Documentation of the ProM plugin

Uma
an Unfolding-based Model Analyzer

Dirk Fahland
July 8, 2016

http://www.processmining.org/

Uma implements techniques for analyzing and simplifying process models in
ProM. The techniques build on the theory of unfoldings of process models and
McMillan prefixes to analyze the behavior of process models in a compact,
symbolic representation.

http://www.processmining.org/

Contents

I Plugin: Analyze Model] 2
(1.1 Requirements on theinput| 2
(1.2 Running the plugin| 2

2 Plugin: Simplify Mined Modell| 4
2.1 Requirements on the input| 4
[2.2 Running the plugin| 0. 5

[3 Plugin: Repair Modell 7
[3.1 Requirements on theinput] 7
(3.2 Running the plugin| 7

[4 Technical Background and References| 10

1 Plugin: Analyze Model

This plugin allows to analyze behavioral properties of Petri net models. While
it is easy to use, understanding the analysis results requires a little bit of
knowledge on Petri nets and their behavior.

The plugin is called Analyze Model Using Uma and takes as input a Petri
net.

1.1 Requirements on the input

Each transition of the Petri net must have a pre-place (i.e., an arc from a
place to the transition), and a post-place (i.e., an arc from the transition to a
place). The plugin will not run if the model does not satisfy this requirement.

1.2 Running the plugin

Select a Petri net and the plugin Analyze Model Using Uma from the plugin
list. The plugin has several options as shown in Figure [T}

construct prefix. Constructs the so called McMillan prefix of the Petri net,
a tree-like structure representing the entire behavior of the net in a compact
form (similar to a state space) while representing concurrency explicitly rather
than by interleaving. The computed prefix is returned as a result and can
be inspected as shown in Figure 2| It allows a system modeler particulary
to understand which behavior can occur according to the model, for instance
which transitions can occur.

k3 ProM UTTopia

M continue

Figure 1: Analyze Model Using Uma: Plugin options.

(e .)

ProlM 6 sty I fluxicon

Complete prefix of the unfolding of sound, acyclic Petrl) d_(€)2f(é 0feh > nll (58

Figure 2: Unfolding of a process model.

The parameter k is used to ensure termination of the plugin in case the
Petri net is unbounded. The plugin will stop when reaching a marking where
a place contains more than k tokens. Default is k = 1.

check soundness. Checks sounds of a free-choice Petri net. If the net is sound,
a corresponding result is shown. If the net is unsound, a counter-example is
returned showing the behavior that leads to a violation of soundness which is
in a free-choice net either a deadlock or an unsafe marking. Figure [3] shows
such a counter example. It currently needs expert knowledge to interpret the

counter example and identify the problem.

L& ProM UTTopia | o= |
s

p($).a @ rige) u > u irEs

Figure 3: Counter-example showing unsoundness of a process model.

2 Plugin: Simplify Mined Model

This plugin allows to structurally simplify a process obtained from a process
mining algorithm while preserving that the model can replay the entire log.
The standard situation where this plugin may prove useful is when the model
that was discovered from a given log shows complex control-flow structures
as illustrated in Figure [dl The plugin to simplify such models works on Petri
net models and requires no expert knowledge to be used.

The plugin is called Simplify Mined Model Using Uma and takes as input a
log and a Petri net that was discovered from this log.

2.1 Requirements on the input

The plugin assumes that the Petri net was discovered from the provided log
and that the Petri net can replay the entire log, i.e., that the model has fitness
1. Such models are obtained for instance using the ILP Miner or the Transition
System Miner.

In case the Petri net cannot replay the entire log, the simplified model
returned by the plugin will also cover only the behavior that could be replayed
on the Petri net. In the worst case, the returned net may be empty.

The plugin assumes that the Petri net has no arc weights or multiple arcs.
In case of arc weights or multiple arcs, the returned results are unpredictable.

L8 ProM UTTopia | e |

Figure 4: Simplify Mined Model: typical mined process model with complex
control flow structures.

2.2 Running the plugin

Select a Petri net and the log from which the Petri net was discovered and
and the plugin Simplify Mined Model Using Uma from the plugin list. The
plugin implements a series of processing steps to simplify the given model.
Each step provides a different kind of simplification. You may choose which
simplification steps are run by the plugin using the configuration panel shown

in Figure 5]

unfold and refold net Unfold the process model the unfolding (similar to an
execution tree) that represents exactly the behavior described in the log
(up to different interleaving of concurrent transitions), and then refold
the unfolded model. This step slightly simplifies the model and reduces
generalization introduced by the mining algorithm.

remove implied places Remove places from the net which do not contribute to
restrict occurrences of transitions, i.e., where the net without the place
has the same behavior as the net with the place (regarding the behavior
in the log). This step allows to significantly simplify the model. However,
simplification has to be traded for precision, that is, how much additional
behavior the net will allow for compared to the log. This trade-off can
be configured:

e off No place is removed.

e some / preserve precision Remove only places that are implied wrt.
the complete behavior of the model. The resulting model may still
be complex, but it is guaranteed to show the same runs as before.

[gg ProM UlTopia E . =

Which simplification steps shall be applied?
wnfold and refold net

removed implied places

some /pr n
collapse chains =

remove flower places

% cancel [continue

Figure 5: Simplify Mined Model: plugin options.

e more / preserve log causality Remove only places that are implied
wrt. the behavior seen in the log. The resulting model is less
complex and it still exhibits the causal relations identified from the
log.

e most / preserve connectivity Remove all places that in some context
represent an implied causal dependency, but ensure that the net
remains connected. The resulting model is significantly simpler;
however precision is lost to some degree. (default)

collapse chains Unfolding and refolding a net (first step) may introduce a chain
of transitions labeled with the same action. This step collapses such
chains into a loop, thus reducing the net'’s structure further while gen-
eralizing its behavior.

remove flower places In some cases, the mining algorithm introduces flower
places from which many transitions consume tokens and immediately
put the token back. Such places largely sequentialize the connected
transitions while making the net structure very involved. In this step,
flower places which are connected to more than 5% of the net transitions
are removed. This step may significantly simplify the net structure while
generalizing the behavior.

All simplification steps are switched on by default. Upon clicking continue,
the plugin will apply the chosen simplification steps and return the simplified

net. Figure[6] shows the result of applying all simplification steps on the model
of Figure [4]

L3 ProM UlTopia o o= S|

uuuuuuuuuu

Petri Net from MainProcess, mined with ILP Miner (sirf(EET DOG®O®E

Figure 6: Model obtained by running the Simplify Mined Model plugin on the
model of Figure .

3 Plugin: Repair Model

The Repair Model plugins allow to repair a given handmade process model
(given as a Petri net) to reflect the reality of process executions that were
observed in a log. The plugin can be applied in cases where a conformance
check between model and log reveals misconformances as shown in Fig. [7]

3.1 Requirements on the input

The Repair Model plugins require that the given model has a clear notion of
a final marking, that is, there is a particular marking that the process has to
reach. Moreover, the plugin will deliver best results if the model is always able
to reach the final marking. The Repair Model plugins will ask you to provide
a final marking for your model if it is not specified yet.

3.2 Running the plugin

Select a Petri net and the log describing executions of the process in reality
and run the plugin Repair Model from the plugin list. The plugin implements
a series of processing steps to repair the given model. Each step provides a
different kind of repair. You may choose which repair steps are run by the
plugin using the configuration panel shown in Figure [§

L& proM UlTopia

Prol\l s oy O fluxicon

Petri Net from grouped_a12fQ ! P NG r @ pd > U R

L2 ProM UlTopia

Figure 7: Repair Model: misconformances between log and model.

The main model repair steps are the following:

detect loops Find parts of the process model that, when extended with a loop-
back transition yield a structured loop that can replay traces of the log
that could not be replayed on the original model. The option model move
costs in loop detection can be set to influence how loops are discovered.
Generally, a value 0 yields best results but may have a poor performance.
A value >0 may vyield faster results but give a worse quality in the
repaired model.

detect subprocesses For all remaining events that cannot be replayed on the
original model, discover and add subprocesses that allow to replay these
events.

remove infrequent nodes Find parts of the process model that are not needed to
replay the log, and remove them. Setting keep if more frequent than to a

2 ProM UlTepia E=REE
P

detect loops

model move costs in leop detection

detect subprocesses.

remove infrequent nodes

keepif more frequent than

Repair options

align sublogs

compute global cost function

max iterations

K cancel [continue

Figure 8: Repair Model: plugin options.

value > 0 will also remove parts of the model that are used infrequently.
This way, parts of the model that describe noisy behavior can be filtered
out.

In addition, each repair step can be configured using 2 parameters:

align sublogs Decomposes and groups sequences of events that cannot be re-
played into sets of very similar sequences. This typically yields more but
smaller, and better structured, subprocesses.

compute global cost function Misconformances between log and model are com-
puted using a cost function. Enabling this option computes an improve
cost function that yields better repairs (less changes to the model), at
the price of additional computations. Max iterations defines how often
the current cost function shall be improved to, we found 1 iteration to
be sufficient in most cases.

Once the parameters are set, ProM will ask you to map transitions of the
model to event classes. Then the Repair Model plugin will run the specified
model repair steps. Figure [0 shows the model of Fig. [7] after repairs.

The individual steps of the Repair Model plugin can be controlled in a more
detailed way using the separate plugins for detecting loops, detecting subpro-
cesses, and removing infrequently used parts. Each of these plugins takes as
input model, log, and an alignment between model and log as it is returned
by the conformance checker. The repair will always be conducted with re-
spect to the alignment, and choosing a particular cost function, or a particular

L& proM UlTopia | o= S

Petrinet mined from grouped_a12f0n00.xml.zip (imp CETE IR 0 O 6 irge (> (W &8

Figure 9: Repair Model: plugin options.

conformance checker, will yield a particular alignment, and hence, a particular
kind of repair. Two plugins for computing alignments with global costs, and
for computing alignments that improve the discovery of loops are provided by
Uma as well.

4 Technical Background and References

Further information on the techniques implemented in Uma can be found in
the following books and articles.

General information about the technique of unfoldings and McMillan prefixes
of Petri nets can be found in the following book:

J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to
Model Checking. Springer-Verlag, 2008.

The technique for simplifying mined process models is described in the fol-
lowing article:

Dirk Fahland and Wil M.P. van der Aalst. Simplifying Mined Process
Models: An Approach Based on Unfoldings. In Proceedings of the 9th
International Conference on Business Process Management, BPM 2011,
volume 6896 of Lecture Notes in Computer Science, pages 362(378.
Springer-Verlag, 2011

The technique for repairing process models is described in the following
article:

Dirk Fahland and Wil M.P. van der Aalst. Repairing process models to
reflect reality. In Business Process Management 2012, volume 7481 of
Lecture Notes in Computer Science, pages 229U245. Springer, 2012.

The source code of this plugin is available from the ProM website http:
//www.processmining.org/| under the GNU Affero General Public License
Version 3 or later.

10

http://www.processmining.org/
http://www.processmining.org/

	Plugin: Analyze Model
	Requirements on the input
	Running the plugin

	Plugin: Simplify Mined Model
	Requirements on the input
	Running the plugin

	Plugin: Repair Model
	Requirements on the input
	Running the plugin

	Technical Background and References

