
Electronic Notes in Theoretical Computer Science 85 No. 2 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume85.html 24 pages

Knowledge as Strategic Ability

Sieuwert van Otterloo 1 Wiebe van der Hoek 1

Michael Wooldridge 1

Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK

Abstract

The ultimate goal of our research is to develop techniques for model checking knowl-
edge properties of multi-agent systems. ATEL, an extension of the Alternating-time
Temporal Logic of Alur et al, is a logic for specifying epistemic and strategic proper-
ties of such systems. We present a technique for reducing the ATEL model checking
problem to one of model checking in ATL, whereby epistemic relations are explicitly
encoded in ATL models as as dynamic transitions. The techniques is illustrated by
means of a knowledge game, which is used as a running example throughout the
paper.

1 Introduction

Alternating-time Temporal Logic (ATL) is a powerful logic for reasoning about
the abilities of coalitions in multi-agent systems [2,3]. ATL has been extended
to Alternating-time Temporal Epistemic Logic (ATEL) in which the knowl-
edge of agents, (in the sense of the Fagin-Halpern-Moses-Vardi model of knowl-
edge [6]), is also considered [11]. ATEL can be used to express properties of
agent communication, for instance whether communication is necessary in a
certain situation, and whether communication has been successful.

Model checking is a widely used, and highly successful method for evalu-
ating logic formulas on finite state systems [5]. A general method for ATEL
model checking would clearly be of great interest for the verification of agent
communication protocols and the planning of communication in multi-agent
systems. While automatic model checkers for ATL exist [1], no such model
checkers yet exist for ATEL. In the line of a previous approach [10], this paper

1 Email: {sieuwert,wiebe,mjw}@csc.liv.ac.uk

c©2004 Published by Elsevier Science B. V.

Van Otterloo, Van der Hoek and Wooldridge

further explores use of existing model checking tools for protocols involving
knowledge.

A model checker takes a specification of a transition system T and a for-
mula φ, and evaluates the validity (or truth) of φ on T ; typically, we write
T |= φ to mean that φ is true in the system T [5]. From a mathematical
point of view, a model checker is a function MC which takes a system T
and a formula φ as input and return a truth value MC(T, φ). Since ATEL
appears to be more expressive than ATL, it may not be possible to find a
general reduction R from an ATEL formula φ to an ATL-formula R(φ) such
that T |= φ ⇔ MC(T,R(φ)). We here assume that T can serve as a model
for ATEL and ATL — this seems a reasonable assumption, since the ATEL
models we define contain an ATL model. Instead of only converting the for-
mula one wants to check, changes to the transition system T might also be
considered. That is, we can try to construct functions t and f such that
T |= φ ⇔ MC(t(T), f(φ)). These functions are intended to work on models
which represent systems in which each step is completely determined by a
single agent and in which no infinite computations can occur. These systems
are called turn-based acyclic. This is a limited but important class of models
because it allows one to use ATEL for studying extensive games [9].

An argument for the existence of such reductions is that epistemic logic is
a modal logic like ATL [4]. Both have a Kripke semantics, and thus can be
evaluated on a transition system. In ATL, transitions correspond to compu-
tation steps, while ATEL contains transitions corresponding to computations
and epistemic uncertainty. In order to evaluate epistemic formulas, one may
extend the transition system with additional transitions modelling the epis-
temic relations. If these alterations to the transition system are manageable,
(in that there is no exponential blow-up in the number of transitions), then
this might be a good way to model check.

Of course, we do not claim that all knowledge-related model checking prob-
lems can be solved using existing model checkers. But, nevertheless, we think
it is useful to investigate which problems can be solved using existing tools. In
this paper we show one approach to model checking knowledge and evaluate
the relative merits of this method.

In section 2 we introduce the example protocol and the logic ATEL used
to reason about the protocol. Section 3 informally presents the main idea of
this paper. Section 4 explains the theory underpinning the technique. Section
5 formally defines the method and contains a correctness proof. In section 6,
the illustrate the technique by using it to prove all the properties introduced
in section 2. Section 7 presents some conclusions.

2 A Running Example

Knowledge games [12] based on card deals are a rich source of examples of
multi-agent Knowledge Problems. The example given here is derived from

2

Van Otterloo, Van der Hoek and Wooldridge

the Russian Cards Problem [13]. It involves three agents, sharing five cards.
Assume agent A holds cards 0 and 1, agent B has cards 2 and 3, while agent
C holds card 4. We denote this deal by 01|23|4. All agents know their own
cards, which cards exist and how many cards each agent has. All of this is
common knowledge, and nothing else is known. Thus, for agent A the deal
01|34|2 is a possibility, while 01|2|34 is not (it knows B has two cards), and
neither is 04|23|1, because A knows its own cards. Agent B, however considers
04|23|1 a possibility.

Even without the additional richness allowed by introducing actions into
this framework, interesting properties of this scenario can be formulated in
epistemic logic. In the next table we list three properties of interest. In the
logical formulation often used for these situations [12,13] the proposition Xi

is used to express that agent X holds card i. To express the fact that agent
X knows φ, we write KXφ.

KAa0 A knows it has card 0 (true)

KBa0 B knows A has card 0 (false)

KA¬KBa0 A knows that B does not know that A has card 0 (true)

All formulas are evaluated with the card deal 01|23|4. Epistemic formulas
are evaluated before anything has been communicated. To make this a dy-
namic scenario, we introduce one action: A is allowed to make one of three
statements, each corresponding to a logical formula. However, A can only
make true statements. The whole structure of this situation, i.e., which card
deals are possible, which statements A is allowed to make, that only A can
say something, that each agent only knows its own cards, is assumed to be
common knowledge. The possibilities are as follows.

a4 ∨ a0 I have card 4 or card 0

a1 ∨ a2 I have card 1 or card 2

a3 ∨ a4 I have card 3 or card 4

For each possible world at least one statement is true. The limitation to
just these three moves may seem artificial, but it makes the example smaller
and thus easier to understand.

Suppose that in the actual world 01|23|4 agent A opts to say: I have card
1 or card 2 (the second of these formulas). This clearly changes the knowledge
of the agents — both of those listening to the statement and the speaker of the
statement (who knows that epistemic state of those listening to the statement
has changed). The following formulas were false in the initial situation, so it is
interesting to see whether they are true in the situation after that statement.

3

Van Otterloo, Van der Hoek and Wooldridge

KBa1 B knows that A has card 1 (true)

KAKBa1 A knows that B knows that A has card 1 (false)

The use of ATEL allows one to formulate abilities of (coalitions of) play-
ers. In addition to the epistemic operators Ki, ATEL contains two additional
operators for each set of agents Γ: 〈〈Γ〉〉 ⋄φ and 〈〈Γ〉〉2φ. These operators refer
to what the agents in Γ can achieve based on their available choices. In ATL
and ATEL, t |= 〈〈Γ〉〉⋄φ is true if and only if there is a set of strategies, one for
each agent in Γ, such that if all agents in Γ follow their strategy, eventually a
state s such that s |= φ will be reached. For all Γ and φ, t |= 〈〈Γ〉〉2φ is true
if and only if there is a set of strategies, one for each agent in Γ, such that if
all agents in Γ follow their strategy, s |= φ is true for all future states s.

In this example, we would like to express that agent A can achieve certain
goals by selecting the right moves. The following formulae, which combine
both epistemic and strategic modalities, are evaluated in 01|23|4.

〈〈A〉〉 ⋄KBa1 A can cause B to know that it has card 1 (true)

KA〈〈A〉〉 ⋄KBa1 A knows it can cause B to know

that A has card 1 (false)

The above formulas have been chosen because they illustrate some inter-
esting combinations of different operators.

The semantics we use for ATEL is one in which no knowledge restrictions
are placed upon strategies. This is the simplest semantics and the one pro-
posed originally [11]. In this semantics, players can base their decisions upon
things they are supposed not to know. This may seem counter-intuitive in
certain situations. If needed it can be solved by assuming a different seman-
tics [8,7].

3 Modelling Epistemic Relations

The initial situation of the card game example can be captured in a Kripke
structure [6,4]. Nodes in the structure correspond to different possible deals,
and arcs capture the epistemic alternatives of agent (i.e., an arc d1 → d2 for
agent i means that i cannot distinguish the deal d1 from deal d2). Figure 1
shows just four of the states with one connection of each kind, but the actual
number of different card deals in our example is 30 (note that different styles
of lines connect states indistinguishable for different agents in this figure —
reflexive arcs are not drawn).

Dynamic transitions are represented in figure 2. A choice is available only
in the initial situation: agent A has two options in the depicted situation; the
third possible statement, a3 ∨ a4, is not true in under the initial card deal and
therefore this is not a possible action for A.

4

Van Otterloo, Van der Hoek and Wooldridge

Fig. 1. epistemic relations

01|23|4

A

01|24|3

B

03|24|1

C

23|04|1

Fig. 2. dynamical transitions

01|23|4

A a4 ∨ a0

a1 ∨ a2

Fig. 3. epistemic model T

01|24|3

A

01|23|4

A

01|34|2

We need to combine the information contained in the model describing
the choices (figure 2) and the epistemic information of figure 1. The idea is
to explicitly encode the epistemic transitions as a special kind of choice. Since
these transitions must not be confused with the transitions corresponding
to actions, we introduce additional epistemic agents, for whom the choices
will be the epistemic alternatives of the “real” agents. Thus in addition to
the agents {A,B,C} we use {eA, eB, eC, actA, actB, actC,E}: we will call
eA, eB, eC the epistemic agents. Each agent eX can choose a next state that
is indistinguishable for agent X.

To better understand this idea, consider the formula φ = KAp, where p is
some proposition regarding the card deal. We will evaluate this formula in the
epistemic situation of figure 1. We consider 01|23|4 the current card deal. We
call this model T . The three states that agent A considers possible are shown
in figure 3 — the dashed lines suggest the equivalence relation for agent A.
(The possible choices of agent A are not in the picture because the formula φ
does not use the choices of A.)

The procedure we propose will produce a new model T ′ = t(T, φ) and a
new formula φ′ = f(φ). The new model T ′ must encode information about
the knowledge of A. Therefore from the state with the real card deal, choices
are available to agent eA to states with card deal that A considers possible.
This new model is shown in figure 4. In this model the proposition t has been
introduced. It indicates that a state is a final state.

The new formula φ′ is derived from φ by replacing knowledge operators by

5

Van Otterloo, Van der Hoek and Wooldridge

Fig. 4. System T
′

01|23|4

eA
t 01|24|3

t 01|23|4

t 01|34|2

strategic operators. The intended meaning of the new formula is ‘Whatever
choice eA makes, p will hold’. This can be expressed by the formula 〈〈〉〉⋄(t∧p).

This intuitive idea is formalized in the next sections. The title of this
paper refers to the interpretation of knowledge properties in ATEL as ATL
formulas referring to strategic ability: ATL formulas are used to express the
existence of ‘winning’ strategies — strategies which allow players to reach or
avoid certain situations.

4 Definitions

In this section we define the languages that are used in the remainder of the
paper, and the semantic models over which these languages are interpreted.
The most important languages we deal with are ATL and ATEL. A common
subset of these languages is propositional logic, which will be defined as well.

Definition 4.1 [Turn-Based System] A turn-based system (TBS) is a tuple
(S, P, π,Σ, a, label), where S is a set of states, P a set of propositions, π :
P × S → {true, false} is the function interpreting all propositions, Σ is the
set of agents, a ⊆ S × S is a transition relation and label : a → Σ labels
all transitions with one of the agents. It is required that transitions with the
same source must have the same label: ∀s, t, t′ label(s, t) = label(s, t′).

The intended meaning of labels on transitions is that these labels indicate
the agent that can decide which transition will be the next step in the compu-
tation. Thus this kind of system models a game-like situation, such as chess
or checkers. We will use T as a variable for TBS.

It is possible to attach labels to positions instead of states. This does
not result in important differences but some details will be different. In our
formalisation no labels are attached to nodes from which no transitions leave.
We see this as an advantage. The domain of the label function is the relation
a, so only pairs (s, t) between which there is a transition get a label attached.

Definition 4.2 [Turn-Based Epistemic System] A turn-based epistemic sys-
tem (TBES) is a tuple ((S, P, π,Σ, a, label), {∼X |X ∈ Γ}). The first element,

6

Van Otterloo, Van der Hoek and Wooldridge

(S, P, π,Σ, a, label), is a TBS, while the second set contains for each agent X
an equivalence relation ∼X⊆ S × S.

The variable B will be used to denote TBES.

Definition 4.3 [Pointed System] Let M be either a TBS or a TBES and let
S be the set of states of M . For each state s ∈ S in the system M , the tuple
(M, s) is a pointed system.

We will write TBS∗ for the set of all pointed TBS and TBES∗ for the set
for all pointed TBES.

Definition 4.4 [Propositional Logic] Let P be a set of propositions. Standard
propositional logic PL is the smallest language L such that P ⊂ L and such
that for all φ ∈ L and ψ ∈ L it is the case that ¬φ ∈ L and φ ∨ ψ ∈ L.

Given an interpretation function π : P × S → {true, false} and a state
s ∈ S we can interpret propositional logic formulas as follows.

π, s |= p if and only if π(p, s) is true

π, s |= ¬φ if and only if not π, s |= φ

π, s |= φ ∨ ψ if and only if π, s |= φ or π, s |= ψ

Alternating-time Temporal Logic extends propositional logic with two strate-
gic operators.

Definition 4.5 [Alternating-time Temporal Logic] Let P be a set of propo-
sitions and Σ a set of agents. The language ATL with propositions P is the
smallest language L such that P ⊂ L and for any φ, ψ ∈ L and Γ ⊆ Σ it is
the case that ¬φ ∈ L, φ ∨ ψ ∈ L,〈〈Γ〉〉 ⋄ φ ∈ L and 〈〈Γ〉〉2φ ∈ L.

Let T = (S, P, π,Σ, a, label) be a TBS and s ∈ S. We will define, for each
formula φ ∈ ATL, the circumstances under which T , s |= φ. The semantics
for ATL is the semantics of propositional logic extended with two new clauses
for the two new operators. These operators make use of strategies. A strategy
is a function f : S+ → S: given a sequence of states (. . . , s) ending in state s
the strategy selects a next state t such that (s, t) ∈ a.

A run r is a sequence of states r = (s0, s1, . . . , sn) such that all pairs
(si, si+1) are element of a and there is no t such that (sn, t) ∈ a. We say
that in a certain run r = (s0, s1, . . .) the agent X used strategy f if for all
(si, si+1) ∈ r with label(si, si+1) = X it is the case that f((s0, . . . , si)) = si+1.
It is not important what f(s) is for states s in which it is not X’s turn. This
idea of a strategy is used in the following definition, which gives the semantics
of ATL.

T , s |= p if and only if π(p, s) is true

T , s |= ¬φ if and only if not T , s |= φ

T , s |= φ ∨ ψ if and only if T , s |= φ or T , s |= ψ

7

Van Otterloo, Van der Hoek and Wooldridge

T , s0 |= 〈〈Γ〉〉 ⋄ φ if and only if there is a strategy for each agent in Γ such
that in all runs r = (s0, s1, . . .) in which the agents in Γ used their strategy,
a state si exists such that T , si |= φ

T , s0 |= 〈〈Γ〉〉2φ if and only if there is a strategy for each agent in Γ such
that in all runs r = (s0, s1, . . .) in which the agents in Γ used their strategy,
in every state si it holds that T , si |= φ.

It is possible to define a semantics for ATL for systems that are not turn
based. However, a slightly different notion of a strategy must be used [2].

In a turn based system, we can define 〈〈Γ〉〉2φ := ¬〈〈Σ\Γ〉〉⋄¬φ. This is not
true in all ATL semantics, but for turn based systems we can use the minimax
statement from game theory. The minimax theorem for games states that any
zero-sum game has a unique value and that both players have a strategy to
reach that value. Instead of applying this theorem we will provide a proof in
terms of TBS.

Theorem 4.6 For any TBS T = (S, P, π,Σ, a, label) and any state s

T , s |= 〈〈Γ〉〉 ⋄ φ↔ ¬〈〈Σ \ Γ〉〉2¬φ

Proof. Let T = (S, P, π,Σ, a, label) be a TBS and φ an ATL formula. We
will show that for any state s ∈ S either T , s |= 〈〈Γ〉〉⋄φ or T , s |= 〈〈Σ\Γ〉〉2¬φ.
For this proof we construct a function v : S → {1, . . . ,∞}. The function is
defined by the next rules. The definition is recursive: we first define when it
is 1. Then we define for any value n, when the function takes the value n+1.
Finally we assign the value ∞ to the states for which the function did not have
a value yet.

• If T , s |= φ then v(s) = 1

• If there is no transition (s, t) ∈ a then v(s) = ∞

• If there is a transition (s, t) ∈ a and label(s, t) ∈ Γ, then v(s) = 1 +
min(s,t′)∈a v(t

′).

• If there is a transition (s, t) ∈ a and label(s, t) /∈ Γ, and for all (s, t′) ∈ a
v(t′) <∞, then v(s) = 1 + max(s,t′)∈a v(t

′).

• v(s) = ∞ otherwise

Since v is a function for any s either v(s) <∞ or v(s) = ∞, and never both.
We will show that v(s) < ∞ implies T , s |= 〈〈Γ〉〉 ⋄ φ and v(s) = ∞ implies
T , s |= 〈〈Σ \ Γ〉〉2¬φ.

Assume that s ∈ S. We will show by induction for any natural number n,
that v(s) = n implies T , s |= 〈〈Γ〉〉 ⋄ φ. The strategy we propose for coalition Γ
is to choose the next state t for which v(t) is minimal. This is a valid strategy.
Assume that (s0, s1, s2, . . .) is a run in which Γ uses this strategy. If v(si) > 0
then v(si+1) < v(si). This can be seen from the second and third line of the
definition. Therefore eventually a state tj will be reached with v(sj) = 0, and
then T , sj |= φ. This proofs that there is a strategy such that T , s |= 〈〈Γ〉〉 ⋄ φ.

8

Van Otterloo, Van der Hoek and Wooldridge

Now we show that v(s) = ∞ implies T , s |= 〈〈Σ\Γ〉〉2¬φ. Assume a strat-
egy for coalition Σ \ Γ such that they choose the next state s which maximizes
v(s). it is clear that v(s) = ∞ implies that T , s 6|= φ. We will show that
in any run (s0, s1, s2, . . .) in which the agents follow the strategy, v(sj) = ∞
implies v(sj+1) = ∞. First assume that label(sj , sj+1) ∈ Γ. If v(sj+1) < ∞,
then v(sj) would have been less than or equal to v(sj+1). Next assume that
label(sj , sj+1) /∈ Γ. The strategy we assumed tells us that sj+1 was choses to
maximize v(sj+1). If v(sj+1) would be finite, then v(sj) would be 1 + v(sj+1)
hence finite. Therefore v(sj+1) = ∞. This shows that φ will not become true
in this run and therefore T , s |= 〈〈Σ \ Γ〉〉2¬φ. This concludes the proof. 2

It may seem that the fact that we add agents might interfere with our
appliation of the above theorem. This is not the case because the reduction
method carefully constrains the actions of the new agents. This proof and the
correctness proof of the reduction method do not depend on each other.

Definition 4.7 [Alternating-time Temporal Epistemic Logic] Let P be a set
of propositions and Σ a set of agents. The language ATEL with propositions
P is the smallest language L such that P ⊂ L and for any φ, ψ ∈ L, Γ ⊆ Σ
and X ∈ Σ it is the case that ¬φ ∈ L, φ ∨ ψ ∈ L, KXφ ∈ L 〈〈Γ〉〉 ⋄ φ ∈ L and
〈〈Γ〉〉2φ ∈ L.

ATEL can be interpreted over TBES. The interpretation for all connectives
and operators also appearing in ATL is similar to the interpretation in ATL.
We will omit these similar definitions and only define the interpretation of the
knowledge operator.

B, s |= KXφ if and only if for each state s′ with s′ ∼X s it holds that
B, s′ |= φ

5 The Reduction

We now present our main contribution, which permits a reduction of the ATEL
model checking problem to ATL model checking. The reduction consists of
two functions

f : ATEL→ ATL

t : TBES∗ × ATEL→ TBS∗

such that

t((B, s), φ) |= f(φ) if and only if B, s |= φ.

The definition of f makes use of an auxiliary function f1, while the definition
of t makes use of auxiliary functions t1, t2, t3.

Throughout this section, the formula µ = KAb1 evaluated under card deal
01|23|4 is used as an example to show how all functions work. See figure 3

9

Van Otterloo, Van der Hoek and Wooldridge

on page 5 for the epistemic accessability relations for this example and figure
4 (page 6) for an illustration of the resulting system. In this figure only the
states reachable from the initial state are shown.

The next table shows the domain and range of the functions we will define
next.

function domain range

number ATEL ATELn

f ATEL ATL

f1 ATELn ATL

t TBES∗ × ATEL TBS∗

t1 TBES∗ × ATELn TBS∗

t2 TBES∗ × ATELn trees

t3 TBES∗ × ATELn × {0, 1, . . .} trees

The first step in the transformation is that in the input formula φ, all
subformulas (including the whole formula) are assigned a number from the
set {0, 1, 2, . . .}. The whole formula gets the number 0. The numbers are
written as in φi ∨ ψj , Kxφ

i, 〈〈Γ〉〉 ⋄ φi. Subformulas caused by negation, as
in φ = ¬ψ get the same number, as in (¬ψ1)1, otherwise every subformula
receives a unique number. For instance the input formula p ∨KAq could be
numbered as (p1 ∨ (KAq

3)2)0. These numbers are used for matching steps
introduced by t to operators introduced by f . The order in which subformu-
las are numbered does not matter. The set of all formulas with numbered
connectives is called ATELn. We define the function number as numbering
all subformulas top-down, left to right. We define f(φ) = f1(number(φ)) and
t(E , φ) = t1(E , number(φ)).

For the example formula, we have:

number(µ) = (KA(b1)
1)0

The function f1 is defined recursively, as follows.

f1(χ
k) =































χ if χ ∈ PL

〈〈E〉〉 ⋄ (donei ∧ f1(φ)) ∨ (donej ∧ f1(ψ))) if χ = φi ∨ ψj

¬f(φi) if χ = ¬φi

〈〈〉〉 ⋄ (donei ∧ f1(φ)) if χ = KXφ
i

〈〈Γ ∪ {E}〉〉 ⋄ (donei ∧ f1(φ)) if χ = 〈〈Γ〉〉 ⋄ φi

It is possible that both the first and either the second or the third clause can
be used. In this case, the first rule takes precedence because this yields the

10

Van Otterloo, Van der Hoek and Wooldridge

smallest translation.

The reason for the use of the environment agent E is that in case we want
to determine whether B, s |= KAp ∨ KBp, the intuition is to define a model
in which both transitions eA and transitions labeled eB begin in s. In the
definition of a TBS it is required that transitions from the same node must
have the same label. In order to overcome this, in the definition of t we will
define that from s one transitions leads to a new state t1, where all the needed
eA transition can start, and one transition leads to t2. All transitions from t2
are labeled eB. The environment plays a similar ‘administrative’ role in the
translation of the strategic operators.

The translation of our example formula is

f(µ) = f1(number(µ)) = 〈〈〉〉 ⋄ (done1 ∧ b1)

Suppose B = ((S, P, π,Σ, a, label), {∼i}i∈Σ) and that B, s is a pointed
TBES. Let φ be a numbered ATEL formula and let N be the set of all
numbers used in φ. Assume ((S ′, P ′, π′,Σ′, a′, label′), s′) = t((B, s), φ). The
next definitions apply.

S ′ = {state(s, j)|s ∈ S, j ∈ N}

P ′ = P ∪ {donei|i ∈ N ∧ i > 0}

Σ′ = {X|X ∈ Σ} ∪ {eX|X ∈ Σ} ∪ {E}

π′(p, state(s, j)) = π(p, s) for all p ∈ P

π′(donei, state(s, j)) = true if i = j, false otherwise

There is no proposition done0. The number 0 is assigned to the whole
formula, but the function f is designed such that there is no need to refer to
done0. The intuition behind the definition of P ′ is that all old propositions
can be used and the propositions donei which can be used as labels. In order
to interpret these label propositions every state must encode which labels are
valid. Luckily at most one label is applied to any state, therefore we can
attach to any state the number of the donei proposition that is true. This
explains the definition of π′ and S ′.

For the example model ((S ′, P ′, π′,Σ′, a′, label′), s′) = t(T, µ) we have:

N = {0, 1}

P ′ = {ai|0 < i < 6} ∪ {bi|0 < i < 6} ∪ {ci|0 < i < 6} ∪ {done1}

Σ′ = {A,B,C, eA, eB, eC,E}

S ′ = {state(ab|cd|e, x)|{a, b, c, d, e} = {1, 2, 3, 4, 5},

a < b, c < d, x = 0 ∨ x = 1}

11

Van Otterloo, Van der Hoek and Wooldridge

and

π′ : π′(done1, state(ab|cd|e, j)) = true if j = 1, false if j = 0

π′ : π′(p, state(ab|cd|e, j)) = π(p, ab|cd|e) for all other p

We define the remaining components, a′, label′ and s′ by the means of the
tree T = t2((B, s), φ). First, we explain what is meant by a tree and how
these parts can be derived from a tree. Then we define the function t2 that
constructs such a tree.

The format of a tree is node(state(s, j), C). The first element state(s, j)
must be in S ′ and is a state from the new model. The set C encodes where we
can go from this state. C is a collection of pairs (X,U). The X is the agent
which can make this transition. For any two elements (X,U) and (Y, V), X
and Y must be equal. The second element of the pair, U , is itself a tree.

Suppose we have a tree T = t2((B, s), φ), and we wish to know the initial
state s′, the transition relation a′, and the label relation label′ of the model
((S ′, P ′, π′,Σ′, a′, label′), s′) = t(B, φ). The initial state s′ is the state at the
root of the tree, so if T = node(state(s0, j0), C0) for some s0, j0 and C0, then
s′ = state(s0, j0). The set a′ consist of all pairs (state(s, j), state(t, k)) such
that node(state(s, j), C) appears in the tree and (X, node(state(t, k), D)) ∈ C,
so transitions are from a subtree to a child of that subtree. For the pair
state(s, j), state(t, k), the label of the transition would be X, since X is the
first element of the pair (X, node(state(t, k), D)) ∈ C.

The function t2 is defined in terms of t3. We will abuse notation slightly
by writing t2(s, p) instead of t2((B, s), p), and by writing t3(s, p, j) instead of
t3((B, s), p, j). In the following definition, the symbol S refers to the set of
states of B and a refers to the transition relation of B.

t2(s, φ
i) = t3(s, φ

i, i)

t3(s, φ
i, l) = node(state(s, l), ∅) for any φ ∈ PL

t3(s, (φ
i ∨ ψj)k, l) = node(state(s, l), {(E, t3(s, φ

i, i)), (E, t3(s, ψ
j, j))})

t3(s, (¬φ
i)i, l) = t3(s, φ

i, l)

t3(s, (KXφ
i)j, l) = node(state(s, l), {(eX, t3(s

′, φi, i))|s ∼X s′})

t3(s, (〈〈Γ〉〉 ⋄ φ
i)j, l) = node(state(s, l), {C1, C2})

where

C1 = (E, t3(s, φ
i, i)),

C2 = (E, node(state(s, 0), Z))), and

Z = {(X, t3(t, (〈〈Γ〉〉 ⋄ φ
i)j , 0))|(s, t) ∈ a ∧X = label(s, t)}

The last clause of this definition defines the translation of the strategic oper-

12

Van Otterloo, Van der Hoek and Wooldridge

ator. We have modelled this with steps of the original system in set Z, which
are interleaved by steps of the environment. The environment can choose
whether it wants to continue selecting steps from Z, or move on to evaluating
the formula to know φ. In the corresponding translation of the formula we see
that indeed the environment and the coalition must work together in the new
ATL system, instead of only the coalition as in the original ATEL system.

The tree would be infinite if φ contained a strategic operator and the
transition relation a of the TBES B we started with contained cycles. We
have thus assumed that this relation is acyclic.

Applying this reduction to the example formula µ and model T , we get
the following

t2(01|23|4, µ) = node(state(01|23|4, 0), {X, Y, Z})

where:

X = (eA, node(state(01|24|3, 1), ∅)),

Y = (eA, node(state(01|23|4, 1), ∅)),

Z = (eA, node(state(01|34|2, 1), ∅)),

s′ = state(01|23|4, 0), and

a′ = {(state(01|23|4, 0), state(01|23|4, 1)),

(state(01|24|3, 0), state(01|24|3, 1)),

(state(01|34|2, 0), state(01|34|2, 1))}

The outcome of t3(T, µ) is depicted in figure 4, where t is the same as done1.
The picture shows only four states. The two states not shown, state(01|24|3, 0)
and state(01|34|2, 0) cannot be reached from the initial state (state(01|23|4, 0)
and have been omitted to simplify the figure.

Theorem 5.1 For any pointed TBES (B, s) and any ATEL formula δ, B, s |=
δ if and only if t((B, s), δ) |= f((B, s), δ).

Proof. Let (B, s) be a pointed TBES and δ an ATEL formula. Let(T , t) =
t((B, s), δ) and let φ′ = f((B, s), δ). We must show that B, s |= δ if and only
if (T , t) |= φ′. We will prove this by proving the stronger claim that for any
subformula ψj of number(δ) and state s ∈ B such that state(s, j) occurs in
the tree t2((B, δ), 0), it holds that (B, s) |= ψj if and only if (T , state(s, j)) |=
f1(ψ). We will prove this last claim by induction.

Let ψj be a subformula of number(δ). Suppose first that ψ ∈ PL. In that
case f1(ψ

j) = ψ. The interpretation of a formula in propositional logic only
depends on the current state. π′ is constructed such that for all p occurring
in ψ, π′(p, state(s, j)) = π(p, s), and therefore (B, s) |= ψj if and only if
(T , state(s, j)) |= f1(ψ), which we had to prove. This provides us with the
inductive base.

13

Van Otterloo, Van der Hoek and Wooldridge

For the next step suppose ψj = (¬χj)j. We will show that (B, s) |= (¬χj)j

if and only if (T , state(s, j)) |= f1((¬χ
j)j).

(B, s) |= (¬χj)j ⇔(ATEL semantic)

not (B, s) |= χj) ⇔(induction hypothesis)

not (T , state(s, j)) |= χj ⇔(ATL semantic)

(T , state(s, j)) |= f1((¬χ
j)j)

Now suppose that ψj = (φi ∨ χk)j.

B, s |= ψj ⇔(ATEL sem.)

B, s |= φi or (B, s) |= χk ⇔(induction hyp.)

T , state(s, i) |= f1(φ
i) or (T , state(s, k)) |= f1(χ

k) ⇔(structure t3)

T , state(s, j) |= 〈〈E〉〉 ⋄ (donei ∧ f1(φ
i)) ∨ (donek ∧ f1(χ

k))) ⇔(definition f1)

T , state(s, j) |= f1(ψ
j)

The argument given above depends on the definition of t3, which is applied
below. t3(s, (φ

i ∨χk)j, l) = node(state(s, l), {(E, t3(s, φ
i, i)), (E, t3(s, ψ

j, j))}).
One can see from this formula that the strategy for E can only make one choice
out of two options. One options will be succesful if (T , state(s, i)) |= f1(φ

i),
the other if (T , state(s, k)) |= f1(χ

k).

Next we deal with the strategic oprator. Let ψj = (〈〈Γ〉〉⋄φi)j. We will first
proof that (B, s) |= ψj ⇒ (T , state(s, j)) |= f1(ψ

j), and then that (B, s) |=
ψj ⇐ (T , state(s, j)) |= f1(ψ

j).

Assume that (B, s) |= ψj. This means that there is a strategy S for Γ such
that ∀r = (s, s1, . . .) in which agents in Γ use S a state si exists such that
(B, si) |= φ.

The structure of t3(ψ
j) is given next.

t3(ψ
j) = node(state(s, j), {A,B})

A = (E, t3(s, φ
i, i))

B = (E, node(state(s, 0), Z)))

Z = {(label(s, t), t3(t, ψ
j, 0))|(s, t) ∈ a}

Suppose that E decides to take option B for some amount of time and that Γ
uses S. In that case for any run w we will arive in a state state(wx, l) for some
l such that (B, wx) |= φ. Assume that here the environment chooses option
A. This brings us to a state state(wx, i) where donei will hold. Furthermore,
by induction hypothesis, we know that T , state(wx, i)) |= f1(φ

i). Therefore we
know that Γ ∪ {E} has a strategy for bringing about in some state in every
run (donei∧f1(φ

i)), which means that (T , state(s, j)) |= 〈〈Γ∪{E}〉〉⋄ (donei∧

14

Van Otterloo, Van der Hoek and Wooldridge

f1(φ
i)) = f1(ψ

j).

For the second part assume that (T , state(s, j)) |= f1(ψ
j). Therefore Γ ∪

{E} has a strategy S such that for any run v starting in state(s, j) there
is a state vx such that T , vx |= (donei ∧ f1(φ

i)). Let w be any run of B
starting in s in which all agents of Γ use the strategy which corresponds to
their strategy S. We can translate this run w to a run v in T where the
environment will repeatedly choose option B. Since donei is never true on
this run, the strategy S must at a certain point vx specify a different move
for the environment. So assume that that v′ is a run in which Γ ∪ {E} uses
strategy S such that v′0 . . . v

′

x = v0 . . . vx and at v′x+1 is a state state(s′, i). This
is the only state of v′ in which donei is true. Since we have assumed that
the strategy S works for every run, we have T , state(s′, i) |= (donei ∧ f1(φ

i))
and thus T , state(s′, i) |= f1(φ

i). Using the induction hypothesis we know that
B, s′ |= φ. From the definition of t3 we see that v′x = vx = state(s′, l) and
therefore wx = s′. Since we have shown the existence of such a state wx for
any run w in which Γ uses the strategy corresponding to S, we can conclude
(B, s) |= ψj.

Finally, suppose that ψj = (KXφ
i)j. Then f1((KXφ

i)j) =〈〈〉〉 ⋄ (donei ∧
f1(φ

i)), and t3(s,KXφ
i, j) =node(state(s, j), {(eX, t3(s

′, φ, i))|s ∼X s′}). We
must prove that B, s |= ψ if and only if T , state(s, j) |= f1(ψ).

(B, s) |= ψj ⇔(ATEL semantic)

∀t ∼X s : (B, t) |= φi ⇔(induction hypothesis)

∀t ∼X s : (T , state(t, i)) |= f1(φ
i)

For any state t with s ∼X t there is in T a transition from state(s, j) to
state(t, i). A statement regarding the empty coalition, such as 〈〈〉〉 ⋄ (donei ∧
f1(φ

i)), is only true if on all paths there is a state in which donei ∧ f1(φ) is
true. Therefore the next equivalences hold.

∀t ∼X s : (T , state(t, i)) |= f1(φ
i) ⇔

T , state(t, j) |= 〈〈〉〉 ⋄ (donei ∧ f1(φ
i)) ⇔

T , state(t, j) |= f1(ψ
j)

This concludes our the proof of our statement. 2

6 Implementation in Mocha

In this section we demonstrate how the technique we have described can be
applied to the Russian cards scenario. The example code has two goals. The
first is to show how a turn-based system can be modelled in Mocha [1] using a
controller or scheduler module. Secondly it shows how the reduction method
from this paper can be implemented in Mocha. The first part of this section
explains how the protocol has been modelled in the first place. The second part

15

Van Otterloo, Van der Hoek and Wooldridge

shows which modifications and additions are being made when applying the
reduction we propose. The Mocha code for this example can be downloaded
from http://www.csc.liv.ac.uk/∼sieuwert/.

Modelling the Scenario in Mocha

Mocha is a intended for the modular verification of heterogeneous systems.
It accepts a transition system described in the ReactiveModules language as
input, and allows one to either simulate the system or else to check ATL
properties on the system. The system is composed of several modules that
run in parallel. Each variable can only be controlled by one module, but can
be read by any module. Modules communicate by means of shared variables
or by passing “events”.

The parallel setup is convenient for instance in the case of modelling digital
circuits, where each path between components is translated into a variable.
Our example can be seen as a turn-based synchronous system [2] and this
requires a different approach. To make sure only one module acts at any time
and all the modules act in the appropriate order, a separate module named
Control has been introduced. This module signals all processes if they are
expected to do something. One part of this module encodes the order of steps
in the system, making it easy to change the order of steps or introduce new
steps.

The state of the world in the example consists of the deal of cards and
all announcements made. The deal of cards can be stored in five variables
d, e, f, g, h each containing one card. Agent A holds the cards contained in
d, e, B holds f, g and C holds h.

In turn-based systems it is possible that more than one module is in certain
situations allowed to change the value of a variable. In ReactiveModules this
cannot be implemented directly. This issue of write-shared variables can be
solved by giving Control write-access to these variables. Modules X that
need to alter the value of such a variable y are in control of their own copies
of this variables, called xy. The x is some identifier unique for module X to
make sure all variables have a unique name. When the module Control ends
the turn of a certain module X, it copies the value of xy into the real variable
y.

The technique for implementing turn-based systems described above has
been used to obtain the implementation of the protocol. Below the full pro-
gram is given, followed by details about the role of each variable.

type cards :{zero,one,two,three,four}

type modules:{epA,epB,epC,none,actA,actB}

module actionA

interface u1,u2:cards

external focus:modules;d,e:cards

16

http://www.csc.liv.ac.uk/~sieuwert/

Van Otterloo, Van der Hoek and Wooldridge

atom step

controls u1,u2

reads u1,u2,d,e

awaits focus

init

[] true -> u1’:=one;u2’:=one

update

[] focus’=actA&(d=four|d=zero|e=four|e=zero) ->

u1’:=four;u2’:=zero

[] focus’=actA&(d=one|d=two|e=one|e=two) ->

u1’:=one;u2’:=two

[] focus’=actA&(d=four|d=three|e=four|e=three) ->

u1’:=three;u2’:=four

[] default ->

endatom

endmodule

module Control

interface d,e,f,g,h:cards;

stp:(0..10);

focus:modules;

finish:bool

external af,ag,ah,bd,be,bh,cd,ce,cf,cg:cards

atom step

controls d,e,f,g,h,stp,focus,finish

reads d,e,f,g,h,stp,focus,finish,af,ag,ah,bd,be,bh,cd,ce,cf,cg

init

[] true ->

d’:=zero;e’:=one;f’:=two;g’:=three;h’:=four;

stp’:=0;

finish’:=false;

focus’:=none

update

-- insert here

[] focus=none & stp=0 -> focus’:=actA

[] focus=none & stp=1 -> finish’:=true

-- end of insert

--receive feedback from processes

[] focus=actA ->

focus’:=none;

stp’:=stp+1

endatom

endmodule

The module that is allowed to make a transition is always stored in focus.
It contains the name of a module or the value none. The none value indicates
that all variables wait for the module Control to do its work.

The module Control sets the boolean variable finished to true if a run is
finished. This variable can be used as a label is formulas, indicating a terminal
state. Checks on the variable stp can be used as labels for other positions in

17

Van Otterloo, Van der Hoek and Wooldridge

the protocol.

The basic setup of a turn-based system has been implemented with one
module actionA. This module encodes the actions agent A of our example can
do. This agent can make one out of three statements, provided the statement is
true. The statement is stored in the variables u1,u2. Initially, these variables
have the same value. This indicates that no statement has been made yet.
When these variable have a different value, the interpretation variables is that
agent A makes the statement au1 ∧ au2.

The proposition a0 is expressed in the code as d=zero|e=zero (“d is zero
or e is zero”), because d,e are A’s cards.

The specification given contains some redundant variables and values.
These variables will be used later on. In order to avoid having to include
almost similar code later on we have not stripped the code from unused vari-
ables (af,ag,ah,bd,be,bh,cd,ce,cf,cg) or values (epA,epB,epC,actB).

Applying the reduction

In this section, we describe how an ATEL formula can be verified by checking
a corresponding ATL formula on a modified model. Some of the modifications
to the module are specific to the formula. First, we describe the addition of a
module for each agent encoding that agent’s epistemic accessibility relation.
These modules corresponds to the epistemic agents of section 5. They do not
depend on the specific formula.

For each of agent X an extra module called epistemicX was created. From
the definition of knowledge in an interpreted system [6] it follows that an agent
knows its own variables. Each epistemic module reassigns all other variables
in any consistent manner. For most systems, including the example system
this is straightforward to implement.

Agent A has access to its own cards. The module epistemicA should
therefore rearrange the cards of B and C. The next module implements the
rearrangements. The variables af, ag, ah are copies of f, g, h allowing this
module to suggest new values for these variables.

module epistemicA

interface af,ag,ah:cards

external focus:modules;f,g,h:cards

atom step

controls af,ag,ah

reads f,g,h,af,ag,ah

awaits focus

init

[]true->af’:=one;ag’:=one;ah’:=one

update

[]focus’=epA -> af’:=f;ag’:=g;ah’:=h

[]focus’=epA -> af’:=h;ag’:=g;ah’:=f

[]focus’=epA -> af’:=f;ag’:=h;ah’:=g

[] default ->

endatom

18

Van Otterloo, Van der Hoek and Wooldridge

endmodule

In the example, agent A can make one of three statements. These state-
ments do not affect the knowledge of agent A, so they have not been used in
the definition of epistemicA. For the knowledge of B and C, the statements
are of course relevant. The module epistemicB is similar to epistemicA,
except that it depends on the statement made by A. Extra conditions have
been prefixed to the possible swaps. One of the conditions is “No statements
has been made yet”. In code, this is u1=u2, since by convention u1,u2 are
only equal if no statement has been made. The proposition encoded in u1,u2

is true if one of the cards is indeed held by A:(u1=d|u1=e|u2=d|u2=e).

module epistemicB

interface bd,be,bh:cards

external focus:modules;d,e,h,u1,u2:cards

atom step

controls bd,be,bh

reads d,e,h,bd,be,bh,u1,u2

awaits focus

init

[]true->bd’:=one;be’:=one;bh’:=one

update

[]focus’=epB & (u1=u2|u1=d|u1=e|u2=d|u2=e)-> bd’:=d;be’:=e;bh’:=h

[]focus’=epB & (u1=u2|u1=h|u1=e|u2=h|u2=e) -> bd’:=h;be’:=e;bh’:=d

[]focus’=epB &(u1=u2|u1=d|u1=h|u2=d|u2=h)-> bd’:=d;be’:=h;bh’:=e

[] default ->

endatom

endmodule

module epistemicC

interface cd,ce,cf,cg:cards

external focus:modules;d,e,f,g,u1,u2:cards

atom step

controls cd,ce,cf,cg

reads d,e,f,g,cd,ce,cf,cg,u1,u2

awaits focus

init

[]true->cd’:=one;ce’:=one;cf’:=one;cg’:=one

update

[]focus’=epC & (u1=u2|u1=d|u1=e|u2=d|u2=e) -> cd’:=d;ce’:=e;cf’:=f;cg’:=g

[]focus’=epC & (u1=u2|u1=d|u1=f|u2=d|u2=f)-> cd’:=d;ce’:=f;cf’:=e;cg’:=g

[]focus’=epC & (u1=u2|u1=d|u1=g|u2=d|u2=g)-> cd’:=d;ce’:=g;cf’:=f;cg’:=e

[]focus’=epC & (u1=u2|u1=f|u1=e|u2=f|u2=e)-> cd’:=f;ce’:=e;cf’:=d;cg’:=g

[]focus’=epC & (u1=u2|u1=g|u1=e|u2=g|u2=e)-> cd’:=g;ce’:=e;cf’:=f;cg’:=d

[]focus’=epC & (u1=u2|u1=f|u1=g|u2=f|u2=g)-> cd’:=f;ce’:=g;cf’:=d;cg’:=e

[] default ->

endatom

endmodule

The introduction of new modules imposes some additional bookkeeping
requirements. The next lines must appear in the Control module. The lines
are responsible for transferring the control back from each module to the

19

Van Otterloo, Van der Hoek and Wooldridge

Control module. These lines are similar for the action and the epistemic
modules. They replace the old part, starting with the comment --receive

feedback from processes.

--receive feedback from processes

[] focus=epA ->

f’:=af;g’:=ag;h’:=ah;

focus’:=none;

stp’:=stp+1

[] focus=epB ->

d’:=bd;e’:=be;h’:=bh;

focus’:=none;

stp’:=stp+1

[] focus=epC ->

d’:=cd;e’:=ce;f’:=cf;g’:=cg;

focus’:=none;

stp’:=stp+1

[] focus=actA ->

focus’:=none;

stp’:=stp+1

For each formula to check, we must alter the game structure: the epistemic
modules of the agents involved must be used. In the program prior to modifi-
cation, a comment appears saying -- insert here. At this point, the turns
of the game are determined. In the original scenario, the module actionA

was allowed to do one action (to make an announcement). This is modified
to include epistemic transitions, matching the order of epistemic operators in
the formula to check.

In section 2, several epistemic and ATEL formulas are given. Here we give,
for each formula, the translation in ATL, together with a new set of lines to be
inserted in the program. The ATL formulas are given in the input format of
Mocha. For each example formula φ a statement atl "anyname" φ; is given.
This assigns the name anyname to the ATL formula φ. The difference between
the logical notation and the Mocha notation for formulas is that the diamond
⋄ is replaced by F. The propositions referring to the cards are translated into
simple tests on the five variables d,e,f,g,h. The next table illustrates the
translation of propositions.

proposition Mocha test

a0 d=zero|e=zero

b0 f=zero|g=zero

c0 h=zero

For the translation of epistemic operators we need labels, so that the for-
mula can refer to the point in each run after the epistemic transitions have
been made. These correspond to the donei propositions in the proof. The
boolean variable finish was introduced to serve as a label for the final state

20

Van Otterloo, Van der Hoek and Wooldridge

of each run. Tests on the variable stp can be used to refer to other points in
each run.

The next ATL formulas and modifications correspond to the first three
example formulas (page 3). The first line is the original formula. The following
lines must be included in the Control module. The line starting with atl

contains the resulting ATL formula, and the last line indicates the model
checking result (either passed or failed).

-- Ka a0

-- [] focus=none & stp=0 -> focus’:=epA

-- [] focus=none & stp=1 -> finish’:=true

atl "simple1" <<>> F (finish & (d=zero|e=zero));

--passed

-- Kb a0

-- [] focus=none & stp=0 -> focus’:=epB

-- [] focus=none & stp=1 -> finish’:=true

atl "simple2" <<>> F (finish & (d=zero|e=zero));

-- failed

-- Ka-Kb a0

-- [] focus=none & stp=0 -> focus’:=epA

-- [] focus=none & stp=1 -> focus’:=epB

-- [] focus=none & stp=2 -> finish’:=true

atl "simple3" <<>> F (stp=1 & ~(<<>> F (finish & (d=zero|e=zero))));

-- passed

The results are correct, just as we expected. Since these examples are
formulas in epistemic logic, this only shows that an ATL model checker can
be used for checking epistemic properties.

The next examples illustrate the state of knowledge after A makes the
statement a1 ∨ a2. These examples are still only epistemic, but they must be
evaluated at a specific point, in only some runs of the system. In order to
express in ATEL that a formula must be true after a certain move, an ad hoc
notation must be introduced. The original ATEL formula for the next example
can be written down using t as a proposition which is true in a terminal state,
and u as a proposition true if A has announced a1 ∨ a2. The original ATEL
formula for the first example is 〈〈〉〉 ⋄ (t ∧ (¬u ∨KBa1)). In a run in which A
makes a different statement to a1 ∨ a2, the value of u1 will not be equal to
one. Therefore the test (∼u1=one) can be used in the code instead of u.

-- [after saying a1 or a2] Kb a1

-- [] focus=none & stp=0 -> focus’:=actA

-- [] focus=none & stp=1 -> focus’:=epB

-- [] focus=none & stp=2 -> finish’:=true

atl "dyn1" <<>> F (finish & ((~u1=one)|(d=one|e=one)));

-- passed

-- [after saying a1 or a2] Ka Kb a1

-- [] focus=none & stp=0 -> focus’:=actA

-- [] focus=none & stp=1 -> focus’:=epA

21

Van Otterloo, Van der Hoek and Wooldridge

-- [] focus=none & stp=2 -> focus’:=epB

-- [] focus=none & stp=3 -> finish’:=true

atl "dyn2" <<>> F (finish & ((~u1=one)|(d=one|e=one)));

-- failed

Again the true formula passes and the false formula fails. This illustrates
how one can check knowledge at different points than the initial situation.
The selection of tests to use in the formulas seem somewhat ad hoc. We have
opted not to introduce extra variables to act as fresh propositions, but to use
tests on existing variables. Enough variables are already available to create a
simple test for any interesting point in a run.

The main question is of course whether we can also evaluate the final
formulas, which combine knowledge and strategies. The next examples show
translations for the last two example formulas which mix epistemic and strate-
gic operators.

-- <<A>> KB a1

-- [] focus=none & stp=0 -> focus’:=actA

-- [] focus=none & stp=1 -> focus’:=epB

-- [] focus=none & stp=2 -> finish’:=true

atl "atel1" <<actionA>> F (finish&(d=one|e=one));

-- passed

-- KA <<A>> KB a1

-- [] focus=none & stp=0 -> focus’:=epA

-- [] focus=none & stp=1 -> focus’:=actA

-- [] focus=none & stp=2 -> focus’:=epB

-- [] focus=none & stp=3 -> finish’:=true

atl "atel2" <<actionA>> F (finish&(d=one|e=one));

-- failed

The formulas given in this section have been simplified compared to the
outcome of the procedure defined in section 5. In our example, knowledge
monotonically increases. For instance in the formula KA〈〈A〉〉⋄KBa1 the envi-
ronment has not been explicitly introduced in the translation of the strategic
operator. In this example that is not necessary since knowledge only in-
creases in this scenario. Another simplification used is that we have replaced
〈〈Γ1〉〉 ⋄ (l1 ∧ 〈〈Γ2〉〉 ⋄ (l2 ∧ φ)) in certain cases by 〈〈Γ1 ∪ Γ2〉〉 ⋄ (l2 ∧ φ)). This is
equivalent if all turns of Γ1 precede the turns of Γ2, which is the case in our
example. In an automated translation process there is no need for these sim-
plifications, but we hope that the resulting formulas are easier to read when
they are simplified.

Again, the results are correct. We hope this example has convinced the
reader that explicit encoding of epistemic relations is a feasible method for
model checking ATEL.

22

Van Otterloo, Van der Hoek and Wooldridge

7 Conclusion

We have demonstrated a technique for model checking ATEL, a logic for ex-
pressing properties involving both knowledge and strategies, using an ATL
model checker. The approach can be used for arbitrary ATEL formulas on
any turn-based acyclic transition system. Since ATL model checkers already
exist, we believe this is a useful result of immediate practical value.

Application of the method involves explicit encoding of transitions corre-
sponding to epistemic relations. The example given shows how to derive such
code for a small turn-based acyclic system.

An interesting question for future research is whether the approach can be
extended to incorporate multi-agent notions of knowledge, such as common
and distributed knowledge [6].

References

[1] Alur, R., L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang,
S. Qadeer, S. K. Rajamani and S. Taşiran, mocha user manual, University
of Berkeley Report (2000).

[2] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time temporal logic,
in: Proceedings of the 38th IEEE Symposium on Foundations of Computer
Science, Florida, 1997, pp. 100–109.

[3] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time temporal logic,
Journal of the ACM 49 (2002), pp. 672–713.

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge
University Press: Cambridge, England, 2001.

[5] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The MIT
Press: Cambridge, MA, 2000.

[6] Fagin, R., J. Y. Halpern, Y. Moses and M. Y. Vardi, “Reasoning about
knowledge,” The MIT Press: Cambridge, MA, 1995.

[7] Jamroga, W. and W. van der Hoek, Some remarks on alternating-time temporal
epistemic logic (2003).

[8] Jonker, G., Feasible strategies in alternating-time temporal epistemic logic
(2003), universiteit Utrecht Master Thesis.

[9] Osborne, M. J. and A. Rubinstein, “A Course in Game Theory,” The MIT
Press: Cambridge, MA, 1994.

[10] van der Hoek, W. and M. Wooldridge, Model checking knowledge and time,
in: D. Bos̆nac̆ki and S. Leue, editors, Model Checking Software, Proceedings of
SPIN 2002 (LNCS Volume 2318) (2002), pp. 95–111.

23

Van Otterloo, Van der Hoek and Wooldridge

[11] van der Hoek, W. and M. Wooldridge, Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications, Studia Logica
75 (2003), pp. 125–157.

[12] van Ditmarsch, H. P., “Knowledge Games,” Ph.D. thesis, University of
Groningen, Groningen (2000).

[13] van Ditmarsch, H. P., The russian cards problem, Studia Logica 75 (2003),
pp. 31–62.

24

	Introduction
	A Running Example
	Modelling Epistemic Relations
	Definitions
	The Reduction
	Implementation in Mocha
	Conclusion
	References

