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Abstract

A real-time process algebra is presented that features
stochastic delays governed by general distributions. In
a setting of weak choice, dependent and independent
alternative and parallel composition are distinguished.
This enables an expansion law for the parallel operator,
as well as modular process definitions. The interplay
of real-time, stochastic delays and immediate actions is
illustrated by a modeling of the G/G/1/00 queue.

1. Introduction

Stochastic process algebras emerged as a powerful
tool for both qualitative and quantitative analysis of
processes. Early stochastic process algebras typically
employed exponentially distributed stochastic delays.
Because of its memoryless property, usage of the ex-
ponential distribution greatly simplifies the treatment
of the parallel composition. Prominent Markovian
process algebras include TIPP, EMPA, PEPA and the
algebra of IMC. The first three associate exponential
rates with actions, whereas the latter explicitly distin-
guishes between actions and rates.

Despite the great success, exponential delays turned
out not to be sufficient for a number of modeling pur-
poses, such as for protocols for downloading or media
streaming. Consequently, several stochastic process al-
gebras with general distributions were proposed, like
SPADES, IGSMP and NMSPA [11, 6, 17]. SPADES
uses residual lifetime semantics and has clocks to model
stochastic delays. Each clock samples from a general
distribution. Sets of clocks guard actions that be-
come enabled after all the clocks have expired. The
semantics is given in terms of stochastic automata [10].
IGSMP uses clocks with an associated expiration time
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distribution to record spent lifetimes. After a clock
expiration the other active clocks are redistributed
according to the time that passed. The semantics
involves generalized semi-Markov processes extended
with actions. To that end, the alternative composition
is modeled as a probabilistic choice between differently
distributed clocks. NMSPA exploits random variables
for the guidance of stochastic delays. Also here, ex-
piration of a stochastic delay induces redistribution of
the other variables. The semantics is given in terms of
transition systems. The alternative composition is de-
fined over an arbitrary number of summands in order
to achieve maximal progress for internal actions. The
alternative composition of delays that exhibit the same
duration followed by an internal action, is treated as an
inherent probabilistic choice. Other stochastic process
algebras that we mention here are the stochastic -
calculus and TIPP [20, 14]. More can be found in the
review [7].

Typically, Markovian process algebras do not ex-
tend real-time process algebras because of the expo-
nential distribution. Generally distributed stochastic
delays are usually tackled by clocks. See, e.g., [15, 1].
For SPADES, a structural translation from stochastic
automata to timed automata with deadlines is given
in [9]. It has been shown that this preserves timed
traces. Also, there is a translation from IGSMP into
pure real-time models termed Interactive Timed Au-
tomata, see [6]. In [2] a proposal of extending timed
LOTOS is made by exploiting stochastic timers.

The main goal of our paper is to deal with stochastic
time as it is done in real-time process algebras [3, 19],
aiming at a conservative extension of real-time process
algebras with stochastic delays. Building on our pre-
vious work [18], we deal with a semantics that ex-
ploits spent-time and avoids explicit clocks in a setting
with immediate actions, deadlock and termination. We
model stochastic delays as timed delays guided by (fi-
nite or countably infinite) discrete random variables, as
we wish to distinguish between actions and stochastic



delays, similar as in IMC [13]. The alternative com-
position implements weak choice between immediate
actions and passage of time along the lines of real-time
process algebras in the style of [3]. Relying on this, the
parallel operator can be treated by standard means.
We give the semantics in terms of stochastic transition
systems. In comparison to other stochastic process al-
gebras, our approach is closest to NMSPA. However, we
define alternative composition on two processes rather
than on arbitrary sums and, in our setting, passage of
time makes no choice in case both summands can delay
simultaneously. We introduce a so-called dependent al-
ternative composition that guarantees that stochastic
delays guided by the same variable will always exhibit
the same duration. This way, improving on [18], we
are able to obtain an expansion law for the parallel op-
erator, a result that was absent previously. Again, via
an embedding of transition systems, the proposed sto-
chastic process algebra can be shown to extend real-
time process algebra. In our present work, we focus
on discrete stochastic delays, mainly because they al-
most effortlessly model real-time delays as degenerated
discrete random variables. Also, as a technical con-
venience, they allow two different delays to actually
exhibit the same duration, a property not shared by
continuous distributions.

The rest of this paper is organized as follows: Sec-
tion 2 provides mathematical preliminaries. Section 3
introduces a basic stochastic process algebra with al-
ternative composition and prefixes with stochastic de-
lay. Section 4 deals with stochastic transition systems,
stochastic bisimulation and a-conversion. Section 5
discusses the parallel operator and standard auxiliary
operators. Section 6 revisits the embedding of real-
time and the modeling in the present setting of an
G/G/1/o0 queue. Section 7 wraps up with conclud-
ing remarks.
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2. Preliminaries

We write RT for {t € R |t > 0}. We use discrete
random variables to represent durations of stochastic
delays. So, we only consider distribution functions F'
such that F(t) = 0 for t < 0. We denote the set of
such distribution functions by F and the set of the
corresponding random variables by V. We use X, Y
and Z to range over V and Fx, Fy and F for their
respective distribution functions. If P(X = t) = 1,
then we say that the random variable X is degenerated
or Dirac. We denote such a random variable by D;.
The support set of a random variable X is denoted

by supp(X) = {t € RT | P(X = t) > 0}, which,
by assumption, is finite or countably infinite. We
put supp(S) = (xegsupp(X) for a subset S C V.
By Fx(t) we denote the residual probability distribu-
tion 1 — Fx(¢). For S CV, y € R and ¢ either <, > or
=, we write Soy if Xoy, for all X € S. We denote con-
ditional random variables by (X |Event), where X € V
and Event such that P(Event) > 0.

A stochastic delay is a timed delay with duration
guided by a random variable. We observe simultane-
ous passage of time for a number of stochastic delays
until one or some of them expire. This phenomenon
is referred to as the race condition and the process as
the race. For multiple stochastic delays in a race, differ-
ent stochastic delays can be observed simultaneously as
being the shortest. The shortest duration itself can be
different and exhibited by different stochastic delays in
different observations. The stochastic delays that have
the shortest duration are called the winners, the others
are called the losers of the race.

The probability that a subset W C V is the win-
ning set of a race performed by the variables of the
set V with a duration d is denoted by RC4(W, V). It
is defined as

RCa(W,V) = [Tyew P(X = d) - [Txerw Fx(d).

The probability for W C V being the winning set
is denoted by RC(W, V) and can be calculated from
RCW,V) = X sesuppw) RCa(W, V).

3. Basic Sequential Processes

We give the semantics of processes that have discrete
stochastic delays, immediate actions, termination and
deadlock, and implement weak choice between actions
and passage of time. The behavior of these processes is
captured by the process algebra BSP%*( A, V) defined
below. Here, A is the set of actions and V is the set
of random variables that guide the stochastic delays.
We postulate a function ¢: V — F that assigns to a
variable X a (possibly infinite) discrete probability dis-
tribution. For renaming purposes, we assume that for
every distribution in F there are countably infinitely
many variables mapping to it.

The process algebra has two alternative composition
operators that differ in their treatment of stochastic de-
lays governed by the same variables in a race. The so-
called dependent alternative composition _+ _ assigns
a single duration to racing delays referring to the same
random variable. For the so-called independent alter-
native composition _ @ _ racing delays with the same
random variable may have assigned a different dura-
tion. We studied independent alternative composition



in previous work [18]. There, we concluded that be-
cause of the independence of the stochastic delays, it
is not possible to come up with an expansion law for
the parallel composition. For that reason we introduce
here, the dependent alternative composition that solves
this problem. However, having only a dependent alter-
native composition is not sufficient for modeling pur-
poses. More precisely, when describing a complex sys-
tem, typically one needs to combine several instances
of the same component. Therefore, the stochastic de-
lays in separate instances that happen to be guided by
the same variable are considered to sample different
durations in general.

Definition 1 The signature of BSP®' consists of two
constants § and €, two unary operator schemes a._, for
a€ A, andox._, for X € V, and two binary operators
_+_ and _® _. The syntax is given by

P:=¢|e|laP|lox.P|P+P|P®P

with a € A and X € V. We use p and q to range
over BSPY*. We write C(BSPY") for its closed terms.

The signature of BSP®" is adopted from [4]. The con-
stant § represents immediate deadlock which does not
allow passage of time. Similarly, the constant e rep-
resents a process that immediately terminates success-
fully. The action prefix scheme a.p comprises processes
that immediately execute the action a and continue to
behave as p. The delay prefix scheme ox.p provides
processes that execute a stochastic delay guided by X
and continue to behave as p. The interpretation of
the dependent alternative composition + relies on the
context: a non-deterministic choice is made between
actions; a weak choice between actions, successful ter-
mination and stochastic delays; a race condition is im-
posed on stochastic delays such that two stochastic de-
lays guided by the same variable have the same dura-
tion. For the independent alternative composition &,
unlike for the dependent alternative composition, one
has a race condition in which different stochastic de-
lays guided by the same variable can exhibit different
durations.

Discrete Stochastic Delays Because of the race con-
dition, one cannot observe the execution of a stochastic
delay in isolation. An example of a transition system
corresponding to a dependent race between three sto-
chastic delays for the variables X, Y and X again, is
depicted in Fig. 1. Each —-transition represents a sto-
chastic delay. The label shows the winners of the race
and their observed duration. Between parentheses are
the conditions that enable the transition.

For conciseness, the transitions of the stochastic
delay guided by the variable X are represented by

one transition scheme labeled by X and z. The
observed winning duration = takes its values from
supp({(X | X < Y)). Thus, the transition scheme re-
places |supp({X | X < Y')) | many different transitions,
each executed with its own probability. Note that if
P(X <Y) =0 then the transition does not exist and,
also, the conditional random variable (X | X < Y") does
not exist. The losing stochastic delays, represented by
X’ and Y’, are adapted using the winning duration as
discussed below.

ox.p+oy.q+ox.s

X=x Y=y
(X<Y X,y =d (X>Y)
(X=v)
p+oyigts pHq+s ox g+ X

Figure 1. Dependent race condition

Although the race in Fig. 1 is a race between three sto-
chastic delays, the first and the third one will always
have the same duration as they are guided by the same
random variable in the same race. Thus, the race is ac-
tually governed by only two random variables, viz. X
and Y. This is the characteristic of the dependent al-
ternative composition. However, in two different races,
stochastic delays guided by same random variable do
not necessarily have the same duration. For example,
let X € V be such that P(X =1) =1, P(X =2) = 2.
Then the process ox.0x.€ delays 2, 3 or 4 time units
with probabilities %, 1—66 and %, respectively, and then
terminates successfully.

We resolve the interaction of action transitions and
termination versus (positive) stochastic delays by a
weak choice, i.e., a non-deterministic choice between
immediate actions, termination and passage of time.
A typical example of weak choice is depicted in Fig. 2.
Although the action a is immediate, the stochastic de-
lay is enabled. After the delay the action is no longer
available. As a consequence of the weak choice, the

a.p—+oy.q

a Y=y
) _ /\ ,
Figure 2. Weak choice

losers of a race remain and have the option of perform-
ing every possible duration in their residual support
set.

For the independent race in ox.p ® ox.q, we have the
transitions as depicted in Fig. 3. Here, each stochas-
tic delay samples its duration independently. The sto-
chastic delays compete with values from equal but in-
dependent distributions. Therefore, the two stochastic
delays do not need to last equally long (unless the ran-



dom variable is Dirac).

oxpdox.q
X=x X=x
(X<X X, X=d (X>X
(X=X)
pDox.q pDg ox.pdgq

Figure 3. Independent race condition

The situation becomes slightly more involved when
mixing both types of alternative composition. We
treat the stochastic delays that participate in an in-
dependent race also as independent in a comprising
race. An example may clarify this matter. Consider
(ox ®oy)+ox. If the leftmost stochastic delay guided
by X wins the race induced by the independent alter-
native composition, then it will not necessary have the
same duration as the rightmost stochastic delay guided
by X as well, even though they are in a race induced
by a dependent alternative composition. This is be-
cause the leftmost delay sampled independently in the
context of the innermost alternative composition in the
first place.

Aging and Environments We next discuss how the
amount of time that has passed for the winners of a race
influences that of the losers. Consider the example in
Fig. 1. Note that Fx/ is defined only if P(X > y) > 0.
At least one such y € supp(Y) exists if X > Y holds.
The aged distribution of X, Fx/ is given by

Fo(t) = PX < 0] X > v,y =) = D0 = Bclo),

In order to calculate the actual distribution functions
in each state, we need the original distribution function
and its age, i.e., the amount of time that the stochastic

delay participated in races that it lost.

Definition 2 The probability distribution aging func-

tion is a partial function _| _: [F x R — F] given by
Fit+d)—-F(d
(Pl = HEEA D,

fort >0, provided F(d) < 1.

We augment the transition systems with a so-called
environment to store the ages of the stochastic delays.
Put R; = RU{L}. An environment is the function
a:V — R;. We add the a special symbol | to de-
note that a stochastic delay has no age, i.e., it has not
participated in any race up to that moment. By con-
vention F|L = Fand z + 1L =z, for x € R;. We
consider an environment a to be well-defined if, for
each X € V and t > 0, the probability distribution
function Fx(t) = ¢(X)|a(X) is defined. The set of
all well-defined environments, ranged over by «, (3, is
denoted by £.

4. Stochastic Transition Systems

We introduce stochastic transition systems that include
stochastic delays. They are based on the race condi-
tion and provide the basis for the semantics of BSP®.
We show how to handle conflicts can occur because of
variable names by means of a-conversion.

In view of Fig. 1 and Fig. 3, we want to utilize
environments to keep track of residual distributions.
Therefore, we must make sure that the environments
are well-defined. The function A(_): C(BSP%') — 2V
extracts all stochastic delays from a BSP%'-term and
it is given as follows:

A(d) = A(e) =0, Ala.p) = A(p), Alox.p) = {X}UA(p)
Alp+q) =Ap) UA(g), A(p®q) = A(p) UA(9).

The labels of the stochastic delay transitions are deco-
rated by sets of winning delays and the parameterized
winning duration. However, not all stochastic delays
will participate in the same race at the same time.

So, we have to identify only the racing stochastic de-
lays, i.e., the ones that participate in the ongoing race.
The function R(_) collects all stochastic delays that are
directly connected by the topmost alternative compo-
sition operator. These are the only stochastic delays of
the term that can have an age different from 1. For-
mally, the function R(_): C(BSP®") — 2V is given by

R(6) = R(¢e) =0, R(a.p) =0, R(ox.p) = {X}
R(p+¢q) = R(p) UR(q), R(p ® ¢) = R(p) UR(q).

Now, we are ready to give the notion of a stochastic
transition system that deals with aging of distributions.
The states of a stochastic transition system consist of a
closed term and an environment. The term defines the
racing delays; the environment keeps track of the distri-
butions. We write (p, @) € S where S = C(BSP*") x £
for compactness of notation. As usual (cf. [3]) we pro-
vide action transitions —, timed transitions — and ter-
mination |.

Definition 3 A stochastic transition system is a tuple
(8, AV, —,—,]) where
e for each state (p,a) € S, « is a well-defined envi-
ronment and a(X) = L, for all X € A(p) \ R(p);
e > C SxAXS isthe labeled transition relation;
e | C S is the immediate termination predicate;
e — CSx(2V\0) x RT x S is the stochastic delay
transition relation.
ForueS, T,={u> v |SCR(p),teR v eS}
is the set of stochastic delays of u. We require that,
the mapping P,: T, — [0,1] given by P,(u 2y u') =
RC:(S,R(p)) is a probability distribution.



We write (p,a) % (p/, ) if the term p in the environ-
ment a does an action transition with the label a to
the term p’ with updated environment o’. We write
(p, ) sy (p',a’) to denote that a term p in the envi-
ronment « allows time to pass for a duration ¢, trans-
forms to p’ with updated environment a’. The ob-
served time ¢ is the result of a race won by the set of
stochastic delays that are guided by the set of random
variables S. The duration for the winners is determined
by the random variable (X | S = min(R(p))), for every
X € S. The race changes the environment « by incre-
menting the ages of the losing delays. We write X for
{X} when clear from the context.

For the stochastic transition system of a specific
term p € C(BSP™) with an initial well-defined en-
vironment «, we write STS(p, ). The requirement for
an initial well-defined environment ensures that the en-
vironment follows the intuition, i.e., terms that do not
participate in a race do not have an age. In general, we
are interested in stochastic transition systems where no
race has occurred previously. Hence, the initial envi-
ronment is o, where o; (X) = L, for every X € V.
In this case we will use the shorthand STS(p).

Structural Operational Semantics We define an aux-
illiary function to age the losers by incrementing their
age by the winning duration (overloading the related
earlier notation for aging of probability distributions).

Definition 4 The function | _: € x R x 2V — & is
defined, for a € € and a set of losers L CV of a race
with winning duration d, by a|qL = a(X)+d if X € L,
and o|qL = a(X) otherwise.

The structural operational semantics of stochastic
transition systems is given in Table 1. We only give
the rules for the left operand. We put o € {+, &} for
the common rules.

(p, o)l

1 <€,OL>J, 2 m

4 (a.p,a) = (p,a)

5 (ox.pra) S, (p,al {X}> € supp(X)
(pra) > o) (p,a) 2. (9, d), (g,0)
(pog,a) > (', a) (pog,a) . (o)
10 P Sy (0, d), (g,0) i (g 0”), SNT =0, s <t
(p+q.0) o (' + g, /| R(q))

Lo )P .o, (a.0) T (g 0"), s <t
(p&®q,) >, (1 @ g,0/|\R())
1 20 Pa (), {g.0) T {d0”)

(poq,a) 2y (p o ¢’,alaR(po q))

Table 1. SOS for BSPt

Rules 1, 2, and 4 are the standard rules for termina-

tion and action prefix. Rule 5 states that stochastic de-
lay transitions (ox.p) allow passage of time distributed
as ¢(X)|a(X). The non-deterministic choice made by
action transitions from the first summand is shown by
Rule 6. In case the first summand does performs a
stochastic delay as in Rule 8, a weak choice is enabled
between action transitions and passage of time, where
passage of time disables the action transitions of the
second summand. Rule 10 describes the race in case
the first summand wins the race. Note that the set of
winning and the set of losing delays cannot contain the
delays guided by the same variables, which is enforced
by the condition SNT = (). This condition imposes the
desired property that delays simultaneously guided by
the same random variable in the same race always ob-
serve the same duration. The racing delays of the losing
summand R(q) are aged by the winning duration s by
applying the aging function on the environment of the
winner o’ in which the losers of the winning summand
are already aged. Note that since the second summand
can perform a winning duration ¢ > s, the aging of its
racing delays is allowed. Rule 12 states that if both
summands have stochastic delays with the same win-
ning duration, then the joint race is won by the union
of the winners of the both summands. Note that in
the special case where multiple stochastic delays are
guided by the same random variable in the same race,
we consider all of them to have the same duration and
join their stochastic delay transitions into one. Thus,
there is no multiplicity of transitions. The new envi-
ronment is obtained by aging all racing delays of both
summands in the original environment.

The rules 3, 7, 9 and 11 for the second summand
are analogous to 2, 6, 8 and 10, respectively. Note the
difference for + and @ in the rules 10 and 10’. The rule
10’ shows that the race of the independent alternative
composition has no restriction that delays guided by
the same variable must exhibit the same duration.

The behaviour given by the structural operational
semantics in Table 1 uniquely defines the probabilistic
behavior of a stochastic transition system. First, there
are no multiple equal transitions to the same state and
each stochastic delay transition is uniquely defined by
the winning set and the duration. From a straightfor-
ward inspection of the rules, we observe that the rules
change the environment such that only the past and ac-
tive racing delays are aged. Next, because of Rules 10,
11 and 12, we conclude that racing delays are allowed to
perform all possible stochastic delay transitions. Thus,
the probability space defined by the distribution func-
tions of the racing stochastic delays is properly defined.

However, the rules result to conflicting behaviour
when multiple stochastic delays that (1) do not partic-



ipate in the same race or (2) participate in the same
race enabled by the independent alternative composi-
tion are guided by a variable with the same name. This
is due to clashes in the environment. Each random vari-
able can obtain only one age that is remembered when
the stochastic delay expires. We exploit a-conversion
to overcome this problem.

a-conversion For a technical underpinning of the re-
naming of the variables, we define a relation ~, C
S xS. As an example, (ox.0x.€, a) is congruent to all
of (ox.0v.€,3), (oy.ox.€ () and (oy.oy.€, 3) as long
as p(X) = ¢(Y) and a(X) = B(X) = B(Y). How-
ever, stochastic delays that (1) are guided by the same
random variable (2) in the context of a dependent alter-
native composition must be renamed simultaneously to
preserve equivalent stochastic behaviour. For example,
(0x.€ + ox.€,a) is not congruent to (ox.c + oy.€, ),
unless X and Y happen to have the same degen-
erated distribution, i.e., unless ¢(X) = ¢(Y) are
Dirac and a(X) = «(Y). In case of the indepen-
dent alternative composition, (ox.e @ ox.€, «) is con-
gruent to (ox.e ® oy.€,a), {(oy.c ® ox.€,a) as well
as (oy.e @ oy.€,«) provided that ¢(X) = ¢(Y) and
a(X) =aY).

For technical convenience, we define the notion
of a ‘maximal distinct representation’ in which all
stochastic delays have unique names (modulo per-
mutations of V), except for the ones under the
same dependent alternative composition. For exam-
ple, (ocx.(ocx.0x.€c + 0x.0x.0) ® (6x + ox),a) has
(ox.(oy.ou.€ + 0y.02.0) ® (ov + ov),a) as a max-
imal distinct representation, as long as the variables
have the same distribution.

We define an auxiliary relation cf, on BSP%' for a
permutation r of the dependent racing delays in D(p).

The function D(.), for p € BSP%!  is defined by
D(9) =0, D(e) =0, D(a.p) =0, D(ox.p) = {X}
D(p+q)=D(p)UD(q), Dlpq) =0
whereas the predicate cf,., for a bijective r: V — V), is
given by
cf,(8,9), cfr(e €), cfr(a.p,ap), cfr(p®q,p’ @),
cfr(ox.p,oy.p), ifr(X)=Y,
cfr(p+q.p +4q), ifcfr(p,p), cfr(q,q).
As a final technical aid we need the relation mdr on S.
The relation holds if the first state is a maximal dis-
tinct representation of the second, taking delays into
account:
mdr ({9, a), (4, a)) mdr({e, @), (€, a))
mdr({a.p’, a’), {a.p, a)) if mdr({p’,a’), (p, a))

mdr((oy.p’,a’), (ox.p,a)) if Y & A(p') A p(X) = ¢(Y)
ANa(X) =o' (Y) Amdr((p',a), (p,a))

mdr((p’ +¢',a'), (p + ¢,))
ifcfr(p+q.p"+¢) N r(D(p+q) =D +q)
Amdr((p', '), (p,a)) Amdr({¢', &), (q, )
mdr((p’ ® ¢',a'), (p® q,a)) if AP )NA(¢") =0
Amdr((p', o), (p, ) Amdr((¢’, "), (g, a)).
With all the machinery in place, a-conversion becomes
easy. Two states can be a-converted if they have the
same maximal distinct representations.

Definition 5 Two states u,v € S are a-convertible,
notation u~qyv, if {v' € § | mdr(v',u)} = {v' € S|
mdr(v’,v)}.

Intuitively, the definition states that the renaming of
variables is allowed as long as the variables do not ap-
pear in the same race. As a consequence, a-conversion
does not alter the stochastic behavior of the stochastic
transition systems and ~, is a congruence. This can
be proven rigorously by structural induction and case
analysis for every rule of the operational semantics and
is omitted here.

Definition 6 A conflict-free stochastic transition sys-
tem of (p,a) is STS({p’, a’)), if mdr({p’, '}, (p, a)).

We overload the notation STS({p,«)) for the conflict-
free stochastic transition system of (p,«a). In Fig. 4
we give an example of a stochastic transition system of
p = (0x.0x.€ + 0x.a.€) B ox.€ to illustrate the rules
of the structural operational semantics. We choose
p = (ox.0y.€+ 0x.a.€) B 0z.€, where mdr(p,p), as a
conflict-free term of p. For clarity we give only the rele-
vant part of the environment and the relevant durations
of the stochastic delays. Although we show all possi-
ble transitions, not all of them are necessarily enabled
because of the race condition (e.g., if P(X = Z) =0,
the leftmost top transition does not exist).

Stochastic Bisimulation In defining a suitable
process equivalence for stochastic transition systems,
we follow the standard approach [16, 10]. We require
the bisimulation to be an equivalence, such that every
two states from the same class (1) perform the same
labeled transitions, (2) perform subsequent stochastic
delay transitions to every other class with the same
duration and the same accumulative probability, and
(3) have the same termination options.

Definition 7 Let R C S S be an equivalence relation
and C € S§/R an arbitrary class. The accumulative
probability of doing stochastic delay transitions from a
state u € S to an equivalence class C' with duration d is
given as Pace(u,C,d) = 37 o Pu(u g u'). Then R
is a stochastic bisimulation if the following conditions
hold for all (u,v) € R and a € A:
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Figure 4. Example stochastic transition system
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u = W, then there exists v\ € S, such that
L0 and (u',v') € R.

1

2. Paec(u,d,C) =
S/R.

Pace(v,d,C) for alld >0 and C €

3. If ul then v].

5. Basic Communicating Processes

We add an ACP-style parallel composition operator to
BSP" and obtain the algebra BCP'(A4,V, v) of Ba-
sic Communication Processes with discrete stochastic
time, where 7 is the ACP-style communication func-
tion. As the parallel composition allows both for inter-
leaving and communication of immediate actions, in
the present setting it should also cater for interleav-
ing and synchronization of stochastic delays. Similarly
to BSP%', we introduce two types of parallel oper-
ators: (1) dependent _|_, which enforces stochastic
delays in the same race guided by the same random
variable to always exhibit the same duration, and (2)
independent _® _, which treats such delays as equally
distributed, but independent stochastic delays. As in
real-time process algebras, we merge the delays in case
the processes perform stochastic delays of different du-
ration. We synchronize the processes in case their sto-
chastic delays obtain the same value. Immediate ac-
tions always take precedence over passage of time in
the parallel composition, but do not disable any sto-
chastic delays.

Also, we introduce the standard auxiliary opera-
tors left merge _| -, synchronization _|_, encapsula-
tion dy(-) and maximal progress 0 (-), for H C A.

Definition 8 The signature of BCP™" contains two
constants § and €, four unary operator schemes a._,
fora e A, ox._, for X € V, Oy(-) and 0g(_), for
H C A, and siz binary operators _| -, |-, - || -,

_®_, _+_, _®_ (in order of precedence). The syntax
of BCPYt is given as follows:

P:=6|ela.P|lox.P|Og(P)|0y(P)]
P+P|PeP|P|P|PP|P|P|(P]|P),

where a € A, X €V and H C A.

The encapsulation scheme O (p) comprises processes
for which the actions in H are hidden. The maximal
progress operator scheme 0 (p) enables actions to exe-
cute as soon as they become available by disabling the
weak choice. The parallel compositions p || ¢ and p® ¢
impose a race condition in the same way as the de-
pendent and the independent alternative composition,
respectively. The auxiliary operators p|| ¢ and p | ¢ im-
pose dependent race conditions as they are used in the
axiomatization of dependent parallel composition ||, an
issue not elaborated further in this paper.

We extend the definition of a stochastic transition
system by putting S = C(BCP%") x £. The definitions
of A(_) and R(-) are extended straightforwardly to ap-
ply to the new operators ¢ € {||,®, | ,|} as follows:

A(poq) =A(p)UA(g) A(9u(p)) = A(0u(p)) = Alp)
R(poq) =R(p) UR(q) R(9u(p)) = A(0u(p)) = R(p)
We give the operational semantics of the additional op-
erators in Table 2. For the sake of compactness of no-

tation we put o € {||, ®} for the common rules.

We briefly discuss the new rules. Rule 13 states
that the parallel composition has the termination op-
tion when both operands have a termination option.
Rule 14 enables interleaving of actions and rule 16
allows for synchronization of actions defined by ~.
Rule 18 allows for successful termination of the right
if the left operand can do a stochastic delay. Rule 20
enables the race condition, similar to the Rule 10 for
the alternative composition. Rule 22 enables simulta-
neous passage of time for the left and right operand
which allows synchronization of stochastic delays that



el | P % (p', )
(pog,a) | (pog,a) = (p'oq,a)
16 (p7 a> = <p’,0(), <Q7 O‘> _b> qlva)v 'Y(a7 b) =cC

(pog,a) = (plog
) s (g, )]
(pog,a) s (0, 0)

(p,a) By (0,0, (g,0) By (q,0"), SNT =0, s <t

s
18 (p, ) =5 (', '), (g,

20

®llaa) s (o || g,0/|sR(q))
<p7 O‘> '§>S <p/7al>u <q1 O(> 'zt <q/aa”>) s<t
(p®q,a) s (o ©q,0’|sR(q))

s T
p, @) Pq (p' '), (g, @) =q (d,a")

20’

22<

(pog,a) P, (o o', alaR(po q))
(p,a) 2y (pf, ) (p,a) % (p/,cx)
(01 (p), @) 24 (B (D), ') llga)= @l qa)
(p,0) & 0',0), (g,0) v, (g,0)]
g s (o, a)
(p.a) 2o (p,a"), (g,0) B (g a”), SNT =0, s <t
(Il g50) S5 (0 || g0’ |sR(q))
(p,a) 2y (p,a"), (g,0) By (g a”), SNT =0, s>t
@Il gLl o, l:R(P))

(P, )|, {g, @)l
2 (plg,a)l

23 24

25

26

27

(pa) & (0, o), (g,0) > (¢, o), v(a,b) = ¢

29 C
(plag,e) = @l d )

s T

p,a) Pq (p', ), {g,a) ¥=q (¢, a")
SuT

Pplga) g/

30<

P’ | q'salaR(p | )

(p, ) | (p,a) % (' a), ag H
(Ou(p), o) | (01 (p), o) > (O (p'), o)
(p,0) &5 (9, 0"), (p,0) foa, a€H

O (), ) s (0, o)

33

Table 2. SOS for BCPt

exhibit the same duration. Rules 20" and 21’ describe
the behavior of the independent alternative composi-
tion that differs from the dependent one. The rest of
the rules define the behavior of the auxiliary operators
and we will not embark on their detailed explanation.
Bisimulation remains unaltered. Similar to the al-
ternative compositions, the stochastic transition sys-
tems of the parallel compositions may exhibit conflict-
ing behavior. We straightforwardly extend D(-), cf,.(_)
and mdr(_,_), for o € {|,[L,]}, ® and 9y as follows:

D(poq) =D(p)UD(qg) D(p®q) =10
D(9u(p)) = D(9u(p)) = D(p)

cfr(pog,p oq) if cfr(p,p') Acfi(q,q")
cf(0u(p)) if cfr(p)  cfr(0u(p)) if cf.(p)

cfr(p@aq,p’ ®@4q'),

mdr({p" o ¢', ), (poq,a))
if cfr(pog,p' oq)Ar(D(poq)) =D@ oq¢) A
mdr((p’, &), (p, @) Amdr((¢’, &), (g, ))
mdr((p' ® ¢',a’), (p ® ¢, )
if A(p') NA(g') = 0 A
mdr((p', @), (p, @) A mdr((¢’, &), (g, ))
mdr((0m (p'), &), (9r (p), @) if mdr((p, '), (p, )
mdr((0m ('), '), (0r(p), @) if mdr((p’, '), (p, @)).

In our previous work [18], we concluded that the effect
of the winning delays for the losing ones in the pres-
ence of weak choice and a-conversion prevented the
postulation of a standard expansion law involving the
independent alternative composition. However, for the
dependent parallel composition, the dependent alter-
native composition makes it relatively straightforward
to obtain this.

6. Modeling G/G/1/c0

Real-time delays can be expressed in our stochastic
process algebra by means of degenerated random vari-
ables (cf. [18]). We capture (discrete) real-time delays
by putting o = op,. This embedding of real-time sup-
ports delayable actions: a=a+ Y ,-, 0'.a, for a € A.

Next, we model the G/G/1/00 queue, a natural ex-
ample for a stochastic setting. We assume an arrival
rate distributed by F' and service time of finite distri-
bution G, say |supp(G)| = n. The queue is given by

A = ox.51.4
Qo = £1~Q1
Qr+1 = 11.Qrt2 + 5.Qx (K >0)
S = ry.0y.s3.5,

where X and Y have distributions F' and G.

The recursive equation for A models the arrival
process to offer a job to the queue after a stochastic
delay distributed by F'. The queue is modeled as usual
by the equations Qg, k € N. Note the use of delayable
actions, as the queue is always able to receive a new
job or to offer a job that is already queued. The server
is modeled by the equation for S. It is always ready to
accept a job when it is idle or while processing a job
with a work-time distributed by G. The specification
of the G/G/1/00 queue itself is given by

01(0u ((A ]| Qo) [ '5)),

where y(s;,r;) = ¢; defines the communication, I =
{¢1, 2,53} enables the instantaneous communication
and H = {s1,71, 82,72} encapsulates unmatched ac-
tions. Note that || is used, rather than ®, as there
are no stochastic delays for the same variable. The
operator ® would have been mandatory, if the queue



(202 S3 Yo

S You2
QOn— 1

Figure 5. G/G/1/o0 queue

contained more that one server or more than one ar-
rival process, as in the G/G/3/0c0 queue for example,
that is specified by 67 (0u((A || Qo) || (S® S) ® S))).

In Fig. 5 we give the stochastic transition system of
the G/G/1/0o queue as specified above. The first in-
dex of every recursive variable represents the number of
jobs in the queue, whereas the second index indicates
the number of jobs that are enqueued since process-
ing of the last job has started. This is required as we
need to keep track of the spent time of the delays. By
assumption, there are at most n arrivals during the
processing of a job. Note that we have ¢(X;) = F
and ¢(X;;) = ¢(Y;;) = G. The solution of the above
specification of the queue is given by

Qoo = (0x,-c1.01 (O (A || @1) [ 9)), {Xo— L})

Qoj = (ox;-c1.Q10,{X; = Yo j-1})

Qio = (c2.01(0u((A || Qi—1) || oyi_, ,-53.5)),
{Xi—10—1})

Qij = (c2.01(Ou((A || Qi—1) || ov;_, ;-83.9)),

{(Xic1j = yij1})

Si—1,0 ={0x,_1,0-c1.010m((A || Qi-1,1) |
O.Yi71,1'53'S + 0'3/7171‘0'53'Qi—1))5 {Xi—l,O > J_}>
Si—lJ = <UXi—1,j'cl'91(8H((A || Qi—l) ”
O'Yi71,j'53-5+O-Yi71,j'SS~Q’L'—1,j))a -
{Xic1; = Yij—1,Yic1j — Yoh_o Tikk})-

The extra states arise from the explicit aging of the
stochastic delays. A typical modeling of a G/G/1/c0
queue by a using generalized semi-Markov process [12]
is given in Fig. 6, where a is an event of an arrival

job that resets a clock with distribution F' and s is
an event of a processed job that resets a clock with

distribution G.
a a
—— T
@) )
S S

A
Figure 6. G/G/1/0c queue (revisited)

S

We note that our model of the G/G/1/00 queue
of Fig. 5 collapses to the generalized semi-Markov
process given in Fig. 6, as all states @;; and S;_1 ;,
for j € {1,...,n}, can be joined together in a state Q;
in the presence of clocks with residual lifetime seman-
tics. In @; the clocks for s3 and ¢, are reset, whereas
c2 vanishes as an immediate action that connects @;;
and S;_1 ;. There is the additional requirement that
sz and ¢; cannot happen together, i.e., P(X =Y) =0,
because of the unique occurrences of this events. We
conclude that the explicit bookkeeping of spent life-
times yields an infinite stochastic transition system if
the underlying distribution function is of infinite sup-
port. However, the transition systems have a repetitive
layered structure as the one in Fig. 5. This structure
can be exploited for model checking purposes, as in
the case, for example, of quasi birth-death processes
(see [21]).

7. Conclusions and Future Work

We have extended a previous version of a stochastic
process algebra with dependent alternative composi-
tion to cater for the parallel composition. We revis-



ited a notion of stochastic bisimulation and extended
it to apply to subsequent stochastic delays. We showed
how clashes of stochastic delays can be dealt with us-
ing a-conversion. We exploited the embedding of real-
time into our algebra to compose delayable actions out
of timed delays and immediate actions. With the de-
layable actions we modeled the G/G/1/0c queue, show-
ing the interaction between real-time and stochastic
time. Because of the explicit treatment of spent life-
times of delays we obtained a model that has more
detail than the other clock-based approaches.

As future work, we continue our axiomatization ef-
fort. Presently, we do have a sound theory that we
expect to be ground-complete. However, proving this
requires an enhancement of standard techniques. By
construction, the theory conservatively extends real-
time process algebra [3]. However, the mix of real-
time and stochastic delays may require the addition
of an explicit probabilistic choice. Furthermore, we
tend to introduce the abstraction operator that pro-
duces silent transitions, also called 7-steps, and the
notion of branching or weak bisimulation in that set-
ting. For verification purposes, it will be advantageous
to rely on an observational congruence. However, ob-
taining a congruence result may require a substantial
effort [5, 6, 8]. Also, we plan to extend the current set-
ting with continuous stochastic time. Afterwards, we
will consider case studies, in particular verification of
Internet protocols, as a successful modeling of real-time
delays paves the way for a convenient specification of
time-outs. Accurate performance specification is fea-
sible with general distributions, like, for example, the
heavy-tail distributions that model media information
flow.
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