
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Figure 8: Decomposition of a workflow graph using the Refined Process Structure Tree.

5. The SESE Decomposition Approach

The SESE approach structurally decomposes a business process model into
smaller fragments, for which soundness is analyzed by heuristics and state space
exploration. If each fragment is sound, then the entire process is sound. The
analysis is done on a workflow graph, which is obtained from the original process
model as sketched in Sect. 2.2. The SESE approach combines the following three
techniques.

State space exploration. The base technique for the SESE approach is state
space exploration. Soundness of a workflow graph can be decided by check-
ing that no explored state has more than one token on a single edge (lack of
synchronization) and that each non-terminal state has a successor state (global
deadlock). If a workflow graph has no lack of synchronization, then every local
deadlock manifests itself eventually in a global deadlock in each execution. The
workflow graph’s state space is explored by depth-first search. The analysis
terminates upon the first state that violates one of these two properties and
returns a trace leading to this state. If there is no error, the entire state space
must be explored.

SESE decomposition. To mitigate the state space explosion problem, we use a
parsing technique called the Refined Process Structure Tree (RPST) [30]. The
RPST decomposes a workflow graph into a hierarchy of fragments with a single
entry and single exit (SESE) of control. A SESE fragment of a workflow graph
is a subgraph that has a single entry node and a single exit node. Figure 8
shows an example of a workflow graph that is decomposed into such fragments.
Multiple end nodes can be handled by adding a unique dummy end node as
shown in Fig. 8. Soundness is compositional with respect to SESE fragments
and therefore, each fragment can be checked in isolation [6]. To verify the
soundness of a fragment, each of its child fragments can be treated as a task
(node) of the workflow graph.

The soundness of a SESE fragment can be checked using plain state space
exploration. Because fragments are usually considerably smaller than the entire
workflow graph, the input to the state space exploration is smaller, in turn
resulting in smaller state spaces to be explored. The decomposition is done
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in linear time and the number of fragments is at most linear in the size of the
workflow graph. The time to analyze an entire workflow graph is then dominated
by the size of its largest fragment.

The diagnostic information returned is a fragment showing the error as a
trace relative to the fragment. This shows an error inside a smaller scope and
shortens the error trace. Moreover, the checker can detect multiple errors at
once, up to one per fragment. This includes ‘unreachable’ errors, such as a lack of
synchronization in a fragment. For example, fragment G in Fig. 8 contains such
a lack of synchronization. However, it cannot be reached by plain state space
exploration, because this fragment is obstructed by another deadlock earlier in
the process contained in fragment B.

Heuristics. In practice, many fragments have a simple structure that can be
recognized as sound or unsound in linear time using structural heuristics [6].
For example, if a fragment contains only XOR-gateways, it is purely sequential
and therefore sound. A fragment is unsound if it contains at least one XOR-
split, but no XOR-join. In this case, the XOR-split inside the fragment can be
highlighted as diagnostic information. We implemented 14 heuristics that can
be evaluated based on a single count of the gateway types within a fragment.
Only a fragment that does not match any of the heuristics becomes subject to
state space exploration. Such a fragment is said to be complex. Consequently,
heuristics can be expected to speed up the analysis by avoiding state space
exploration.

Experimental setup. The SESE approach is implemented as part of IBM Web-
Sphere Business Modeler, in which we also conducted the experiments.We con-
ducted three experiments to measure the impact of the SESE decomposition and
the heuristics: First, we used plain state space exploration only. Second, we de-
composed each process into its SESE fragments, and all fragments were then
analyzed by state space exploration. In the third experiment, we used decom-
position in combination with heuristics and state space exploration, i. e., state
space exploration was only applied to complex fragments.

The SESE experiments were conducted on a notebook with a 2 GHz proces-
sor and 3 GB RAM. The analysis time was computed as an average over five
runs and collected from the debugging console. It also includes the time spent
by the tool to generate the error report for the user. The overhead for loading
the process models from the hard drive into memory was measured separately
and factored out from the analysis time.

A process is intractable if more than 100000 states have to be explored. This
threshold value is based on the experience that the time needed would otherwise
exceed a value that is acceptable in the use case of instantaneous verification as
described in Sect. 1.

Experimental results. Table 7 shows the results for the three experiments de-
scribed above. For plain state space exploration, we observe that 6 out of 363
processes (considering only library B2) are intractable, which are less than 2%.
Analyzing library A, which contains no intractable process, only requires 490 ms.
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Table 7: Experimental results for the SESE decomposition approach.

A B1 B2 B3 C

1) State space exploration - reference

Explored states per process (avg.) 42.8 826.4 1879.3 1508.1 149.7
Explored states per process (max.) 241 17176 28684 28688 2517
Intractable processes 0 2 6 5 0

Analysis time [ms]
library 490 30019 197670 135178 30019
process (max.) 16 13186 76700 24624 62

2) Using the decomposition - no intractable processes

Size reduction (workflow graph / largest fragment) (avg.) 4.1 3.8 3.9 4.7 2.7

Explored states

process (avg.) 52.4 31.6 86.7 38.4 61.7
avg. reduction per process w.r.t. 1) 1.0 13.8 13.4 10.2 1.5
process (max.) 201 268 16534 311 356
fragment (max.) 53 117 16403 68 120

Analysis time [ms]
library 1587 1359 35495 2446 447
process (max.) 16 16 25286 32 32

3) Using the heuristics - no intractable processes

Explored states

process (avg.) 6.0 2.3 3.2 2.5 10.1
avg. reduction per process w.r.t. 2) 28.3 22.9 78.4 29.6 34.1
process (max.) 53 36 165 24 120
fragment (max.) 53 36 165 20 120

Analysis time [ms]
library 1247 1390 1681 2303 318
process (max.) 16 31 16 31 62

When using the decomposition into fragments, we observe that there is no
longer an intractable process. However, the time for library B2 is dominated
by the analysis of one particular process that required 25 seconds. All other
processes took less than 1 second each. SESE decomposition reduces the size
of the input to state space exploration by an average factor between 1.5 and 4.
The number of states that are explored for a particular process is the sum of the
number of states explored for each fragment of the process. Table 7 shows that
the number of states that have to be explored for a process on average reduces
by up to a factor of 13.8 with respect to experiment 1. After decomposition,
there is still a fragment that has 16403 states.

Library A shows that decomposing process models does not always pay off.
This library is analyzed faster without decomposition. The analyses of the
other libraries, however, clearly benefit from the decomposition where it reduces
the required time by a factor between 5 and 67 compared to plain state space
exploration.

In addition, we recorded the length of the error trace in both experiments.
Error traces are notably smaller when they relate only to a fragment, rather
than to the entire workflow graph. The average length of an error trace was
reduced by a factor of 4.7. Note that the error trace using the decomposition
into fragments starts at the start node of the fragment and not at the start node
of the workflow graph. The decomposition allows us to detect multiple errors
per process, at most one per fragment. For library B2, we measured an average
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of 1.55 and a maximum of 7 unsound fragments per unsound process.
The third experiment showed that the heuristics speed up the analysis fur-

ther. A process usually contains not more than one complex fragment. Note that
on average, a process contains 16 fragments. Only the largest process, which
has 122 fragments, contains two complex fragments, no process contained more.
The small number of complex fragments results in a reduction factor of up to
78.4 for the average number of states that were explored to analyze a process.
The use of the heuristics reduces the analysis time of library B2 by a factor
of 21 with respect to experiment 2. For the other libraries, the differences in
the analysis times was not significant. The maximum analysis times per process
ranged from 10 to 62 ms.

Structuredness and soundness. In addition to speeding up analysis, the heuris-
tics allowed us to obtain a deeper insight into how the process in our data set
were structured and how this structure affects the soundness of the process.

In Table 8, we present the categories of fragments obtained by the heuristics
for our libraries. For complex fragments, we also mention if they are sound
or unsound, which was determined by state space exploration. A sequence
is a fragment that does not contain any gateways. A fragment is sequential
if it contains only XOR-gateways. It is concurrent if it contains only AND-
gateways. A fragment that is sound and contains at most two gateways is called
well-structured. For unsound fragments, we regroup the result of the heuristics
into three categories: (1) An inappropriate pair is an unsound fragment that
contains only two gateways of different logic. (2) A cycle with inappropriate
logic is a fragment that contains a cycle, but no XOR-join (in which case there
must be a deadlock) or no XOR-split (in which case there must be a lack of
synchronization). (3) A fragment with an unmatched gateway has more than
two gateways and contains a split of some logic (AND or XOR), but no join of
the same logic or vice versa.

Table 8 shows that, in practice, more than 95% of the fragments are matched
by heuristics. In general, 94% of the analyzed fragments are sound. Heuristics
can match most of the sound fragments (more than 99%); 99% of the sound
fragments matched by heuristics are even well-structured. Note the dominant
number of concurrent well-structured fragments over the number of sequential
well-structured fragments. This dominance can be explained by the routed data-
flow modeling style used in libraries A and B. In this modeling style, passing a
data-item from one task to another implies a separate control-flow edge between
the two tasks. Thus, if a tasks sends two or more data-items to another, we
obtain a concurrent well-structured fragment. Processes in library C were not
designed using this modeling style.

A share of 64% of the unsound fragments are matched by heuristics. It is
surprising to observe that more than 44% of these fragments contain inappro-
priate gateway pairs. One would assume that it is easy to choose the logic
of the gateways properly when a fragment is composed of only two gateways.
However, our experiments showed the opposite. One explanation for the large
percentage of unsound fragments composed of paired gateways is the instantia-
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Table 8: Type of fragments analyzed.

A B1 B2 B3 C

Fragments matched by heuristics 5151 4763 6121 8525 299

Sound: 5148 4493 5797 8217 265

Well-structured

Sequence 1414 1641 2056 2508 164
Sequential (acyclic/cyclic) 177 / 47 218 / 6 200 / 6 314 / 9 75 / 12
Concurrent 3471 2605 3493 5337 3

Unstructured
Sequential (acyclic/cyclic) 10 / 4 2 / 7 2 / 9 2 / 10 9 / 1
Concurrent 25 14 31 37 1

Unsound: 3 270 324 308 34
Inappropriate pair (acyclic/cyclic) 0 / 0 120 / 4 140 / 4 134 / 4 13 / 0
Cycle with inappropriate logic 0 10 12 10 1
Unmatched gateway 3 136 168 160 20

Complex fragments (not matched) 175 127 140 170 6

Sound (acyclic/cyclic) 42 / 2 6 / 0 7 / 0 22 / 0 2 / 0

Unsound (acyclic/cyclic) 99 / 32 107 / 14 121 / 12 135 / 13 0 / 4

Figure 9: A complex sound acyclic workflow graph fragment.

tion semantics: unless specified otherwise, two start nodes of a process produce
a token concurrently when the process is instantiated. Users often intend to
model alternative start nodes, but fail to specify it properly in the editor. The
translation maps concurrent start nodes of a process to a single start node fol-
lowed by an AND-split in the corresponding workflow graph. We confirmed by
a manual investigation of these fragments that more than half of the unsound
fragments composed of paired gateways correspond to paths originating from
concurrent start nodes that are joined by an XOR-join later in the flow.

It seems difficult to design a process with complex fragments as 87% of
all complex fragments are unsound. 12% of the complex fragments are cyclic,
but less than 3% of them are sound. Nevertheless, we found two sound cyclic
complex fragments. Figure 9 depicts the structure of one of them.

As it seems easier to design a sound process by composing well-structured
fragments, we assume that a model structured in this way is more likely to be
sound than a less structured model. To verify this hypothesis on our data, we
define the level of structuredness of a process as the number of paired gateways
divided by the total number of gateways. Two gateways are paired if they are the
only gateways contained in a fragment. Note that a fragment with paired gate-
ways can be sound (well-structured fragment) or unsound (inappropriate pair).
We measured that the average level of structuredness of sound processes is 0.93
with a standard deviation of 0.14, whereas the average level of structuredness
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of unsound processes is 0.77 with a standard deviation of 0.18. This difference
is significant and allows us to confirm the positive influence of structuredness
on the soundness in our data.

6. Delivering Analysis on Demand to Non-Expert Users: First In-
sights

6.1. IBM WebSphere Business Process Management Suite

The soundness checker based on the SESE Decomposition approach as de-
scribed in Sect. 5 has been adopted by the IBM WebSphere Business Process
Management Suite starting from Version 6.2. It was released to customers by
the end of 2008. The soundness checker is used in the following two use cases:

• Validation of business process models created in WebSphere Business
Modeler before the translation and code generation process where WS-
BPEL code is generated.

• Validation of WS-BPEL processes upon deployment on WebSphere Pro-
cess Server.

Furthermore, in 2009 a set of accelerators [31] was released on IBM develop-
erWorks for users of WebSphere Business Modeler that add patterns, transfor-
mations, and refactorings to the business process modeling environment. The
accelerators also contain a Control-Flow Analysis that exposes the soundness
checker to the business user when creating a business process model. The
control-flow analysis can be invoked by the user either on a single business
process model or on an entire process library.

Three main challenges have to be addressed when providing a soundness
checking capability to non-expert users who are not familiar with the notions
of deadlocks and lack of synchronization and never before used a model checker
or another soundness checking tool:

• Coverage: Make sure the soundness checker can check all or at least the
majority of user created models. Users will not accept a new feature that
has low coverage.

• Immediacy: Ensure the soundness checker returns a result instantly.
Long runtimes caused by state space exploration are inacceptable and are
often interpreted as a tool error.

• Consumability: Develop a user interface that conveys the information
about detected control-flow errors in a way that is consumable by non-
experts.

Full coverage was achieved for models created in the so called technical modes
of WebSphere Business Modeler that constrain the modeling language. However,
without any constraints, WebSphere Business Modeler allows users to create
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models with overlapping input and output sets. Although this feature is only
used by a small group of users, it causes a conceptual gap for these users between
the models that they can create and the models that can be analyzed. In the
case of validation of models before export to WS-BPEL, the gap is shielded
by the syntactic validation that rejects the model because overlapping inputs
and outputs cannot be mapped to WS-BPEL and the models are rejected for
this reason. However, the accelerators also address users that only model for
documentation purposes where no syntactic restrictions are imposed on the
models. Interestingly, also these users of the accelerators care about the feedback
provided by the control-flow analysis and are disappointed when some of their
models cannot be analyzed.

As the runtime results discussed in this paper have shown, immediacy is not
an issue: Even if invoked on large collections of process models, the analysis
results are returned instantly.

Consumability constitutes the biggest challenge and has not achieved much
attention by the research community so far: How can a detected error be com-
municated such that the user understands the error, is able to locate it in the
model, and obtains a hint on how the error could be corrected?

The SESE decomposition approach can identify several errors during one
invocation, up to one error per fragment. For each error, a separate message is
created. The error messages are added to a view that lists all the errors of a
process. For the WS-BPEL export use cases, error messages from the soundness
checker are just added to all other error messages produced by the process model
validation. This can be overwhelming for some users as many errors are shown
in no specific order and no hints are given on how to correct an error.

Figure 10 shows an example message of a deadlock, which follows the follow-
ing schema. First, the fragment containing the error is identified by giving the
name of the entry node (here, “Decision”) and the exit node (here, “Join”) that
delimit the fragment. Then the type of the error is given (here, “a deadlock”)
followed by a pattern of “caused by 〈x〉” and “detected on 〈y〉” where x and y
are instantiated with gateways.

A deadlock is detected on the AND-join of which an incoming edge is marked
in the deadlock state. It may be caused by a preceeding XOR-split as in Fig-
ure 10. Finding the location of a lack of synchronization is more difficult. It
may be detected on an XOR-join that precedes the first edge carrying more
than one token and caused by a preceeding AND-split. The error information
is directly obtained from the heuristics and may remain incomplete, because
some heuristics are not able to identify the location or cause of every error. In
case a complex fragment is analyzed, which requires using state space explo-
ration, the location of a deadlock is provided, but not its cause. For a lack of
synchronization error, no information can be retrieved from a complex fragment.

An additional visualization was developed for the accelerators, which allows
a user to click on an error message in the view and then visualize the error in
the model. The visualization highlights the fragment that contains the error
and marks the “caused by” and “detected on” nodes in the graph with error
symbols as shown in Fig. 11. Users of the accelerators react very positively to
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Figure 10: Example of an error message following the “caused by - detected on” pattern.

this visualization, because they consider it as being much more informative than
just the textual entry in the error view. Note that as the example illustrates,
correct fragments contained within the erroneous fragment are not highlighted.
A desirable extension to the visualization would be a collapsing feature that
abstracts error-free fragments into a single node within the workflow graph.
This would ease the navigation for the user and increase the focus on the part
of the model that contains the error. Further research currently aims at a
uniform intuitive visualization for all deadlocks and likewise for all occurrences
of lack of synchronization.

Figure 11: Coloring of the smallest fragment containing the error.

6.2. Woflan

Verbeek et al. [3] report on two case studies that applied Woflan to analyze
soundness of industrial business process models. The case studies primarily
aimed at how Woflan supports correcting erroneous process models. Altogether,
it was shown that depending on the number of errors in a model, several anal-
ysis iterations are required to correct an erroneous model as some errors may
not be reachable or be hidden by other errors. It is pointed out that besides
detecting mismatches in the process logic, e. g., an AND-split closed by an XOR-
join, counterexample traces provide the most useful diagnostic information for
correcting an error. The two case studies in [3] also differ in how close the diag-
nostic information provided by Woflan maps to the original process definition.
In the first case study, the original process models almost directly map to Petri
nets and thus, Woflan’s diagnostic information could be mapped back making
correction of erroneous models straight forward. In the second case study, the
original process model and the analyzed Petri net did not correspond closely.
In this case, the reported effort for locating and correcting the error in the orig-
inal model was significantly higher. As in the case of IBM WebSphere Business

26



Modeler, these results confirm the importance of consumability of diagnostic
information presented to a user.

6.3. LoLA

At this time, there is no particular industrial tool that routinely uses LoLA.
However, LoLA is integrated in several platforms including the Model Check-
ing Kit [32], the modeling tools CPN-AMI [33], Petri Net Kernel [34], and
PEP [35], the workflow mining framework ProM [36], and the exploration tool
for biochemical pathways Pathway Logic Assistant [37]. Successful case stud-
ies beyond the one reported here have been conducted, for instance, on asyn-
chronous circuits [38], Web services [39], and Web service collaborations [40].
There is evidence that LoLA’s performance is stable, more or less independently
from the application domain as long as it is applied to concurrent systems: “For
reachability queries on Pathway Logic nets, answering a reachability query that
would have taken hours using a general purpose model-checking tool takes on
the order of a second in LoLA — fast enough to permit interactive use” [37].

7. Conclusion

We showed that different techniques can be used to check the soundness of
industrial business process models reliably in fractions of a second. Thereby,
this paper mainly focused on the verification speed and only briefly touched
other important topics such as understandability of the results with respect to
the correction of faulty models. To evaluate these aspect, empirical studies and
experiments with modelers are required. These experiments are out of scope of
this paper and are subject to future work.

For the state space approach using LoLA, we found that partial order reduc-
tion and on-the-fly verification are the essential factors for success. Although
many processes could have been verified on a brute force state space, some state
spaces exploded without the use of partial order reduction. The exploration of
erroneous state spaces up to the first error was efficient, but it was difficult to
handle full state spaces. Surprisingly, a prior application of structural Petri net
reduction has only a minor impact on performance. This may be caused by
the fact that many existing reduction rules address situations that partial order
reduction also resolves on the state space.

In the structural approach using Woflan, we saw that the original models can
be easily translated into the more restrictive notion of workflow nets with just
one sink node. Another observation was that the performance of Woflan can
mainly be attributed to the structural Petri net techniques. In the few cases
where Woflan had to explore a state space, this state space was rather small
because of prior application of structural reduction. Here, structural reduction
turned out to be beneficial as Woflan does not provide partial order reduction.

In the decomposition approach using SESE fragments, we learned that the
approach did not suffer from severe state space explosion as the state space
is only computed locally for a typically small fragment of the process model.
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Moreover, structural heuristics are sufficient to handle most of the fragments,
which allows one to avoid state space exploration altogether.

Although being similar in their performance, the three approaches vary with
respect to the diagnostic information they provide. The state space approach
used by LoLA is able to return an error trace of manageable size that can be
simulated or animated. The SESE approach can detect multiple errors in one
analysis run and localizes each error in a particular, typically small, fragment
of the original model. This also reduces the length of the error trace by a factor
of 4.7 on average. Moreover, the approach can provide additional information
depending on the applied heuristics. Woflan returns Petri-net specific informa-
tion that needs to be interpreted carefully before it can be shown to a business
user. The tool can also generate counterexample traces upon user request, but
it faces state space explosion because partial order reduction is not applied.

Another notable difference between the three approaches is that Woflan is
specifically built for checking soundness and the SESE approach is specifically
designed to check soundness instantaneously, whereas LoLA is a generic model
checker for Petri nets that could more easily be adapted to check other temporal
properties of business processes.

We would like to point out that there are other interesting algorithms to
check soundness, especially polynomial-time algorithms exploiting the free-choice
property [14]. We have no doubt that these algorithms would perform at least
as fast as the techniques considered here, if properly implemented. However, we
did not include those algorithms in our case study because they do not produce
suitable diagnostic information for our use case.

Finally, the three approaches in this paper could be easily combined in dif-
ferent ways. For example, one could apply SESE decomposition to break the
model into smaller fragments, then use heuristics and structural Petri net re-
duction to quickly sort out sound fragments that have a simple structure, and
then finally check the remaining fragments with state space exploration based
on partial order reduction to obtain detailed localized error information.
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