Electronic Notes in Theoretical Computer Science 85 No. 2 (2004
URL: http://www.elsevier.nl/locate/entcs/volume85.html pages

Specification and Verification of Agent
Interaction using Social Integrity Constraints

Marco Alberti® Marco Gavanelli? Evelina Lamma?
Paola Mello? Paolo Torroni®

& Dipartimento di Ingegneria
Universita degli Studi di Ferrara
Via Saragat, 1 - 44100 Ferrara (Italy)

> Dipartimento di Elettronica, Informatica e Sistemistica
Universita degli Studi di Bologna
Via del Rinascimento, 2 - 40126 Bologna (Italy)

Abstract

In this paper we propose a logic-based social approach to the specification and
verification of agent interaction. We firstly introduce integrity constraints about
social acts (called Social Integrity Constraints) as a formalism to express interaction
protocols and to give a social semantics to the behavior of agents, focusing on
communicative acts. Then, we discuss several possible kinds of verification of agent
interaction, and we show how social integrity constraints can be used to verify some
properties in this respect. We focus our attention on static verification of compliance
of agent specifications to interaction protocols, and on run-time verification, based
on agents’ observable behavior. We adopt as a running example the NetBill security
transaction protocol for the selling and delivery of information goods.

1 Introduction

Specification and verification are two important steps in the design and de-
ployment of computer systems. In particular, they play a key role in the de-
velopment of open systems, composed of autonomous entities that we would
like to be to some extent predictable, or at least compliant to some interaction
rules.

This is often the case in multi-agent systems. A possible approach to this
problem is to rely on a formal computational framework, that can be used
to give formal specifications to agent interaction, and to automatically check
their “correct” behaviour. In doing this, two viewpoints are possible: one,
which we could define individual, aims at designing agents so that they will
“spontaneously” comply to the specifications; the other one, which we could

(©)2004 Published by Elsevier Science B. V.

MARCO ALBERTI ET AL.

call social, aims at verifying the compliance of agents’ observable behavior, re-
gardless of their internal structure. The difference between the two approaches
becomes evident in the definition of the semantics of Agent Communication
Languages (ACLs).

Mentalistic approaches [6f7] define ACL semantics from an internal per-
spective, i.e., in terms of agents mental states. For instance, FIPA ACL [{]
assumes a BDI (Belief, Desire, Intention) model for the agents, and relies upon
it for defining the semantics of communicative acts in terms of Feasibility Pre-
conditions (i.e., the conditions that have to be satisfied for the communicative
act to be planned) and Rational Effects (i.e., the expected effect of the com-
municative act).

FIPA ACL offers a comprehensive set of communication primitives and
its semantics appears adequate to account for motivation of communicative
acts from an individual agent’s viewpoint. However, its semantics, as that
of other mentalistic ACLs, does not seem to fully meet the requirements of
agent communication in open environments where heterogeneous agents inter-
act [I6]. In particular, whenever the agents’ mental states are not accessible,
as in the case of open societies, it is impossible to verify whether agents are
acting according to the given semantics [I7].

The social approach [I7] defines the semantics of communicative acts in
terms of their public (social) effects, rather than in terms of their internal
(mental) motivations. Following this approach, compliance to a given seman-
tics can be verified based on the agents’ observable acts, even in cases where
the internal state of agents is not accessible, or does not have an architecture
described in terms of mental categories. Significant social proposals are based
on the concept of commitments [8]19], computational objects which keep track
of obligations between agents and can evolve depending on agents’ (observ-
able) communicative and non-communicative acts, and eventually be resolved
to fulfillments or violations.

In this paper, we propose a logic-based approach to the specification and
verification of agent interaction. In doing this, we adopt a social perspective,
abstracting away from the agent internals.

The contribution of this paper is twofold. In the first part of the paper,
we introduce a logic-based formalism (Social Integrity Constraints) for the
specification of the expected behavior of agents.

We make no a priori assumptions on the internal structure of individual
agents (in particular, we neither assume nor reject a BDI-like internal structure
for individual agents), rather focusing on a public viewpoint on interaction.
Our semantics is based on the concept of expectation, linked to events by social
integrity constraints.

The aim of this first part of the paper is not to propose a new ACL, as a
set of communication primitives, or a particular interaction protocol; rather,
we propose a logic-based approach to the definition of social semantics for a
given ACL, or an interaction protocol.

2

MARCO ALBERTI ET AL.

This specification is grounded on a computational logic framework, so mak-
ing it possible to provide both a declarative specification of the desired be-
havior of interaction in a multi-agent system, and its automatic verification
by means of a formal proof procedure.

In order to explain our ideas, we adopt the NetBill protocol as a running
example. NetBill is a security and transaction protocol for the sale and deliv-
ery of low-priced information goods, such as software or journal articles. We
chose NetBill because we believe that it is a good representative for the class
of protocols related to information exchange in multi-agent systems, and it
lends itself well to discussing the problems that can arise in this respect.

The study on verification of agent interaction is the subject of the second
part of this paper. We refer to a classification of the different kinds of verifica-
tion introduced by Guerin and Pitt in [I4], which distinguishes among static
verification, verification by observation, and verification of protocol proper-
ties. We focus on the first two kinds of verification. As for the first kind, we
propose a method to verify the compliance of agent specifications to a set of
protocols. As for the second kind, we sketch a prototypical implementation of
the framework by means of Constraint Handling Rules [9], and show how this
can be used to verify compliance by observation.

The paper is structured as follows. In Section] we give the necessary back-
ground by introducing the concept of social integrity constraint. In Section
we show how it can be exploited to specify the social semantics of communica-
tive acts and the agent interaction protocols. Section Hlis devoted to studying
the different kinds of verification. Discussion and directions for future work
conclude the paper.

2 Social integrity constraints

In this section, we briefly describe a model of agent society, which is a simpli-
fied version of that presented in a companion paper [IJ.

In our model, a society is composed of a social infrastructure (its oper-
ational part) and a knowledge base, containing information about structure
and properties of the society. In particular, the social knowledge base con-
tains information about protocols and regulations for entrance, exit and role
assignment. Such information is represented by in an (extended) logic pro-
gram which we call Social Organization Knowledge Base (SOKB), and by
Social Integrity Constraints (SIC) In addition, we assume that the society
records in a “history” file HAP the observable and relevant events for the so-
ciety (happened events, denoted by the functor H), including communicative
and non-communicative acts exchanged or performed within the society.

1 Tn this paper, for the sake of simplicity, we assume that SOKB is composed of ground
facts. In [I], in order to capture more structured knowledge and goal-directed societies, we
define SOKB and SIC as an abductive logic program.

3

MARCO ALBERTI ET AL.

For instance, H(tell(thomas, yves, start)) denotes a social event by which
an agent, thomas, tells another agent, yves, “start”. It is a communicative
act. H(do(thomas,yves, buy(ticket))) denotes a non-communicative act: an
action made by thomas of buying a ticket from yves.

From a logic programming viewpoint, HAP can be understood as a set of
ground facts defining a predicate indicated by the functor H.

A course of events HAP might give rise to social ezpectations about the
future behaviour of its members. Expectations are collected in a set EXP. It
will contain, in particular, events which are expected to happen (denoted by
the functor E), and events which are expected not to happen (denoted by the
functor NE).

For instance, E(do(thomas, yves, buy(ticket))) denotes an expectation about
a non-communicative act: thomas is expected to buy a ticket from yves.
NE(tell(yves, thomas, reject(ticket))) denotes a negative expectation about
a communicative act: yves is expected not to reject thomas’ request.

The social infrastructure records events; depending on events, updates the
expectations in EXP. Moreover, monitors the agent interaction, for instance,
in order to start appropriate recovery procedures in case of violations of ex-
pectations.

Protocols are formalized in terms of Social Integrity Constraints (SIC).
SIC' describe the evolution of the expectations in the society, based on the
current history. The syntax of STC' is the following:

SIC == [ics |*
icg =X — @
X = FExtendedLiteral | N ExtendedLiteral |*
¢ = ExpectList[: ConstraintList]
EztendedLiteral ::= Ezxpectation | Event | Atom
Ezpectation ::= E(Term) | NE(Term)
Fvent ::= H(Term)
FEzpectList ::= Expectation [N Ezpectation |*

Atoms are defined (by ground facts) in SOKB.

ConstraintList is a conjunction of CLP [I2] constraints such as — for
instance — the < relation that could be imposed between two variables of
the integrity constraint.

All variables in the body x of a social integrity constraint are universally
quantified, with scope the entire integrity constraint, except those occurring
only in an NE FEzxpectation of x, which are universally quantified with scope
the NE FEzpectation in which they occur.

4

MARCO ALBERTI ET AL.

All other variables are existentially quantified, with scope the head ¢ of
the integrity constraint in which they occur, except those occurring in an NE
FExpectation of ¢, which are universally quantified, with scope ¢.

A simple example of social integrity constraint is the following:

SIC = {H(tell(X,Y, start)) — E(pass(Y))}

[ts intuitive meaning is: if agent X told agent Y “start”, then we expect a
social event denoted by pass(Y).

A more elaborate example, including CLP constraints, is the following
social integrity constraint taken from an example that we will discuss in the
next section.

H(request(B, A, P, D, T,))
AH (accept(A, B, P, D, T,))
N, < Ty
E(do(A,B,P,D,Ty)) : Ty < Ty + 7

(2)

Intuitively, it means: if agent B sent a request P to agent A at time T, in the
context of a dialogue D, and A sent an accept to B’s request at a later time
T,, then A is expected to do P before a deadline T, + 7.

Based on STC', we can define a semantics to the social interaction of agents.
In the example above, ([£]) could be interpreted as a definition of the semantics
of request(B, A, P, D, T,); H(accept(A, B, P,D,T,)) AT, < T, can be seen as
a condition, and E(do(A, B, P,D,T,)) : Ty < T, + 7 as its social effect.

We first introduce the concept of admissible set of social expectations. In-
tuitively, given a society, and a set HAP of events, an admissible set EXP of
social expectations consists of a set of expectations about social events that
are compatible with the set HAP, with the society’s SOKB and with the
social integrity constraints.

More formally, we introduce the following definition.

Definition 2.1 Given a society’s SOKB and SIC' and a set of events HAP,
an admissible set of social expectations EXP is a set of expectations such
that:

SOKBUHAP UEXP E SIC (3)

We interpret P F C' as expressing that C'is true in all the intended models
of P. If we interpret social expectations as abducible predicates (see [13]) we
can rely upon a three-valued model-theoretic semantics as intended meaning,
as done, for instance, in a different context, by [I0B]. An abductive based
semantics is discussed more extensively in [IJ.

We would like to stress that, up to now, we do not assume that expected
events actually happen. This is in accordance with an open view for society
where social expectations are just a suggestion for what should be done (or
not done). A further refined semantics is then given by checking, for a history

bt

MARCO ALBERTI ET AL.

HAP, whether the admissible set EXP of expectations is fulfilled by H. This
reflects the ideal behaviour of a society.

Definition 2.2 Given a set of events HAP, an admissible set of social ex-
pectations EXP is fulfilled if and only if:

HAP UEXP k {E(p) — H(p)} U{NE(p) — -H(p)} (4)

Example 2.3 Let us consider the following situation:
« HAP, = {H(tell(thomas, yves, start)), H(pass(yves))}
o SIC = {H(tell(X,Y, start)) — E(pass(Y))}

EXP, = {E(pass(yves))} is the admissible and fulfilled set of expectations,
w.r.t HAP; and SIC.

But if we consider a different history:
HAP, = {H(tell(thomas, yves, start))},

then, EXP, is not a fulfilled set of expectations w.r.t. HAPy and ST1C (still,
it is admissible).

It may be impossible to fulfill an admissible set of expectations, due to its
possible intrinsic incoherence. This is captured by the following definition.

Definition 2.4 A set of social expectations EXP is coherent if and only if :

Ap: ({E(p), NE(p)} € EXP)

If both E(p) and NE(p) belong to a set EXP of expectations, it cannot be
fulfilled: if H(p) belongs to the history, E(p) is not fulfilled; otherwise, NE(p)
is not fulfilled.

Even if an admissible set of expectations is coherent, it may not be fulfilled
as well. The reason is the violation of the protocol: some agent did not behave
as expected.

Definition 2.5 Given a society and a set HAP of events, if there exists at
least an admissible and coherent set of expectations, and all admissible and
coherent sets of expectations are not fulfilled, then we say that HAP produces
a violation in the society.

In [TI] we define the full syntax of social integrity constraints, the scope
of variables, quantification, and we give a formal semantic characterization of
our framework in terms of abduction.

3 Constraint-based specification of agent interaction

In this section, we introduce the concept of constraint-based specification of
agent interaction at the level of ACL.

6

MARCO ALBERTI ET AL.

Agent communication, from a social viewpoint, can be constrained in two
ways:

(i) expectations of the society on the behavior of agents as consequence of
communicative acts, in a similar way to that of commitment-based ACL
semantics [T78];

(ii) allowed sequences of communicative acts (which is commonly indicated
as interaction protocols).

In literature, these two types of specification are most commonly expressed
with distinct formalisms, and compliance of agents to those specifications is
supposed to be verified at different levels.

Social integrity constraints allow for the specification and, thanks to their
grounding on computational logics, for the verification of both the aspects.
The resulting specification is

e formal: the declarative semantics of communicative acts is defined in a
computational logic framework (see Section B);

e verifiable: compliance to social integrity constraints of an event history to a
declarative specification can be checked by an appropriate proof procedure;

e flexible: the semantics of a given set of communicative acts, or the set itself,
can be easily adapted to the application.

In this section we demonstrate, by simple examples, these features with respect
to social ACL semantics (Section Bl) and interaction protocols (Section B2).
Verification will be covered in Section Hl

In the examples, we will represent events in the form

EventName(Performer, Addressee, Content, Dialog, Time)

where FventName is the event type, Performer is the agent performing the
associated action, Addressee is the receiver of the action, Content is the con-
tent, Dialog is an identifier of the interaction where the event takes place
and Time is the time at which the event happens.

3.1 Social ACL semantics

Social integrity constraints can be used to express that expectations are raised
on the behavior of agents as consequence of their communicative acts. For the
sake of synthesis, we show a simple example where only three communication

2 The Dialog parameter is used to separate the contexts of several dialogues that an agent
can handle. For instance, it can be used to distinguish communicative acts with the same
content: two requests to buy a book with the same title can be considered a repeated
request if the Dialog parameter is the same, and distinct requests to buy two copies of the
book if the Dialog parameters are different.

7

MARCO ALBERTI ET AL.

primitives are considered (namely request,accept and reject) [l We also con-
sider a non-communicative action (do) to show how these can interact with
expectations raised by communicative actions (i.e., by fulfilling or violating
them).

Constraint (H) means that if an agent does accept a request, it is obliged
to fulfill it by some deadline (for instance, by 7 time ticks, where 7 is some
constant). We call forward this kind of expectations, in the sense that they
should be fulfilled by some event in the future.

H(request(B, A, P, D, T,))
AH(accept(A, B, P, D, T,))
NT,. < T,
—E(do(A,B,P,D,Ty)) : Ty <To+ 71

()

It should be noticed that a request does not, by itself, cause any expectation
to be raised.

do is a physical action, which fulfills the expectation of constraint (H) if
it matches with its content, provided that it is performed before a certain
amount of time 7 has passed since the request has been accepted. It is not
necessary to impose any constraint to express the semantics of do, because this
is captured by the semantics of our social framework. As it will be explained
in Section B matching an expectation with a corresponding event can be
performed automatically.

No constraint is necessary to express the semantics of a reject act because
a rejected request generates no expectation.

In the following paragraph, we show a more complex example.

Expectations in the NetBill protocol.

NetBill [] is a security and transaction protocol for the sale and deliv-
ery of low-priced information goods, such as software or journal articles. The
protocol rules transactions between two actors: merchant and customer. Ac-
counts for merchants and customers, linked to traditional financial accounts
(like credit cards), are maintained by a NetBill server.

The protocol prescribes a price negotiation phase, in which the customer
presents evidence of his/her identity, and requests the quote for a good, and the
merchant answers with the price. Then, the customer accepts or declines the
offer; acceptance constitutes an order for delivery of the goods. The merchant
then delivers the goods under encryption (remind they are information goods),
witholding the encryption key. To fulfill payment, the customer constructs
and digitally signs an Electronic Payment Order (EPO) and sends it back
to the merchant, who appends the encryption key to it, digitally sign it and

3 We do not use here any standard syntax for agent communicative acts, but the primitives
that we use could be easily mapped into - say - a FIPA ACL communication action.

8

MARCO ALBERTI ET AL.

forward it to the NetBill server. The NetBill server takes care of the actual
money transfer and returns a digitally signed receipt, including the key, to the
merchant. The merchant forwards receipt and key to the customer, who will
thus be able to decrypt the good.

In the following, we suppose that the roles of consumer and merchant are
played by agents. We also suppose that primitives, with intuitive meaning,
are available for all actions involved in the protocol. We consider a simplified
version of the protocol, where we do not specify anything about the negotiation
phase (also, this phase could remain unconstrained, at a social level). Finally,
the protocol does not deal with deadlines, so neither will we: no constraints
are imposed on time variables in expectations.

A possible specification of the protocol by means of social integrity con-
straints follows (constraints (@) to [)):

H(present(M,C, (G, Q), D, T,))

AH (accept(C, M, (G, Q), D, Ty)), (6)
T, <1,

—E(deliver(M, C, (G, Q), D, Ty))

An expectation for merchant M to deliver the good is generated by social
integrity constraint (B) only if both a present and an accept event have oc-
curred. If consumer C' accepts a quote which merchant M has not presented,
no expectation is raised.

H(deliver(M, C, (G, Q), D, Ty))
NE(deliver(M, C, (G, Q), D, Ty)) (7)
—E(epo(C, M, (G,Q), D, T.))

Constraint ([) is effective (i.e. generates an epo expectation) only if the deliver
event corresponds to an existent deliver expectation. Since a deliver expec-
tation can only be raised by constraint (@), this implies that corresponding
present and accept events have occurred before; in other words, this prevents
consumer C' from being obliged to pay for unrequested goods that have been
delivered to it. The same mechanism is used in constraint (§).

H(epo(C, M, (G, Q), D, T¢))
AE(epo(C, M, (G,Q), D, 1)) (8)
—E(receipt(M, C, (G,Q), D, T,))

3.2 Interaction protocols

Our framework can be used to express allowed sequences of communicative
acts, as well as their social semantics. This is achieved by means of backward
expectations, which regard events that should have happened when the expec-
tation is raised. In this way, we can express by constraints (@) and (I{) that

9

MARCO ALBERTI ET AL.

accepts and rejects, respectively, should only be issued after corresponding
requests.

H(accept(A, B, P, D, T,)), 9
—E(request(B, A, P,D,T,)) : T, <1, ()
H(reject(A, B, P, D, T5))
—E(request(B, A, P, D, Ty)) : Ty < Ty
If an accept (or a request) is issued and a corresponding request has not hap-
pened before, the expectation in constraint () (or (I0)) will be violated.

Backward expectations can be used in the same way to constrain commu-
nicative acts in the NetBill protocol to be issued in the desired sequence.

In line with the philosophy of Yolum and Singh [20], in the protocol spec-
ification we tend to constrain agents’ interaction as little as possible, only
when it is needed. In this example, if an agent makes the same request twice
in the same dialogue, for instance because it is not sure whether the intended
recipient received the first one, we do not consider this as a violation of the
protocol The same holds for a repeated communication of accept or Teject
Instead, we do want to prevent an agent from contradicting a previous accept
by subsequently sending a reject, or vice versa. To this purpose, we introduce
the two following constraints:

(10)

H(accept(B, A, P, D,T,)) (12)

—NE(reject(B, A, P,D,T,)) : T, > T,

H(reject(B, A, P, D,T,))

—NE(accept(B, A, P,D,T,)): T, > T,
It is worthwhile noticing that, in our framework, we use the same proof for
concepts that are semantically different. In fact, in the specification of agent
interaction we can distinguish between regulative rules, like for instance: “ac-
cepted requests are expected to be fulfilled in the future”, constitutive rules,
like: “acceptance is expected to correspond to a past request”, and analytic
constraints, like: “to messages cannot be sent at the same time by the same
agent”. Analytic constraints predicate about the correct functioning of the

(13)

4 Instead, if an agent wants to request two instances of the same good, it will then initiate
two different dialogues.

5 However, if we wish to prevent agents from repeating a communicative act, e.g. accept,
twice in the same dialogue, we can write the following constraint:

H(accept(B, Aa Pa D; Tal))

11
—NE(accept(B, A, P,D,Ty2)) : Taz > Ta1 (11)

In the sequel, we assume that an agent cannot send two communicative actions at the same
time. This could be physically enforced by a suitable social infrastructure, which “officially”
time-stamps their messages using a fine-grained time tick.

10

MARCO ALBERTI ET AL.

system with respect to the model, in terms of “physical” rules that must never
be violated. They do not generate expectations, and we did not include them
in this paper, but they can indeed be considered in the framework and mod-
elled as integrity constraints. The distinction between regulative/normative
rules and constitutive rules instead would become particularly explicit in the
case of sanctions, and countermeasures to be taken when a violation occurs,
but we are not dealing with sanctions yet.

4 Automatic verification of agent interaction using so-
cial integrity constraints

In this section, we discuss two approaches to the verification of compliance
of agent interaction to a specification given by means of social integrity con-
straints.

In [ITJT4], F. Guerin and J. Pitt propose a classification of properties that
are relevant for e-commerce systems, in particular with respect to properties of
protocols and interaction. They propose a formal framework for verification of
properties of “low level computing theories required to implement a mechanism
for agents” in an open environment, where by “open” the authors mean that
in general it is not possible to observe or constrain the agents’ mental state.

Verification of properties is classified into three types, depending on the
information available and whether the verification is done at design time or
at run time:

Type 1: verify that an agent will always comply;
Type 2: verify compliance by observation;

Type 3: verify protocol properties.

As for Type 1 verification, the authors propose using a model checking
algorithm for agents implemented by a finite state program. As for Type 2
verification, the authors refer to work done by Singh [I7], where “agents can
be tested for compliance on the basis of their communications”, and suggest
policing the society as a way to enforce a correct behaviour of its inhabitants.
As for verification of Type 3, the authors show how it is possible to prove
properties of protocols by using only the ACL specification. They construct a
fair transition system representing all possible observable sequences of states
and prove by hand that the desired properties hold over all computations
of the multi-agent system. This type of verification is demonstrated by an
auction example.

The formal framework that we introduced, based on social integrity con-
straints, lends itself well to verification of Type 2 and 3, which do not rely on a
representation of the agents’ internals. Moreover, if we are able to specify the
internal policies of agents in a logic programming based formalism, similar to
the one that we use for social integrity constraints, then it becomes possible

11

MARCO ALBERTI ET AL.

to tackle verification of Type 1 by relating social and individual aspects, as we
will see in the following. By proposing our framework, we aim at uniformly
and automatically dealing with all the above three types of verification, in a
computational logic setting.

In general, verification that an agent will always comply cannot be done
by externally monitoring its behaviour. For this kind of verification, we need
to have access to at least a specification to the agents’ internals. Section ET]
presents a mechanism to automatically obtain such a proof (or its failure) for
a restricted set of programs and protocols.

For verification of Type 2 we need to be able to observe the agents’ so-
cial actions, i.e., the communicative acts that they exchange. As in [I4], we
can assume that this can be achieved by policing the society. In particular,
“police” agents will “snoop” the communicative acts exchanged by the society
members and check at run time if they comply with the protocol specifications
(social integrity constraints). Section is devoted to the presentation of a
mechanism for run-time verification, based on Constraint Handling Rules.

Verification of Type 3 is about protocol properties. In order to prove them
we do not need to access the agents’ internals, nor to know anything about
the communication acts of the system, because such a verification is statically
done at design time. We will not present any result on this respect in this

paper.

4.1 Static verification of agent compliance to protocols

In a very general understanding, verification that an agent “will always com-
ply” poses obvious decidability problems. For this reason, we will not approach
this kind of verification by looking at the agent code, but based on some spec-
ifications of the social behaviour of the agent of which we want to predict
compliance. We will therefore talk about compliance of an agent’s specifica-
tions to a set of social integrity constraints expressing interaction protocols.

The specifications of agent social behaviour could be given again in terms
of integrity constraints. We will call such constraints ic,. They have the
following syntax:

ity 5= X — 0
X ::= FEvent [N Event |*
¢ == FEvent | V Event |*
FEvent ::= H(Atom)

(14)

All variables in the body x of an integrity constraint ic, are universally
quantified, with scope ic,. All other variables are existentially quantified, with
scope the H predicate in which they occur.

The integrity constraints ic, express the possible reactions of an agent to

12

MARCO ALBERTI ET AL.

an external input (typically, a communicative action). The way to read a
constraint of the kind y — ¢ is the following: if y is the case, then at some
point the agent will make ¢ true. x is based on a possible history of the agent
interaction, therefore it is a conjunction of events.

In general, we assume that it is possible to give the specifications of the
social behaviour of an agent in terms of integrity constraints ic,. It would
indeed be possible, for instance, if agents implemented an operational model
such as that proposed in [I5]: in that case, the agent specifications could
be automatically derived from the agent program (negotiation policies and
dialogue cycle), by a suitable syntactic transformation.

Let us give a concrete example of such constraints. Let us consider a
consumer agent, ¢, and a merchant agent, m, whose task is to buy/sell goods
using a NetBill protocol. We can assume that both ¢ and m are members
of a society s, which defines the NetBill protocol in terms of social integrity
constraints.

¢’s specifications could be the following;:

H(present(M,c, (G,Q), D, Ty))

—H(accept(c, M, (G,Q), D, T3)) (15)
H(deliver(M, ¢, (G, Q), D, T1)) (16)
—H(epo(c, M, (G,Q), D, T3))
m’s specifications could be the following:
H(request(C,m, (G,Q), D, T1)) (17)
—H(present(m,C, (G,Q), D, Ts))
H(accept(C,m, (G, Q), D, T1)) (18)
—H(deliver(m, C, (G, Q), D, Ty))
H(epo(C,m,(G,Q),D,T1)) (19)

—H(receipt(m, C, (G, Q), D, T))

In this simplified example, we considered only deterministic agent speci-
fications. In general, those specifications will be non-deterministic, and they
will need to be expressed as constraints that may have disjunctions in the
head. The NetBill protocol as defined in [, for instance, allows for reiterat-
ing the negotiation process if needed, for abandoning the interaction after an
unsuccessful negotiation process, for not sending the electronic payment order
in case the delivered good is corrupted, etc. This makes the protocol non
deterministic and allows for compliant non deterministic agent specifications.
An example of such specifications could be the following:

13

MARCO ALBERTI ET AL.

e ¢ could replace ([H) with the following;:

H(present(M,c, (G,Q), D, T}))
—H(accept(c, M, (G,Q), D, T3)) (20)
VH(refuse_quote(c, M, (G, Q), D, T5))

* m could replace () with the following:

H(request(C,m, (G,Q), D,T}))
—H(present(m,C, (G, Q), D, T3)) (21)
VH(refuse_request(C,m, (G, Q), D, T5))

In the sequel, we will give a notion of compliance of agents/specifications based
on a restricted class of protocols and specifications. This simplification lets us
provide some initial results about static verification of agents/specifications.

Let us restrict ourselves to the case of SIC' expressing protocols in the form
X — ¢, where ¢ ::= FEzpectation (no constraints are imposed on variables
in expectations). Let us consider a subset SIC(a) of SIC only containing
constraints whose head is an expectation about the behaviour of agent a (e.g.,
a message sent by a). We want to check for compliance of a to ZC (Q)E]

Let o be a’s specification, given in terms of constraints, and let o be
deterministic in the sense explained above. Let icy € SIC(a) be the i-th social
integrity constraint in SIC(a), ick = x; — E(q;) or idy = x; — NE(«,).
There could be different cases:

(i) Vicy = xi — E(ay), o U x; F H(;) (positive compliance);
(i1) Vich, = x; — NE(;), o U x; ¥ H(;) (negative compliance);
(737) both (i) and (7i) hold (strong compliance);

(1v) neither (z) nor (iz) holds.

If the agent implementation respects the specifications given in o, then, de-
pending on which of the four classes of compliance defined above it falls in,
we know what we can expect by its interaction w.r.t. the protocols defined
in SIC(a). (i) can be seen as a liveness property, while (ii) as a safeness
property. In particular, if the agent is positive compliant (i), it will always
produce a move which is expected according to SIC(a) (but we do not know
whether it will also produce some other moves which violate some protocol).
If the agent is negative compliant (i¢), it will never produce a move which is
expected not to be produced (but we do not know whether it will fulfill all
expectations). If the agent is strong compliant (ii7), it will always comply
with the protocol, by fulfilling all expectations and not violating any social

6 Tt is up to the user to select the set of constraints that are relevant to determine if a is
compliant or not, although this process could be easily made automatic, for instance by
introducing a notion of “role” (agent compliant “as a merchant”, “as a customer”, as both,
etc.

14

MARCO ALBERTI ET AL.

integrity constraint. Finally, if the agent’s specifications fall in the last class
(1v), we are not able to say a priori how the agent will behave.

These results hold for a restricted class of programs and protocols. We
gave a declarative characterization of the concept of compliance. Since such
a characterization is based on a concept of entailment, we believe that its
operational counterpart would not be difficult to obtain as a suitable extension
of classical deductive inference engines.

In the NetBill example, we can see that the deterministic version of ¢ is
strongly compliant to SIC(c) = {(@}, and the deterministic version of m is
strongly compliant to SIC(m) = {(@), ®)}.

4.2 Dynamic verification using Constraint Handling Rules

Verification of Type 2 is aimed at checking the agents’ observable behavior for
compliance to a given specification. We have given the declarative definition
of this kind of compliance in Sect.

Operationally, compliance of the event history to the specification of a
society must be verified by an appropriate proof procedure. Obviously, such
proof procedure should operate incrementally as agents interact, so to make it
possible to detect violations as soon as they occur and possibly start recovery
procedures. In particular, constraint propagation techniques can be used to
detect as early as possible whether an expectation will never be fulfilled (see
Section LZ.Z). Intuitively, expectations should be generated so to satisfy social
integrity constraints: when all the events and expectations in the body y of
a social integrity constraint y — ¢ have been inserted into the HAP and
EXP sets by the society, the expectations in the head ¢ should be raised.
Expectations will remain pending until they are either fulfilled or violated,
and the social infrastructure will be watching them to check whether happened
events match and fulfill them or violate them.

Essentially, Constraint Handling Rules [9] (CHR for brevity hereafter) rep-
resent a committed-choice language consisting of guarded rules that rewrite
constraints in a store into simpler ones until they are solved. CHR define
both simplification (replacing constraints by simpler constraints while pre-
serving logical equivalence) and propagation (adding new, logically redundant
but computationally useful, constraints) over user-defined constraints.

The main intended use of CHR is to write constraint solvers, or to extend
existing ones. However, although ours is not a classic constraint programming
setting, the computational model of CHR presents features that make it a
useful tool for the implementation of the proof procedures we are aiming at.
In the following, we sketch a prototype implementation, by means of CHR,
of a verification procedure of compliance to social integrity constraints, which
will be extended and refined in future work. It is worthwhile noticing that
what follows describes an operational counterpart of the declarative framework
described in Section Bl and a specification as that described in Section Bl is

15

MARCO ALBERTI ET AL.

a parameter to the implementation. This allows for easy implementation of
extensions of the specification.

4.2.1 Representation of entities

We assume that the proof procedure for Type 2 verification is part of a social
infrastructure there agents live. Along the whole life of the society, the social
infrastructure repeats the following two operations in a cycle:

(i) record an event;

(ii) handle the event according to the specification of the society.

In the prototype implementation described in this work, events are sim-
ulated by the programmer. In an open implementation, this task could be
accomplished by a suitable network communication mechanism, such as a
socket-listening procedure.

Time.

In the current implementation, time is represented by an integer number,
incremented by one at each clock tick.

The current time is represented by the CHR constrainl] current_t ime/1,
whose argument is the number of clock ticks since the beginning of the life of
the society. The current time is updated by means of a simplification CHR.
Simplification CHRs are of the form

Hl,...,HZ'<:>G1,...,Gj‘Bl,...,Bk (22)

with ¢ > 0, 7 > 0, £ > 0 and where the multi-head Hy, ..., H; is a nonempty
sequence of CHR constraints, the guard Gy,...,G; is a sequence of built-
in constraints, and the body Bi,..., By is a sequence of built-in and CHR
constraints.

Declaratively, a simplification rule is a logical equivalence, provided that
the guard is true. Operationally, when constraints Hy, ..., H; are in the head
are in the store and guard G,...,Gj is true, they are substituted by con-
straints By,..., By in the body.

This operational behavior can be exploited to update the current time at
every clock tick by means of the following simplification rule:

clock,

current_time (01dTime)
<=>

NewTime is 01dTime + 1|
current_time (NewTime) .

where constraint clock/0 is imposed when a clock tick is wanted.

" i.e., a constraint which is defined by means of CHRs and is not built-in.

16

MARCO ALBERTI ET AL.

Events.

Happened events are represented by a CHR constraint, happened/1, whose
argument is a ground term describing the event. For instance, if, during the
dialog d and at time 10, agent; has accepted to give a nail to agent,, the
following constraint will be stored:

happened (accept (agentl,agent2,give(nail),d,10)).

Expectations.

Expectations are represented by expect/2 constraints. The first argument
is the event associated with the expectation, the second is a list of constraints
over the variables contained in the eventl]. For instance, the expectation for
agent, to give a nail to agent, by time 20 in the context of dialog d would be
represented as follows:

expect (do(agent1,agent2,give(nail),d,T), [t1le(T,20)1),
where tle is the binary constraint of lesser-or-equal between time of events
(which needs to be distinguished from an ordinary < constraint between nu-
meric variables as will be explained in Section E22).

Negative expectations.
Negative expectations are represented by expectnot/2 constraints, having
the same structure of expect/2 constraints.

Social integrity constraints.
Social integrity constraints are represented by propagation CHRs. In gen-
eral, propagation rules have the form

Hl,...,Hi:>G1,...,Gj|Bl,...,Bk (23)

where the symbols have the same meaning and constraints of those in the
simplification rules (22).

Declaratively, a propagation rule is an implication, provided that the guard
is true. Operationally, when the constraints in the head are in the store, and
the guard is true, the constraints in the body are added to the store. This
mechanism can be exploited to post expectations into the store as prescribed
by social integrity constraints as follows:

e events and expectations in the body of the constraint are represented by
constraints in the head of the CHR;

e atoms in the body of the constraint are represented by built-in constraints
in the guard of the CHR;

* expectations (with the associated constraints) in the head of the constraint
are represented by constraints in the body of the CHR.

8 In the current implementation, expectations cannot share constrained variables.

17

MARCO ALBERTI ET AL.

For instance, constraint () can be represented by the following propaga-
tion ruld®];

happened (accept (Agent2,Agentl,Content ,Dialog,AcceptTime))

==>

expect (request (Agentl,Agent2,Content,Dialog,RequestTime),
[t1t (RequestTime,AcceptTime)]) .

Whenever an event matchin the head is added to the store, this rule will
add the corresponding expectations to the store.

4.2.2 Procedures
Fulfillment and violation of expectations.

Operationally, an event fulfills an expectation if the contents of the event
and the expectation unify in a Prolog sense and the constraints in the ex-
pectation are true. In case of negative expectations, indeed we do not have

a fulfillment but a violation. This is achieved by the following propagation
CHR:

happened (HEvent) ,

expect (EEvent,Constraints)

==>

HEvent=EEvent,
verify_constraints(Constraints) |
fulfilled_expect (EEvent,Constraints) .

A fulfilled expectation is stored as a fulfilled expect/2 constraint.
verify_constraints/1 is a user-defined predicate which checks for the
truth of a constraint with ground arguments.
For instance, let us suppose the following expectation is in the store:
expect (do(agent1,agent2,give(nail),d,T), [t1e(T,20)1),
and that the following event happens at time 15:
happened(do(agentl,agent2,give(nail),d,15)).
Unification of the content of the expectation and the event succeeds with the
binding T=15. Since tle(15,20) is true, the expectation is fulfilled, and,
operationally, can be stored as a fulfilled expect/2 constraint.

Exploiting constraint propagation for early detection of violations.
The mechanism described in the previous paragraph is not adequate for
all kinds of expectations.
Let us suppose that an expectation with an associated deadline is in the
store. If the social infrastructure only waits for a matching event to happen,

9 As can be noticed, the mapping of a social integrity constraint into a CHR is extremely
straightforward, thus making it easy to implement extension to a given specification.

10 A5 it is explained in the next Section, by “matching” we mean “unifying with”, & la
Prolog.

18

MARCO ALBERTI ET AL.

and the event never happens, the violation of the deadline will never be de-
tected. Obviously, this is not the desired behavior: we want the violation to
be detected as soon as time is over.

More generally, violations of certain expectations need to be detected with-
out waiting for some event to happen. In order to handle this case, we exploit
constraint propagation: when the variables of an expectation are constrained
by certain constraints (such as tle/2) new CHR constraints are inserted in the
store, meant to interact with other constraints representing conditions which
may change (such as the current time).

For example, let us consider deadlines again. If T is a variable representing
the time at which an event with an associated deadline should happen, and T
is unbound, then the event has not happened yet, because otherwise the event
would have been recorded in the store and 7" would have been instantiated to
a specific Valu. Thus, if T,,rent Tepresents the current time, we can infer
the following inequality:

Tcurrent S T (24)

which has the intuitive meaning that, if an event has not happened yet, it
may only happen in the future. Inequality (Z4), combined with a constraint

T S Tdeadline (25)

implies

Tewrrent < Taeadtine (26)
Thus, if the current time goes beyond the deadline while T is unbound, the
associated expectation cannot be fulfilled, and a violation can be detected
(or, dually, the associated negative expectation cannot be violated, and its
fulfillment can be detected).

In order to implement this behavior in our framework, whenever an ex-
pectation is imposed which contains a constraint expressing a deadline (such
as tle(T,20)), the social infrastructure infers a tcurrent_le/1 constraint
(which means that the current time must not exceed the argument, uni-
fied with the deadline) and associates it to the original expectation. If the
tcurrent_le/1 constraint is violated (which is detected by means of a CHR),
a violation/fulfillment of the original expectation is detected; if the expecta-
tion is fulfilled /violated) before the deadline, the associated tcurrent le/1
constraint is removed.

5 Discussion and future work

In this paper, we put together two aspects: that of specification of agent
interaction and that of formal verification. We have approached both prob-
lems from a social viewpoint which, in our opinion, seems to better fulfill

11 We always assume that the social infrastructure is aware of all socially significant events.

19

MARCO ALBERTI ET AL.

the requirements of open societies of autonomous and heterogeneous agents,
compare to a mentalistic approach.

In part, we draw inspiration from [§], where an operational specification
of an ACL is given in an object-oriented framework by means of the commit-
ment class. A commitment represents an obligation for its debtor towards
its creditor. A commitment is described by a finite state automaton, whose
states (which can take the values of empty, pre-commitment, canceled, condi-
tional, active, fulfilled and violated) can change by application of methods of
the commitment class, or of rules triggered by external conditions. Seman-
tics of communicative acts is specified in terms of methods to be applied to a
commitment when a communicative act is issued.

The approach presented in [§] is similar to ours in that it is social-based: it
makes no assumptions on the nature of agents, it specifies semantics of actions
with respect to their social effects, and it presupposes a social framework
(which is called institution in [3]) for assigning roles to agents, for verifying the
agent social behavior and, possibly, for recovering from violation conditions.

There are, however, some significant differences, mainly originating from
the different paradigm we have chosen to express semantics (logic-based in-
stead of object-oriented). Furthermore, our notion of expectation is more
general than that of commitment: it represents the necessity of a (past or fu-
ture) event, and is not bound to have a debtor or a creditor, or to be brought
about by an agent. For instance, if we want to express the constraint that an
agent is only allowed to perform an act when a previous event has occurred
(not necessarily for an agent’s action), we can simply impose it as a backward
expectation, whereas it is not obvious how to express this in Fornara and
Colombetti’s framework [§].

Our framework can express with the same formalism both protocols and
social semantics of communicative acts. In [I8], we have exploited social
integrity constraints for expressing protocols for an agent society rather than
for the semantics of communication.

Another interesting way of linking social semantics of communicative acts
and protocol specification is described in [20]. However, in [20] it is the sin-
gle agent which, by exploiting its reasoning/planning capabilities, must find
a communication path leaving no pending commitments (the alternative, to
be applied when agents lack reasoning capabilities, is to compile a protocol
specification to a Finite State Machine). Our approach ensures protocol com-
pliance regardless of agents’ reasoning capabilities, since it lets us explicitly
express constraints between communicative acts, if so desired; however, equip-
ping the communication model of single agents with sufficient knowledge to
reason about expectations is certainly an interesting option.

Finally, our concept of expectations is indeed related to that of obligations
and permissions. To this regard we cite [2], where Artikis et al. propose a
framework for the specification of open societies of agents grounded on event
calculus. Such a framework allows to reason upon deontic categories such

20

MARCO ALBERTI ET AL.

as permissions, obligations, fulfillment, and violations, and comes together
with a graphic tool to visualize the state of a society of agents with respect
to such categories. Despite the very related context and domain, our work
differentiates itself from [2], as well as from most work done about deontic
formalisms for social interactions, in both aims and method.

We are currently extending the proof, allowing for a more comprehensive
syntax of SIC' and we are developing a prototype of the social infrastructure.
In the future, we would like to investigate the issue of sanctions and recovery
from violation states. In addition, we intend to investigate more deeply the
formal properties of the proof procedures involved in the framework, such as
soundness and completeness w.r.t. the declarative specification.

Acknowledgments

This work is partially funded by the Information Society Technologies pro-
gramme of the European Commission under the IST-2001-32530 project.
We thank the anonymous reviewers for their useful comments.

References

[1] Alberti, M., M. Gavanelli, E. Lamma, P. Mello and P. Torroni, An abductive
interpretation for open societies, in: A. Cappelli and F. Turini, editors, AIT*IA
2003: Advances in Artificial Intelligence, number 2829 in Lecture Notes in
Artificial Intelligence (2003), pp. 287-299.

[2] Artikis, A., J. Pitt and M. Sergot, Animated specifications of computational
societies, in: C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of
the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002), Part III (2002), pp. 1053-1061.

[3] Colombetti, M., N. Fornara and M. Verdicchio, The role of institutions in
multiagent systems, in: Proceedings of the Workshop on Knowledge based and
reasoning agents, VIII Convegno AI*IA 2002, Siena, Italy, 2002.

[4] Cox, B., J. Tygar and M. Sirbu, Netbill security and transaction protocol, in:
Proceedings of the First USENIX Workshop on FElectronic Commerce, New
York, 1995.

[5] Denecker, M. and D. D. Schreye, SLDNFA: an abductive procedure for abductive
logic programs, Journal of Logic Programming 34 (1998), pp. 111-167.

[6] Finin, T., Y. Labrou and J. Mayfield, KQML as an agent communication
language, in: J. Bradshaw, editor, Software Agents, MIT Press, Cambridge,
1997 .

[7] FIPA Communicative Act Library Specification (2001), published on August
10th, 2001, available for download from the FIPA website.
URL http://www.fipa.org

21

http://www.fipa.org

MARCO ALBERTI ET AL.

[8] Fornara, N. and M. Colombetti, Operational specification of a commitment-
based agent communication language, in: C. Castelfranchi and W. Lewis
Johnson, editors, Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II (2002),
pp. 535-542.

[9] Frithwirth, T., Theory and practice of constraint handling rules, Journal of Logic
Programming 37 (1998), pp. 95-138.

[10] Fung, T. H. and R. A. Kowalski, The IFF proof procedure for abductive logic
programming, Journal of Logic Programming 33 (1997), pp. 151-165.

[11] Guerin, F. and J. Pitt, Proving properties of open agent systems, in:
C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part II (2002), pp. 557-558.

[12] Jaffar, J. and M. Maher, Constraint logic programming: a survey, Journal of
Logic Programming 19-20 (1994), pp. 503-582.

[13] Mello, P., P. Torroni, M. Gavanelli, M. Alberti, A. Ciampolini, M. Milano,
A. Roli, E. Lamma, F. Riguzzi and N. Maudet, A logic-based approach to model
interaction amongst computees, Technical report, SOCS Consortium (2003),
deliverable D5.

[14] Pitt, J. and F. Guerin, Guaranteeing properties for e-commerce systems,
Technical Report TRS020015, Department of Electrical and Electronic
Engineering, Imperial College, London, UK (2002).

URL http://www.iis.ee.ic.ac.uk/reports

[15] Sadri, F., F. Toni and P. Torroni, An abductive logic programming architecture
for negotiating agents, in: S. Greco and N. Leone, editors, Proceedings of the
8th European Conference on Logics in Artificial Intelligence (JELIA), Lecture
Notes in Computer Science 2424 (2002), pp. 419-431.

[16] Singh, M., Agent communication language: rethinking the principles, IEEE
Computer (1998), pp. 40-47.

[17] Singh, M. P., A social semantics for agent communication languages, in:
F. Dignum and M. Greaves, editors, Issues in Agent Communication, Springer-
Verlag, 2000 pp. 31-45.

[18] Torroni, P., P. Mello, N. Maudet, M. Alberti, A. Ciampolini, E. Lamma,
F. Sadri and F. Toni, A logic-based approach to modeling interaction among
computees (preliminary report), in: UK Multi-Agent Systems (UKMAS) Annual
Conference, Liverpool, UK, 2002.

[19] Yolum, P. and M. Singh, Commitment machines, Lecture Notes in Artificial
Intelligence 2333 (2002), pp. 235-247.

[20] Yolum, P. and M. Singh, Flezible protocol specification and execution: applying
event calculus planning using commitments, in: C. Castelfranchi and W. Lewis

22

http://www.iis.ee.ic.ac.uk/reports

MARCO ALBERTI ET AL.

Johnson, editors, Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II (2002),
pp. 527-534.

23

	Introduction
	Social integrity constraints
	Constraint-based specification of agent interaction
	Social ACL semantics
	Interaction protocols

	Automatic verification of agent interaction using social integrity constraints
	Static verification of agent compliance to protocols
	Dynamic verification using Constraint Handling Rules

	Discussion and future work
	References

