10

11

12

13

14

15

16

17

18

Article
An efficient algorithm to determine probabilistic
bisimulation

J.E. Groote * ©/, H.J. Rivera Verduzco 2 and E.P. de Vink 3

J.EGroote@tue.nl

H.J.Rivera.Verduzco@student.tue.nl

evink@win.tue.nl

* Correspondence: j.f.groote@tue.nl; Tel.: +31-40-2475003

W N =

Academic Editor: name
Version August 20, 2018 submitted to Algorithms

Abstract: We provide an algorithm to efficiently compute bisimulation for probabilistic labeled
transition systems, featuring non-deterministic choice as well as discrete probabilistic choice. The
algorithm is linear in the number of transitions and logarithmic in the number of states, distinguishing
both action states and probabilistic states, and the transitions between them. The algorithm improves
upon the proposed complexity bounds of the best algorithm addressing the same purpose so far by
Baier, Engelen & Majster-Cederbaum (Journal of Computer and System Sciences 60:187-231, 2000).
Also experimentally, on various benchmarks, our algorithm performs rather well; even on relatively
small transition systems, a performance gain of a factor 10,000 can be achieved.

Keywords: probabilistic system with nondeterminism; probabilistic labeled transition system;
probabilistic bisimulation; partition-refinement algorithm

1. Introduction

In [20], Larsen and Skou propose the notion of probabilistic bisimulation. Although described for
deterministic transition systems, the same notion is very suitable for probabilistic transition systems
with nondeterminism [22,23], so-called PLTSs, too. It expresses that two states are equivalent exactly
when the following condition holds: if one state can perform an action ending up in a set of states,
each with a certain probability, then the other state can do the same step ending up in an equivalent
set of states with the same distribution of probabilities. Two characteristic nondeterministic transition
systems of which the initial states are probabilistically bisimilar are given in Figure 1.

Figure 1. Two probabilistically bisimilar nondeterministic transition systems.

Submitted to Algorithms, pages 1 —22 www.mdpi.com/journal/algorithms

http://www.mdpi.com
https://orcid.org/0000-0003-2196-6587
https://orcid.org/0000-0001-9514-2260
http://www.mdpi.com/journal/algorithms

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Version August 20, 2018 submitted to Algorithms 20f22

In [3], Baier et al. give an algorithm for probabilistic bisimulation for PLTSs, thus dealing both
with probabilistic and nondeterministic choice, of time complexity O (mn(logm + logn)) and space
complexity O (mn), where n is the number of states and m is the number of transitions (from states to
distributions over states; there is no separate measure for the size of the distributions). As far as we
know, it is the only practical algorithm for bisimulation a la Larsen-Skou for PLTSs. In essence, other
algorithms for probabilistic systems typically target Markov chains without nondeterminism. The
algorithm of [3] performs an iterative refinement of a partition of states and a partition of transitions
per action label. The crucial point is splitting the groups of states based on probabilities. For this a
specific data structure is used, called augmented ordered balanced trees, to support efficient storage,
retrieval and ordering of states indexed by probabilities.

In this paper, we provide a new algorithm for probabilistic bisimulation for PLTSs of time
complexity O ((mu + mp) log np +mp log na)) and space complexity O (ma + mp), where 1, is the
number of states, 1, the number of transitions labelled with actions, 1, the number of distributions
and m, the cumulative support of the distributions. Our 1, coincides with the 1 of Baier et al. We prefer
to use m,, np, and my, over m as the former support a more refined analysis. A detailed comparison
between the algorithms reveals that if the distributions have a positive probability for all states, the
complexities of the algorithms come near. However, when distributions only touch a limited number
of states, as is often the common situation, the implementation of our algorithm outperforms our
implementation of the algorithm of [3], both in time as well as in space complexity.

Like the algorithm of Baier et al., our algorithm keeps track of a partition of states and of
distributions (referred to as action states and probabilistic states below) but in line with the classical
Paige-Tarjan approach [21] it also maintains a courser partition of so-called constellations. The
treatment of distributions in our algorithm is strongly inspired by the work for Markov Chain lumping
by Valmari and Franceschinis, but our algorithm applies to the richer setting of non-deterministic
labelled probabilistic transition systems. Using a brilliant, yet simple argument, taken from [27], the
number of times a probabilistic transition is sorted can be limited by the fan-out of the source state of
the transition. This leads to the observation that we can use straightforward sorting without the need
of any tailored data structure such as augmented ordered balanced trees or similar as in [3,9]. Actually,
our algorithm uses a simplification of the algorithm of [27] since the calculation of so-called majority
candidates can be avoided, too.

We implemented both the new algorithm and the algorithm from [3]. We spent quite some
effort to establish that both implementations are free from programming flaws. To this end we ran
them side-by-side and compared the outcomes on a vast amount of randomly generated probabilistic
transition systems (in the order of millions). Furthermore, we took a number of examples from the
field, among others from the PRISM toolset [19], and ran both implementations on the probabilistic
transition systems that were obtained in this way. Time-wise, all benchmarks indicated better results
for our algorithm compared to the algorithm from [3]. Even for rather small transition systems of about
100,000 states performance gains of a factor 10,000 can be achieved. Memory-wise the implementation
of our algorithm also outperforms the implementation of [3] when the sizes of the probabilistic state
space are larger. Both findings are in line with the theoretical complexity analyses of both algorithms.
Both implementations have been incorporated in the open source mCRL2 toolset [7,11].

Related work. Probabilistic bisimulation preserves logic equivalence for PCTL [14]. In [18], Katoen
c.s. report up to logarithmic state space reduction obtained by probabilistic bisimulation minimisation
for DTMCs. Quotienting modulo probabilistic bisimulation is based on the algorithm of [9]. In the same
vein, Dehnert et al. propose symbolic probabilistic bisimulation minimisation to reduce computation
time for model checking PCTL in a setting for DTMCs [8], where an SMT solver is exploited to do the
splitting of blocks. Partition reduction modulo probabilistic bisimulation is also used as an ingredient
in a counter-example guided abstraction refinement approach (CEGAR) for model checking for PCTL
by Lei Song et al. in [24].

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

926

97

98

99

100

101

Version August 20, 2018 submitted to Algorithms 30f22

For CTMC s, Hillston et al. propose the notion of contextual lumpability based on lumpable
bisimulation in [16]. Their reduction technique uses the Valmari-Franceschinis algorithm for Markov
chain lumping mentioned earlier. Crafa and Renzato [6] characterise probabilistic bisimulation of PLTSs
as a partition shell in the setting of abstract interpretation. The algorithm for probabilistic bisimulation
that comes with such a characterisation turns out to coincide with that of [3]. A similar result applies
to the coalgebraic approach to partition refinement in [10] that yields a general bisimulation decision
procedure, that can be instantiated with probabilistic system types.

Probabilistic simulation for PLTSs has been treated in [3], too. In [28] maximum flow techniques
are proposed to improve the complexity. Zhang and Jansen present in [29] a space-efficient algorithm
based on partition refinement for simulation between probabilistic automata, which improves upon
the algorithm for simulation by Crafa and Renzato in [6] for concrete experiments taken from the
PRISM benchmark suite. A polynomial algorithm, essentially cubic, for deciding weak and branching
probabilistic bisimulation by Turrini and Hermanns, recasting the algorithm of [5], is presented in [25].

Synopsis. The structure of this article is as follows. In Section 2 we provide the notions of a
probabilistic transition system as well as that of probabilistic bisimulation. In Section 3 the outline of
our algorithm is provided and it is proven that it correctly calculates probabilistic bisimulation. This
section ends with an elaborate example. In the subsequent section we provide a detailed version the
algorithm with a focus on the implementation details necessary to achieve the complexity. In Section 5
we provide some benchmarking results and a few concluding remarks are made in Section 6.

2. Preliminaries

Let S be a finite set. A distribution f over S is a function f : S — [0,1] such that) s f(s) = 1. For
each distribution f its support is the set {s € S | f(s) > 0}. The size of f is defined as the number
of elements in its support, written as | f|. The set of all distributions over a set S is denoted by D(S).
Distributions are lifted to act on subsets T C Sby f[T] = Y_ser f(5).

For an equivalence relation R on S, we use S/ R to denote the set of equivalence classes of R. We
defines/R = {t € S | sRt} and, for a subset T of S, we define T/R = {s € S | 3t € T: sRt}. A
partition T = { B; C S | i € I } is a set of non-empty subsets such that B; N B; = @ foralli,j € I and
Uier Bi = S. Each B; is called a block of the partition. Slightly ambiguously, we use S/R to denote the
set of equivalence classes of R with respect to S. Clearly, the set of equivalence classes of R forms a
partition of S. Reversely, a partition 77 of S induces an equivalence relation R on S, by sRt iff s,t € B
for some block B of 7r. A partition 77 is called a refinement of a partition ¢ iff each block of 7 is a subset
of a block of 0. Hence, each block in ¢ is a disjoint union of blocks from 7.

We use probabilistic labeled transition systems as the canonical way to represent the behaviour of
systems.

Definition 2.1 (Probabilistic labeled transition system). A probabilistic labeled transition system (PLTS)
for a set of actions Act is a pair A = (S, —) where

e Sis a finite set of states, and
e — C S xActxD(S)is a finite transition relation relating states and actions to distributions.

It is common to write s l>f for (s, a, f) € =.Fors € S,a € Act,and a set F C D(S) of distributions,
we write s > F if s = f for some f € F. Similarly, we write - F if there is no distribution f € F
such that s % f. For the presentation below, we associate a so-called probabilistic state u ¢ with each
distribution f provided there is some transition s — f of .A. We write U for { u flIs€S,a€Act:s 5
f }, with typical element u. Note that, since — is finite, U is also finite. We also use the notation s Lu ¥
if s % f for some f € D(S). As a matter of notation we write u #[T] for f[T] if probabilistic state u¢
corresponds to the distribution f. We sometimes use a so-called probabilistic transition uy — s for
0<p<lands € Siffug(s) = p. In order to stress SN U = @, we refer to states s € S as action states.

118

133

134

135

136

137

138

Version August 20, 2018 submitted to Algorithms 40f22

Below, in particular in the complexity analysis, we use 1, = |S| as the number of action states,
n, = |U| as the number of probabilistic states, m, = |—| as the number of action transitions and
my =Y, eu |f| as the cumulative size of the support of the distributions corresponding to all
probabilistic states. Note that m), > n, as every distribution has support of at least size 1.

The following definition for probabilistic bisimulation stems from [20].

Definition 2.2 (Probabilistic bisimulation). Consider a PLTS A = (S, —). An equivalence relation
R C S x S is called a probabilistic bisimulation for A iff for all states s, € S such that sRt and s LN f,
for some action a € Act and distribution f € D(S), it holds that t = g for some distribution g € D(S),
and f[B] = g[B] foreach B € S/R.

Two states s, t € S are probabilistically bisimilar iff a probabilistic bisimulation R for A exists such
that sRt, which we write as s ~ t. Two distributions f,g € D(S), and similarly two probabilistic
states uy, ug € U, are probabilistically bisimilar iff for all B € S/~ it holds that f[B] = g[B], which we
also denote by f ~, g and uy ~ uy, respectively.

By definition, probabilistic bisimilarity is the union of all probabilistic bisimulations. To be able to
speak of probabilistically bisimilar distributions (or of probabilistically bisimilar probabilistic states),
probabilistic bisimilarity needs to be an equivalence relation. In fact, probabilistic bisimilarity is a
probabilistic bisimulation. See [15] for a proof.

3. A partition refinement algorithm for probabilistic bisimulation (outline)

Many efficient algorithms for standard bisimulation calculate partitions of states [12,17,21]. Here, we
consider the construction of a partition B of the sets of action states S and of probabilistic states U for
some fixed PLTS A over a set of actions Act. Below blocks of the partition always contain either action
states or probabilistic states.

3.1. Stability of blocks and partitions

An important notion underlying the algorithm introduced below is that of the stability of a block of
a partition. If a block is not stable, it contains states that are not bisimilar. These states either have
different transitions or different distributions. We first define the notion of stability more generically
on sets instead of on blocks. Then we lift it to partitions.

Definition 3.1 (Stable sets and partitions).

1. A setof action states B C S is called stable under a set of probabilistic states C C U with respect to
an action a € Act iff s - C whenever t - C and vice versa for all s,t € B. The set B is called stable

under C iff B is stable under C with respect to all actions a € Act.

2. A set of probabilistic states B C U is called stable under a set of action states C C S iff u[C] = v[C]
forall u,v € B.

3. A setof states B with B C S, respectively B C U, is called stable under a partition C of S U U, with
CCSorC CUforall C € C,iff B is stable under each C € C with C C U, respectively C C S.

4. A partition B is called stable under a partition C iff all blocks B of B are stable under C.

There are two simple but important properties stating that stability is preserved when splitting sets.
The first one says that subsets of stable sets are also stable.

Lemma 3.2. Let B C S be a set of action states and C C U a set of probabilistic states. If B is stable
under C, then any B’ C B is also stable under C. Similarly, if C is stable under B, then any C’ C C is
also stable under B.

Proof. We only prove the first part as the argument for the second part is essentially the same. If
s,t € B/, then also s,t € B. As B is stable under C, it holds that for every action a € Act either both
satisfy s 2 Cand t % C, or neither does. So, B' is stable under C. [

203

Version August 20, 2018 submitted to Algorithms 50f22

The second property says that splitting a set in two parts can only influence the stability of an other set
if there is a transition or a positive probability from this other set to one of the parts of the split set.

Lemma 3.3. Let B C S be a set of action states and C C U a set of probabilistic states.

1. Suppose B is stable under C with respect to an action a2, C’ C C, and there isno s € B such that
s = C'. Then B is stable under C’ and C\C’ with respect to a.

2. Suppose C is stable under B, B’ C B, and u[B’] = 0 for all u € C. Then C is stable under B’
and B\B'.

Proof. We only provide the proof for the first part of this lemma. If s,t € B, then both s + C’ and
t + C’ by assumption. So, B is stable under C’ with respect to a. Furthermore, B is stable under C\C’:
Suppose s,t € Band s N C\C'. So, s A C. As B is stable under C, t % C, and by assumption ¢ = C.
Therefore, t C\C'. Suppose s % C \C’. Then also s % C. As B is stable under C, t + C and hence,
t+C\C'. O

The following property, called the stability property, says that a partition stable under itself induces a
probabilistic bisimulation. In general, partition based algorithms for bisimulation search for such a
stable partition.

Lemma 3.4 (Stability Property). Let A = (S, —) be a PLTS. If a partition B for A is stable under
itself, then the corresponding equivalence relation 3 on S is a probabilistic bisimulation.

Proof. By the first condition of Definition 3.1 and stability of all blocks in B we have that either B C S
or B C U, for each block B € B. We write sBt iff s,t € B for some B € B. Note that used in this way B
is an equivalence relation on S.

Suppose sBt for some s,t € S and s = f. Let u € U correspond to f. Say s,t € Band u € B’
for some blocks B, B’ € B. Then s - B'. By stability of B for B’ it follows that t -+ B’. Hence, v € B’
and g € D(S) exist such that v corresponds to ¢ and s —» . Therefore, for any block B” € B we have
fIB"] = u[B"] = v[B"] = g[B"] since the block B’ of u and v is stable under each block B” of B.

Thus the stable partition B induces an equivalence relation that satisfies the conditions for a
probabilistic bisimulation of Definition 2.2, as was to be shown. [

3.2. Outline of the algorithm

We present our algorithm in two stages. An abstract description of the algorithm is presented as
Algorithm 1; the detailed algorithm is provided as Algorithm 2. The set-up of Algorithm 1 is a fairly
standard, iterative refinement of a partition B, in this particular case containing both action states and
probabilistic states, which are treated differently. In addition, following the approach of Paige and
Tarjan [21], we maintain a coarser partition C, which we call the set of constellations. Each constellation
in partition C is a union of one or more blocks of B, thus B is a refinement of C. A constellation C € C
that consists of exactly one block in B is called trivial. We refine partitions B and C until C only contains
trivial constellations (see line 5 of Algorithm 1).

Among other, we preserve the invariant that the blocks in partition B are always stable under
partition C. If all constellations in C are trivial, then the partitions B and C coincide. Hence, the blocks
in B are stable under itself, and according to Lemma 3.4 we have found a probabilistic bisimulation.
Our algorithm works by iteratively refining the set of constellations C. When refining C we must also
refine B3 to preserve the above mentioned invariant.

Since the set of states of a PLTS is finite (cf. Definition 2.1) refinement of the partitions B and C
cannot be repeated indefinitely. So, termination of the algorithm is guaranteed. The partition consisting
of singletons of action states and of probabilistic states is the finest that can be obtained, but this is
only possible if all states are not bisimilar. In practice, the main loop of the algorithm stops well before
reaching that point.

The algorithm maintains the following three invariants:

Version August 20, 2018 submitted to Algorithms 6 of 22

Algorithm 1 Abstract partition refinement algorithm for probabilistic bisimulation

1: function PARTITION-REFINEMENT
2 C:={S, U}
3 B:={U}U{S4|ACAct}

4: where Sy = {s€S|Vac AJuelU:s Su}

5: while C contains a non-trivial constellation C do

6: choose block B¢ from Bin C

7: replace in C constellation C by B¢ and C\B¢

8 if C contains probabilistic states then

9: for all blocks B of action states in B unstable under B¢ or C\ B¢ do
10: refine B by splitting B into blocks of states with the same actions into B¢ and C\ B¢
11: else
12: for all blocks B of probabilistic states in 3 unstable under B: do
13: refine B by splitting B into blocks of states with equal probabilities into B¢
14: return B

Invariant 1. Probabilistic bisimilarity ~ is a refinement of 5.
Invariant 2. Partition B is a refinement of partition C.

Invariant 3. Partition B is stable under the set of constellations C (mentioned already above).

Invariant 1 states that if two action states or two probabilistic states are probabilistically bisimilar, then
they are in the same block of partition B. Thus, the partition-refinement algorithm will not separate
states if they are bisimilar. By Invariant 2 we have that, at the end and at the start of each iteration,
each constellation in C is a union of blocks in B. Invariant 3 says that blocks in partition B cannot be
split by blocks in constellation C.

In lines 2 and 3 of Algorithm 1 the set of constellation and the initial partition are set such that the
invariants hold. All probabilistic states are put in one block, and all action states with exactly the same
actions labelling outgoing transitions are also put together in blocks. (Note the universal quantification
over all actions a in A for the set comprehension at line 4 in order to ensure that only maximal blocks
are included in B for it being a partition indeed.) The set of constellations contains two constellations
namely one with all action states, and one with all probabilistic states. It is straightforward to see that
Invariants 1 and 2 hold. Invariant 3 is valid because all transitions from action states go to probabilistic
states and vice versa.

Invariants 1 to 3 guarantee correctness of Algorithm 1. Le., from the invariants it follows that
upon termination, when all constellations have become trivial, the computed partition B identifies
probabilistically bisimilar action states and probabilistically bisimilar probabilistic states.

Theorem 3.5. Consider the partition B resulting from Algorithm 1. We find that (i) two action states
are in the same block of B iff they are probabilistically bisimilar, and (ii) two probabilistic states are in
the same block of B iff they are probabilistically bisimilar.

Proof. Upon termination, because of the while loop of Algorithm 1, all constellations of C are trivial,
i.e. each constellation in C consists of exactly one block of 5. Hence, by Invariant 2, the partitions B
and C coincide. Thus, by Invariant 3, each block of B is stable under each block in B. In other words,
partition B is stable under itself.

By the Stability Property of Lemma 3.4, we have that B is a probabilistic bisimulation on S. It
follows that two action states in the same block of B are probabilistically bisimilar. Reversely, by
Invariant 1, probabilistically bisimilar action states are in the same block of B. Thus, ~, and B coincide
on S. In other words two action states are in the same block of B iff they are probabilistically bisimilar.

To compare =~ and the relation 5 on U, choose probabilistic states u, v € U such that u Bv. So, u
and v are in the same block of B. By stability of block B for B it follows that u[B’] = v[B’], for each
block B’ C S. Since ~, and B coincide on S this implies u[B’] = v[B'] for all B’ € §/~,. Thus, we

260

261

262

263

Version August 20, 2018 submitted to Algorithms 7 of 22

have u ~, v. Reversely, if u >, v, we have u,v € B for some block B of B by Invariant 1. So, two
probabilistic states are in the same block of B iff they are probabilistically bisimilar. [

It is worth noting that in line 5 of Algorithm 1 an arbitrary non-trivial constellation is chosen and
in line 6 an arbitrary block Bc is selected from C (we later put a constraint on the choice of Bc). In
general there are many possible choices and this influences the way the final partition is calculated.
The previous theorem indicates that the final partition is not affected by this choice, neither is the
complexity upper-bound, see Section 4.6. But it is conceivable that practical runtimes can be improved
by choosing the non-trivial constellation C and the block B¢ optimally.

3.3. Refining the set of constellations and restoring the invariants

As we see from the high-level description of the partition refinement Algorithm 1, a non-trivial
constellation C and a constituent block B¢ are chosen (lines 5 and 6) and C is replaced in C by the
smaller constellations Bc and C\Bc (line 7). This preserves Invariants 1 and 2, but Invariant 3 may
be violated as stability under B¢ or C\ B¢ (or both) may be lost: On the one hand, it may be the case
that two actions states s and t both have an a-transition into C, but s may have one to B¢ but ¢ to C\ B¢
only or vice versa. On the other hand, it may be the case that two probabilistic states u and v yield
the same value for C as a whole, i.e. u[C] = v[C], but by no means this needs to hold for B¢ or C\ B,
i.e. u[Bc| # v[Bc| and u[C\Bc| # v[C\Bc]. Therefore, in the remainder of the body of Algorithm 1 the
blocks that are unstable under Bc and C\ B¢ are split such that Invariant 3 is restored, both for blocks
of actions states (lines 9 and 10) and for blocks of probabilistic states (lines 12 and 13). In the next
section the detailed Algorithm 2 describes how this is done precisely.

The general situation when splitting a block B for a constellation C containing a block Bc is
depicted in Figure 2, at the left where B contains action states and at the right where B consists of
probabilistic states. We first consider the case at the left.

Figure 2. Splitting a non-stable block B into left, middle and right.

In this case block B C S is stable under constellation C C U and C is non-trivial. Thus, C properly
contains a block B¢ of B, and we distinguish two non-empty subsets of C, the block B¢ on its own and
the remaining blocks together in C\Bc. As B is stable under C, the block B can only be unstable under
Bc or C\ B¢ if there is an action a4 € Act and a state s € B such that s % Be (Lemma 3.3.1). So, we only
investigate and split blocks, for which such a transition s - B¢ exists.

Version August 20, 2018 submitted to Algorithms 8 of 22

We can restore stability by splitting B into the following three subsets:

left,(B) = {s€B|s%BcAs—+ C\Bc},
mid,(B) = {s€B|s-5BcAs-C\Bc}, and
right (B) = {s€B|s BcAs->C\Bc}.

Note that the remaining set {s € B | s <% Bc As - C\Bc } must be empty; if not, this would imply
that there is some action state t such that t - C. But due to the existence of state s such that s — B¢,
this would mean that block B is unstable under C, contradicting Invariant 3.

Checking that the sets left(B), mid,(B), right,,(B) are stable under C is immediate. As subsets of
stable sets are also stable (Lemma 3.2) and B is stable all other configurations of C, the sets left (B),
mid,(B), right ,(B) are stable under all other configurations of C too.

Note that due to the existence of state s with s — B, it is not possible that both left,(B) and
mid, (B) are equal to the empty set. It is however possible that left,(B) = B or mid,(B) = B, leaving
the other two sets empty.

Lines 9 and 10 can now be read as follows. For all 2 € Act investigate all blocks B such that there
is an action state s € B with s - Bc as these blocks are the only candidates to be unstable. Replace
each such block B in B by {left,(B), mid,(B), right,(B)} \ @ to restore stability under Bc and C\Bc.

Invariants 1 and 2 are preserved by splitting B. For Invariant 2 this is trivial by construction.
For Invariant 1, note that the states in different blocks among left,(B), mid,(B), right,(B) cannot be
probabilistically bisimilar as they have unique transitions to states Bc and C\ B¢ and these target states
cannot be bisimilar by Invariant 1. Thus, if two states of B are probabilistically bisimilar then both are
in the same subset left,(B), mid,(B), or right,,(B) of B.

We next turn to the case of a set of probabilistic states B, see the right-side of Figure 2. Again we
assume that the non-trivial constellation C is replaced by its two non-empty subsets B¢ and C \Bc. As
in the previous case, although the block B is stable under the constellation C, this may not be the case
under the subsets B¢ and C\ Bc.

To restore stability we now consider for all g, 0 < g < 1, the sets

B, = {ucB|ulB|=gq}

Note that for finitely many g € [0,1] we have B; # @.

Observe that each set By is stable under B¢ as by construction u[Bc] = v[Bc] = q for any u,v € B;.
The set By is also stable under C \ Bc. To see this consider two states u,v € By. Asblock B C U is stable
under constellation C C S, u[C] = v[C]. Hence, u[C\Bc| = u[C] — u[Bc] = v[C] — v[B¢c| = v[C\Bc].
By Lemma 3.2 the new blocks By are also stable under the other constellations in C.

According to Lemma 3.3.2 only those blocks B that contain a probabilistic state u € B such that
u[Bc] > 0 can be unstable under B¢ and C\Bc. So, at line 12 of Algorithm 1 we consider all those
blocks B and replace each of them by the non-empty subsets B;, 0 < g < 1 at line 13 in . This makes
the partition stable again under all constellations in C, in particular under the new constellations B¢
and C\Bc.

Again it is straightforward to see that Invariants 1 and 2 are not violated by replacing the block B
by the blocks Bj. For Invariant 1, if states are probabilistically bisimilar in B, they remain in the same
block B;. For Invariant 2, as B is refined, partition 5 remains a refinement of partition C.

For the detailed algorithm in Section 4 it is required to group the sets B; as follows: leftp (B) := By,
right,(B) := By, and mid,(B) = { By | 0<q<1}. This does not play a role here, but left,,(B), midy(B),
and right,, (B) are already indicated in Figure 2, in particular mid,(B) = {B 1 B Y B 3 1.

3.4. An example

We provide an example to illustrate how Algorithm 1 calculates partitions.

Version August 20, 2018 submitted to Algorithms 9of 22

Figure 3. A PLTS used to illustrate the calculation of partitions in Example 3.6.

Example 3.6. Consider the PLTS given in Figure 3. We provide a detailed account of the partitions that
are obtained when calculating probabilistic bisimulation. The obtained partitions are listed in Table 1.
In the lower table, 9 partitions together with their constellations are listed that are generated for a run
of Algorithm 1. In the upper table the blocks that occur in these partitions are defined. Observe that
we put the blocks and constellations with action states and probabilistic states in different columns.
This is only for clarity, as in the current partition and the current set of constellations they are joined.

Algorithm 1 starts with four blocks of action states, Sy to S3, which contain the action states with
no outgoing transitions and those with an outgoing transition labelled with a, with b, and with c,
respectively. In the algorithm all probabilistic states are initially collected in block Uy. There are two
constellations, viz. Sy U S1 U Sp U S3 and Ujy. These initial partitions are listed in line 0 of the lower part
of Table 1.

Since the constellation with action states is non-trivial we split it, rather arbitrarily, in Sy and
S1 U Sy U S3. The block Uy is not stable under Sp and S; U S, U S3 and is splitin Uy = {uq, u3,v1_5},
Uy = {up,us} and Uz = {us, ue}. This is because we have u[Sy] = 1 for u equal to uj, u3, and vy
to vs; we have u[Sy] = 1 for u equal to uy and uy; we have us[Sg] = 0 and ug[Sg] = 0. The resulting
partitions are listed at line 1 in Table 1.

For the second iteration, we consider the non-trivial constellation S; U Sp U S3 and split it into Sq
and Sy U S3. Note, the action states s; to s4 in S; do not have incoming transitions. Consequently, for
all u € Uy we have u[S1] = 0; for all u € U, we have u[S1] = 0; for all u € U3 we have u[S1] = 0. Thus,
all blocks of probabilistic states are stable under S; and Sy U S3. Hence, no block is split.

In the third iteration we split the non-trivial constellation S, U S3 into S; and S3. Forall u € U
we have u[S;] = 0. Thus U] is stable under S, and S3. For Uy, the probabilistic states u; and u4 agree
on the value % for S5, hence for S3 too. Thus, U5 is stable as well. However, for us and ug in Us we
have u5[S;] = 1 and u[S;] = 3. Therefore, Uj needs to be split in Uy = {us} and Us = {us}.

At this point, all constellations with actions states are trivial, so at iteration 4 we turn to the
non-trivial constellation of probabilistic states Uy U Uy U Uy U Us and split it into U7 and Up U Uy U Us.
Block Sy is stable since each of its states has no transitions at all. Block Sy is not stable: sq, s> N Uq
and s1,5p — Up U Uy U Us, but s3,54 ~ Uy and s3,54 — Up U U U Us. Thus, S; needs to be split
into S4 = {s1,s2} and S5 = {s3,s4}. Block S, is stable since its states have only b-transitions into Uj.
Block S3 is a singleton and therefore cannot be split.

The following iteration, iteration 5, sets Up and Uy U Us apart as constellations. Again, in absence
of transitions, block Sy is stable under U, and Uy U Us. The same holds for S, that has only b-transitions

357

Version August 20, 2018 submitted to Algorithms 10 of 22

into Up. Block S3 can be ignored. For S; both s; and s, have an a-transition into U, as their only
transition. Hence, block S4 is stable. Similarly, Ss is stable, as its states s3 and s4 both have an
a-transition into Uy U Us and no other transitions. All in all, in this iteration no blocks require splitting
to restore Invariant 3.

Next, at iteration 6, we split non-trivial constellation Uy U Us into Uy and Us. For Sy, Sy, S3 and
S4 we conclude stability in the same way as in the previous iteration. However, now we have for
$3,54 € Ss on the one hand s3 - Uy and s3 - Us, but on the other hand s; ~ U, and s4 — Us. Hence,
S5 needs to be split, yielding the singletons S = {s3} and Sy = {s4}.

Returning to constellations of actions states, at iteration 7, we split S4 U S¢ U 57 over S4 and Sg U S7.
All probabilistic states have value 0 for both S4 and S¢ U S7, hence no split of probabilistic blocks is
needed.

This is similar in iteration 8, where the non-trivial constellation Sg U S7 is split, and none
of the blocks become unstable. Now all constellations are trivial and the algorithm terminates.
According to the Stability Property, Lemma 3.4, the corresponding equivalence relation is a probabilistic
bisimulation. Thus the final partition is {So, Sz, S3, S4, Se, S7, U1, Uy, Uy, Us}. Moreover, the deadlock
states t1, t3, 4, tg, t7 and rq to r5 are probabilistically bisimilar, the states t;, t5, tg, t9 that have only a
b-transition into a Dirac distribution to deadlock are probabilistically bisimilar, the states s; and s, are
probabilistically bisimilar (which is clear when identifying states ty and tg), whereas the remaining
action states s3, s4 and t19 have no probabilistically bisimilar counterpart. For the probabilistic states
the states u1, u3 and vy to vs are identified by probabilistic bisimulation. This also holds for the
probabilistic states uy and uy. Probabilistic states us5 and ¢ each have no probabilistically bisimilar
counterpart.

Table 1. The generated partitions for the PLTS of Example 3.6

blocks of actions states blocks of probabilistic states

So = {titstatets,r1s5t | Uy = {u1-601-5}

S1 = {s1-4} th {ur,u3,01-5}

S, = {tats5ts,to} U = {upus}

Ss = {two} Us = A{us,uc}

S¢ = {s1,%} Uy = {us}

S5 = {s3,s4} Us = {us}

Se = {ss}

S7 = {sa}

B C

0| So, 51,52, 53 Uy SoUS1USUSs Uy
11| Sg,S51,52,53 Uy, Uy, Us Sop, S1US, U S3 U, ul,uUus
2 1 S9,51,52,53 Uy, Uy, Us So, S1, S U S3 U, Ul U Us;
3| Sp,S51,572,53 Uy, Up, Uy, Us | So, S1, Sa, S3 U; Ul, U Uy U Us
41 S9,5>,53,54,Ss Uy, Up, Uy, Us | Sg, Sp, S3, S4U S5 U, U, Uy U Us
5| Sg,S»,53,854, S5 Uy, Uy, Uy, Us | S, S, S3, S4 U S5 U, Uy, Uy U Us
6 | So,S2,53,54,5¢,S7 | Uy, Uy, Uy, Us | Sy, S, S3, S4 USgU Sy | Uy, Uy, Uy, Us
7 | S0,52,53,54,56,57 | U1, Up, Uy, Us | Sg, Sp, S3, S4, S¢ US7 | Uy, Up, Uy, Us
8 | So,S2,53,54,S¢,S7 | Uy, Uy, Uy, Us | So, S, S3, Sa, Se, Sy Uy, Up, Uy, Us

4. A partition-refinement algorithm for probabilistic bisimulation (detailed)

Algorithm 1 gives an outline but leaves many details implicit. The detailed refinement-partition
algorithm is presented in this section as Algorithm 2. It has the same structure as Algorithm 1, but in
this section we focus on how to efficiently calculate whether and how blocks must be split, and how
this split is actually carried out. We first explain grouping of action transitions per action, next we

380

Version August 20, 2018 submitted to Algorithms 11 0f 22

Figure 4. Transitions with state_to_constellation_cnt stored in a global array.

introduce various data structures that are used by the algorithm, subsequently we explain how the
algorithm is working line-by-line, and finally we give an account of its complexity.

4.1. Grouping action transitions per action label

To obtain the complexity bound of our algorithm it is essential that we can group action transitions
by actions linearly in the number of transitions. Grouping means that the action transitions with the
same action occur consecutively in this ordering. It is not necessary that the transitions are ordered
according to some overall ordering.

We assume that |Act| < m, and that the actions in Act are consecutively numbered. Recall,
m, denotes the number of transitions s — 1. These assumptions are easily satisfied, by removing those
actions in Act that are not used in transitions and by sorting and numbering the remaining action
labels. Sorting these actions adds a negligible O(|Act|log |Act|) < O(m,logmy).

Grouping transitions is performed by an array of buckets indexed with actions. All transitions
are put in the appropriate bucket in constant time exploiting actions being numbered. Furthermore,
all buckets that contain transitions are linked together. When all transitions are in the buckets, a
straightforward traversal of all linked buckets provides the transitions in a grouped order. This
requires time linear in the number of considered action transitions. Note that the number of buckets is
equal to |Act| < m, and therefore, the buckets do not require more than linear memory:.

4.2. Data structures

We give a concise overview of the concrete data structures in the algorithm for states, transitions,
blocks, and constellations. We list the names of the fields in these data structures in a programming
vein to keep a close link with the actual implementation.

The chosen data structures are not particularly optimised. Exploiting ideas from [12,26,27] to
store states, blocks, and constellations, usage of time and memory can be further reduced. All data
structures come in two flavours, one related to actions and the other related to probabilities. We treat
them simultaneously and only mention their differences when appropriate.

Global. In the detailed algorithm there are arrays containing transitions, actions, blocks as well
as constellations. There is a stack of non-trivial constellations to identify in constant time which
constellation must be investigated in the main loop. Furthermore, there is an array containing the
variables state_to_constellation_cnt, which are explained below.

Version August 20, 2018 submitted to Algorithms 12 of 22

For all action transitions s — u it is maintained how many action transitions there are labelled
with the same action a4, and that go from s to the constellation C containing u. This value is called
state_to_constellation_cnt for this transition. The value is required to efficiently split probabilistic blocks
(the idea of using such variables stems from [21]). For each state s, constellation C, and action a there
is one instance of state_to_constellation_cnt stored in a global array. Each transition s 2 1 contains a
reference called state_to_constellation_cnt_ptr to the appropriate value in this array. See Figure 4 for a
graphical illustration with a constellation C of probabilistic states and blocks B; and B, of action states.
The purpose of this construction is that state_to_constellation_cnt can be changed by one operation for
all transitions from the same state with the same action to the same constellation, simultaneously.

Transition. Each transition consists of the fields from, label and to. Here from and to refer to an
action/probabilistic state, and label is the action label or probabilistic label of the transition. The action
labels are consecutive numbers; the probabilistic labels are exact fractions. Action transitions also
contain a reference state_to_constellation_cnt_ptr to the variable state_to_constellation_cnt as indicated
above.

State. Each action state and probabilistic state contains a list of incoming transitions and a
reference to the block in which the state resides. For intermediate calculations, each state contains
a boolean mark_state which is used to indicate that a state has been marked. Each action state also
contains two more variables for temporary use. When deciding whether blocks need to be split,
the variable residual_transition_cnt indicates how many residual transitions there are to blocks C \Bc
when splitting takes place by a block Bc. The variable transition_cnt_ptr is used to let the variable
state_to_constellation_cnt_ptr for an action transition point to a new instance of state_to_constellation_cnt
when this transitions is moved to a new block. In probabilistic states there is the temporary variable
cumulative_prob used to calculate the total probability to reach a block under splitting.

Block. Blocks contain an indication of the constellation in which it occurs, a list of the states
contained in the block including the size of this list, and a list of transitions ending in this block. For
blocks of action states this list of transitions is grouped by action label, i.e., transitions with the same
action label are a consecutive sublist. For temporary use there is also a variable to indicate that the
block is marked. This marking contains exactly the information that the functions aMark and pMark,
discussed below, provide for blocks of action states and blocks of probabilistic states, respectively.

Constellation. Finally, constellations contain a list of the blocks in the constellation as well as the
cumulative number of states contained in all blocks in this constellation.

4.3. Explanation of the detailed algorithm

Algorithm 1 focuses on how by refining partitions and sets of constellations probabilistic bisimulation
can be calculated. In Algorithm 2 we stress the details of carrying out concrete refinement steps to
realise the required time bound. As already indicated, the overall structure of both algorithms is the
same.

The initial lines 2 and 3 of Algorithm 2 are the same as those of Algorithm 1. In line 3 the
partition B is set to contain one block with all probabilistic states and a number of blocks of action
states, grouped per common outgoing action labels. Thus two action states are in the same block
initially if their menu, i.e., the set of actions for which there is a transition, is identical. This initial
partition B is calculated using a simple partition refinement algorithm on outgoing transitions of
states. This operation is linear in the number of outgoing action transitions when using grouping of
transitions as explained in Section 4.1.

At line 4 the incoming transitions are ordered on actions as indicated in Section 4.1. At line 5
an array with one instance of state_to_constellation_cnt for each action label is made where each
instance contains the number of action transitions that contain that action label. The reference
state_to_constellation_cnt for each action transition is set to refer to the appropriate instance in this array.
This is done by simply traversing all transitions s — u grouped by action labels and incrementing
the appropriate entry in the array containing all state_to_constellation_cnt variables. The appropriate

Version August 20, 2018 submitted to Algorithms 13 of 22

Algorithm 2 Partition refinement algorithm for probabilistic bisimulation

1: function PARTITION-REFINEMENT (S, U, —)

2:C:={S, U}) O (na+ny)
3:B:={U}tu{Ss|ACAct
{UU{Sa [AC Act} a }O(np+ng+ma)
where Sy = {se€S|Vae AJuel:s—u} J
: group the incoming action transitions in each block per label }O (mg)
: initialise state_to_constellation_cnt for each transition } O (myg)
\

: while C contains a non-trivial constellation C do

4

5

6 7 < n iterations
7. choose a block B¢ from B in C such that |Bc| < 3[C]|

8.

9

split constellation C into B¢ and C\B¢ in C rO(1)
: if C contains probabilistic states then
10: for all incoming actions a of states in B¢ do } < |Act| iterations
11: (B, left,, mid,, right,, large,) := aMark(B,C, B¢, a) } O (nr of incoming a transitions in B¢)
12: for all blocks B € B, do l
13: for all non-empty subsets B’ C B, different from [O (nr of incoming a transitions in Bc)
large,(B) in {left(B)q4, mid,(B), right,(B)} do
14: move B’ out of B and add B’ as new block to B} O (nr of incoming transitions in B')
15: else l O (nr of incoming prob. transitions in Bc)
16: (Bp, leftp, midp, rightp, largep) := pMark(B,C, Bc) J plus a sorting penalty
17: for all blocks B € By, do l
18: for all non-empty sets of states B’ C B not equal to [O (nr of incoming prob. transitions in Bc)
largep(B) in {leftp(B)}Umidp(B)U{right(B)p} do
19: move B’ out of B and add B’ as anew block to B} O (nr of incoming transitions in B')
20: return B

entry can be found using the temporary variable transition_cnt_ptr associated to state s. If no entry
for state_to_constellation_cnt exists yet, the variable transition_cnt_ptr belonging to s is null and an
appropriate entry must be created.

In line 6 selecting a non-trivial constellation is straightforward, as a stack of non-trivial
constellations is maintained. Initially, this stack contains C = {S,U}. To obtain the required time
complexity, we select Bc such that |Bc| < 4|C| in line 7. This is done in constant time as we know
the number of states in C. Hence, either the first or second block B of constellation C satisfies that
|B| < %|C | (for if the first block contains more than half the states the second one cannot). We replace
the constellation C by B¢ and C\Bc in C, see line 8, and put the constellation C\Bc on the stack of
non-trivial constellations if it is non-trivial.

From line 9 to 19 the partition B is refined to restore the invariants, especially Invariant 3. This is
done by first marking the blocks (line 11 and line 16) such that it is clear how they must be split, and
by subsequently splitting the blocks (lines 12 to 14, and lines 17 to 19). Both operations are described
in the next two subsections.

4.4. Marking

Given a constellation C that contains a block B¢ and in case of an action transition, an action a, we
need to know which blocks need to be split in what way. This is calculated using the functions
aMark(B, C, Bc,a) and pMark(B,C, Bc). The first one is for marking blocks with respect to action
transitions, the second for marking blocks with respect to probabilities.

Both functions yield a five-tuple (B, left, mid, right, large). Here B C B is a set of blocks that may
have to be split and left, mid, right are functions that together for each block B € B provide the sets into
which B must be partitioned. The set large(B) is the largest set among them. For every set B’ in which
B must be partitioned, except for large(B), it holds that |B’| < |B|. To obtain the complexity bound
we only move such small blocks out of B, i.e., those blocks not equal to large(B).

Version August 20, 2018 submitted to Algorithms 14 of 22

We note that sets in left(B), mid(B) and right(B) can be empty. Such sets can be ignored. It is also
possible that there is only one non-empty set being equal to B itself. In this case B is stable under B¢
and C\Bc. Furthermore, it is equal to large(B) and therefore B is kept intact.

We now concentrate on the function aMark(B,C, Bc,a) with a partition B, a constellation C,
a block B¢ contained in C, and an action a. In this situation, C is a non-trivial constellation of
probabilistic states. Since C contains probabilistic states only, incoming transitions for states in B¢ are
action transitions. The situation is depicted in Figure 2, at the left. The call aMark(B, C, B¢, a) returns
the tuple (By, left,, mid,, right,, large,) defined as follows.

B, = {BeB|3scB:s 5B}
and, for each B € B,,
left,(B) = {s€B|s-%BcAs—+ C\Bc},
mid,(B) = {s€B|s-3BcAs->C\Bc},
right (B) = {s€B|s BcAs->C\Bc}, and
large, (B) the largest set among left,(B), mid,(B), and right,(B).

We calculate B, by traversing the list of all transitions with action a going into B¢ and adding each
block containing any source state of these transitions to B,. The blocks in B, are the only blocks that
may be unstable under B¢ and C\ B¢ with respect to a (Lemma 3.3).

The for loop at line 10 iterates over all actions. As the incoming transitions into block B¢ are
grouped per action, all incoming transitions with the same action can easily be processed together, while
the total processing time is linear in the number of incoming transitions. But note that calculating B, is
based on partition 3, while B is refined at line 14. Thus, the calculation of B, for different actions a can
be based on repeatedly refined partitions 3.

Next, we discuss how to construct the blocks left,(B), mid,(B), and right,(B). While traversing
a-labelled transitions into Bc, all action states in a block B with an a-transition into B are marked and
(temporarily) moved into left, (B). The remaining states in block B form the subset right,(B). We keep
track of the number of states in a block. Thus, we can easily maintain the size of right,(B).

To find out which states now in left,(B) must be transferred to mid,(B), the variables
state_to_constellation_cnt are used. Recall that these variables record for each transition s — u, with
u € S, how many transitions s — v there are to states v € C. These variables are initialised in line 5 of
Algorithm 2. When the first state is moved to left . (B), we copy the value of state_to_constellation_cnt of
transition s — u to the variable residual_transition_cnt belonging to state s of the transition, subtracted
by one. The number residual_transition_cnt indicates how many unvisited a-transitions are left from
the state s into C. Every time an a-transition is visited of which the source state is already in left,(B),
we decrease residual_transition_cnt of the source state by one again. If all a-transitions into B¢ have
been visited, the number residual_transition_cnt of a state s indicates how many transitions labelled a
go from s into C\ Bc.

Subsequently we traverse the states in left,(B). If a state s has a non-zero residual_transition_cnt,
we know that there are a-transitions from s to both B¢ and C\Bc. Therefore we move state s into
mid, (B). Otherwise, all transitions from s with action a go to B¢ and s must remain in left,,(B).

While moving states into left, (B) and mid,(B), we also keep track of the sizes of these sets. Hence,
it is easy to indicate in large,(B) which set is the largest.

We calculate pMark(B, C, Bc) in a slightly different manner than aMark. In particular, we have
midy : B — 22" e, mid,(B) is a set of blocks. This indicates that the block B can be partitioned in
many sets, contrary to the situation with action blocks where B could be split in at most three blocks.

Version August 20, 2018 submitted to Algorithms 15 of 22

The situation is depicted in Figure 2 at the right. The five-tuple that pMark returns has the following
components:

B, = {BeB|3JucB:u[B]>0}
and, for each B € B,
leftp(B) = {u€eB|ulB]=1},
mid,(B) = {{ueB|ulBc)=q}|q€(0,1)},
rightp(B) = {ue€B|u[BJ=0}, and
largep(B) the largest set from {leftp(B)} Umid,(B) U {rightp(B)}.

The above is obtained by traversing through all incoming probabilistic transitions in Bc. Whenever
there is a state u in a block B such that u —, Bc, one of the following cases applies:

e If Bisnotin By yet, it is added now. The variable cumulative_prob in state u is set to p, and u is

(temporarily) moved from B to left, (B).
e If B is already in B), then the probability p is added to cumulative_prob of state u.

After the traversal of all incoming probabilistic transitions into B¢, the variable cumulative_prob of u
contains u[Bc], i.e., the probability to reach B¢ from the state u.

Those states that are left in B form the set right,, (B). We know the number of states in right,, (B) by
keeping track how many states were moved to left,(B). Next, the states temporarily stored in left, (B)
must be distributed over left,(B) and mid,(B). First, all states with cumulative_prob < 1 are moved
into some set M such that left, (B) contains exactly the states with cumulative_prob = 1. Then the states
in M are sorted on their value for cumulative_prob such that it is easy to move all states with the same
cumulative_prob into separate sets in mid,(B). In Figure 2 at the right the set mid,(B) consists of three
sets, corresponding to the probabilities g = %, q= % and g = 2 to reach Bc. Note that all processing
steps mentioned require time proportional to the number of incoming probabilistic transitions in Bc,
except for the time to sort. In the complexity analysis below it is explained that the cumulative sorting
time is bounded by O (1, logn,).

By traversing the sets of states in leftp(B) and mid, (B) once more, we can determine which set
among left, (B), right, (B), and the set of sets mid, (B) contains the largest number of probabilistic states.
This set is reported in largep(B).

4.5. Splitting

In lines 14 and 19 of Algorithm 2 a block B’ is moved out of the existing block B. By the marking
procedure, either aMark or pMark, the states involved are already put in separate lists and are moved
in constant time to the new block B’.

Blocks contain lists of incoming transitions. When moving the states to a new block, the incoming
transitions are moved by traversing the incoming transitions of each moved state, removing them from
the list of incoming transitions of the old block and inserting them in the same list for the new block.
There is a complication, namely that incoming action transitions must be grouped by action labels.
This is done separately for the transitions moved to B’ as explained in Section 4.1 and this is linear
in the number of transitions being moved. When removing incoming action transitions from the old
block B, the ordering of the transitions is maintained. So, the grouping of incoming action transitions
into B remains intact without requiring extra work.

When moving action states to a new block we also need to adapt the variable
state_to_constellation_cnt for each action transition s - C with state s € B. Observe that this only
needs to be done if there are some a-transitions to Bc and some to C\ B¢, which means that s € mid,(B).
In that case residual_transition_cnt for state s is larger than 0.

This is accomplished by traversing all incoming transitions s - u into Bc one extra time.
If residual_transition_cnt for s is larger than 0 we need to replace the state_to_constellation_cnt for

Version August 20, 2018 submitted to Algorithms 16 of 22

this transition s — u by the value of state_to_constellation_cnt — residual_transition_cnt of s. For all
non-visited transitions s - u’ where u’ € C\ B, the value of state_to_constellation_cnt must be set to
residual_transition_cnt of s.

This is where we use that state_to_constellation_cnt is actually referred to by the pointer
state_to_constellation_cnt_ptr (see Figure 4). When traversing the first transition of the form s N
with u € Bc such that residual_transition_cnt for s is larger than 0, a new entry in the array containing
the variables state_to_constellation_cnt is constructed containing the value state_to_constellation_cnt —
residual_transition_cnt and the auxiliary variable transition_cnt_ptr is used to point to this entry. At the
same time the value in old entry in this array for state_to_constellation_cnt is replaced by the value
residual_transition_cnt of state s. In this way the values of state_to_constellation_cnt of all transitions
labelled with a from s to C\ B¢ are updated in constant time, i.e., without visiting the transitions that
are not moved. For all transitions s — u’ with u’ € Bc, the variable state_to_constellation_cnt_ptr is
made to refer the new entry in the array.

4.6. Complexity analysis

The complexity of the algorithm is determined below. Recall that 7, and 7, are the number of action
states and probabilistic states, respectively, while 1, is the number of action transitions and 1, is the
cumulative size of the supports of the distributions.

Theorem 4.1. The total time complexity of the algorithm is O ((m, + my)logn, + (m, + ny) logng)
and the space complexity is O (11, + mp + 11,).

Proof. In Algorithm 2 the cost of each computation step is indicated. The initialisation of the algorithm
at lines 2 to 5 is linear in 14, 1, and m,. At line 3 calculating {S4 | A C Act} can be done by iteratively
splitting S using the outgoing transitions grouped per action label. This is linear in the number of
action transitions. At line 4 grouping the incoming transitions per action is also linear as argued in
Section 4.1.

The while loop at line 6 is executed for each Bc C C where |Bc| < %|C|. As Bc becomes a
constellation itself, each state can only be part of this splitting step log, (1,) times and log, (1) times,
respectively. The steps in lines 10 up till 13 respectively lines 16 up till 18 require steps proportional
to the number of incoming action transitions respectively probabilistic transitions in B¢, apart from a
sorting penalty which we treat separately below. The cumulative complexity of this part is therefore
O (mglogn, +mylogng).

At lines 14 and 19 the states in B’ are moved to a new block. This requires to group the incoming
action transitions in a block B’ per action, which can be done in time linear in the number of these
transitions. Block B’ is not the largest block of B considered and therefore |B'| < 1|B|. Hence, each
state can only be log,(n1,) or log,(n,) times be involved in the operation to move to a new block.
Hence, the total time to be attributed to moving is O ((m,Z + np) logn, + (mp +n,)log n,l).

While marking, probabilistic states in mid,(B) need to be sorted. An ingenious argument by
Valmari and Franceschinis [27] shows that this will at most contribute O (mp logn p) to the total
complexity: Let K be the total number of times sorting takes place. Assume, for 1 < i < K, that the
total number of distributions in mid, (B) when sorting it for the i-th time is k;. Clearly, k; < n,. Each
time a distribution in mid,(B) is involved in sorting, the number of reachable constellations with
non-zero probability from this distribution is increased by one. Before sorting it could reach C, and
after sorting it can reach both new constellations B¢ and C\ Bc with non-zero probability. Note that
this does not hold for the states in leftp(B) and rightp(B), and this is the reason why we have to treat
them separately. In particular, in order to obtain complexity O(m, logn,) it is not allowed to involve
the states in leftp (B) and rightp(B) in the sorting process as shown by an example in [27]. Due to the
increased number of reachable constellations, the total number of times a probabilistic state can be

601

603

604

605

606

607

608

Version August 20, 2018 submitted to Algorithms 17 of 22

involved in sorting is bounded by the size of the distribution. In other words, YX_; k; < my. Hence,
the total time that is required by sorting is bounded as follows:

o(z’;l kilogki) < o(zf;1 kilognp) < O(mylogn,).

Adding up the complexities leads to the conclusion that the total complexity of the algorithm is
(0] ((mu +my +np)logn, + (my + n,) log na). As my > np, the stated time complexity in the theorem
follows.

The space complexity follows as all data structures are linear in the number of transitions and
states. As ny, < my, this complexity can be stated as O (ma +my + na). O

Note that it is reasonable that the number of probabilistic transitions m,, is at least equal to the number
of action states 1, — 1 as otherwise there are unreachable action states. This allows to formulate our
complexity more compactly.

Corollary 4.2. Algorithm 2 has time complexity O ((m, 4 mp)logn, +mylogn,)) and space
complexity O (m, 4 m,) if all action states are reachable.

The only other algorithm to determine probabilistic bisimilarity for PLTS is by Baier, Engelen and
Majster-Cederbaum [3]. The algorithm uses extended ordered binary trees and is claimed to have a
complexity of O (mn(logm + logn)) where m is the number of transitions (including distributions)
and n the number of action states. For a fair comparison we reconstructed their complexity in
terms of n,, np, my and my. Their space complexity is O (n,lnp\ActD and the time complexity is
O (manqlogng + nanplogny, + nn,). The last part n2n, is not mentioned in the analysis in [3]. It is
due to taking the time into account for ‘inserting Pre(«, y;) into v.states’ (see page 208 of [3]) for the
version of ordered balanced trees used, and we believe it to be forgotten [2].

This complexity is not easily comparable to ours. We make two reasonable assumptions to
facilitate comparison. The first assumption is that the number of action transitions is equal to the
number of distributions: m, = n,. As second assumption we use that log 1, and log n, only differ by
a constant.

In the rare case that the support of distributions is large, i.e., if all or nearly all action states
have a positive probability in each distribution, then m,, is equal or close to n,1,. In this case our
space complexity becomes O (1,411,) and our time complexity is O (n,1p log np), which is comparable
mutatis mutandis to the complexity of [3]. However, in the more common case where the support
of distributions is limited by some constant ¢, i.e., m, < cnp, we can simplify the space and time
complexities to those in the following table.

| GRV (this article) BEM [3]
Space complexity O (np) O (nanp|Act|)
Time complexity O (nplogna) O (na nplogng 4+ n2n,

In the table the underlined part stems from the extra time needed for insertions. It is clear that if the
assumptions mentioned are satisfied, the complexity of the present algorithm stands out well. This
is confirmed in the next section where we report on the performance on a number of benchmarks of
implementations of both algorithms.

5. Benchmarks

Both our algorithm, below referred to by GRV, and the reference algorithm by Baier, Engelen and
Majster-Cederbaum [3], for which we use the abbreviation BEM, have been implemented in C++ as
part of the mCRL2 toolset [7,1 1]*. This toolset is available under a Boost license which means that the

1 See www.mcrl2.org.

www.mcrl2.org

Version August 20, 2018 submitted to Algorithms 18 of 22

sort Direction = struct up | down | right | left;

proc X(x,y:N) =

(x =1V x =~ maxy) — dead-X(x,y) ©

(y = 1Vy = max,) — live.X(x,y) o

(distd : Direction[1/4].

((d = up) — step-X(x+1,y) +

(d =~ down) — step-X(x —1,y) +
(d =~ right) — step-X(x,y +1) +
(d =~ left) — step-X(x,y — 1)));

init X(iyiy);

Figure 5. The specification of ant-on-a-grid in mCRL2

source code is open and available without restriction to be inspected or used. In the implementation of
BEM some of the operations are not carried out exactly as prescribed in [3] for reasons of practicality.

We have extensively tested the correctness of the implementation of the new algorithm by applying
it to millions of randomly generated PLTSs, and comparing the results to those of the implementation
of the BEM algorithm. This is not done because we doubt the correctness of the algorithm, but because
we want to be sure that all the details of our implementation are right.

We experimentally compared the performance of both implementations. All experiments have
been performed on a relatively dated machine running Fedora 12 with INTEL XEON E5520 2.27 GHz
CPUs and 1TB RAM. For the probabilities exact rational number arithmetic is used which is much
more time consuming than floating point arithmetic. The reported runtimes do not include the time to
read the input PLTS and write the output.

Our first experimental question regards the growth of the practical complexity of the BEM and GRV
algorithm when concrete probabilistic transition systems grow in size. To get an impression of this
we considered the so-called “ant on a grid” puzzle published in the New York Times [1,13]. In this
puzzle an ant sits on a square grid. When it reaches the leftmost or rightmost position on the grid it
dies. When it reaches the upper or lower position of the grid it is free and lives happily ever after. On
any remaining position, the ant chooses with equal probability to go to a neighbouring position on
the grid. The question is what the probabilities for the ant are to die and stay alive, given an initial
position on the grid.

The specification in probabilistic mCRL2 of the ant-on-a-grid is given in Figure 5, where the
dimensions of the grid are max, and max,, and the initial position is given by i, and i,. The actions
dead, live and step indicate that the ant is dead, stays alive and makes a step. The process expression
p-q stands for sequential composition and p + g represents the choice in behaviour. The notations
c—p and c—p ¢ g are the if-then and if-then-else of mCRL2. The curly equal sign (=) in conditions
stands for equality applied to data expressions. The expression dist d:Direction[1/4] means that each
direction d is chosen with probability %. From this description PLTSs are generated that are used as
input for the probabilistic bisimulation reduction tools.

Figure 6 depicts the runtime results of a set of experiments when increasing the total number
of states of the ant on the grid model. At the left are the results when running the BEM algorithm,
whereas the results for the GRV algorithm are shown at the right. Note that the x-axis only depicts the
number of action states. This figure indicates that the practical running times of both algorithms are
pretty much in line with the theoretical complexity. This is in agreement with our findings on other
examples as well. Furthermore, it should be noted that the difference in performance is dramatic. The
largest example that our implementation of the BEM algorithm can handle within a timeout of five
hours requires approximately 10,000 seconds compared to 2 seconds for GRV. The particular example

Version August 20, 2018 submitted to Algorithms 19 of 22

10000

8000

6000 r

4000 1

runtime (sec.)
runtime (sec.)

2000 |

0 2 4 6 8 0 2 4 6 8 10
number of action states x10° number of action states x10°

Figure 6. Scaling of runtime results for the ant-on-a-grid puzzle

regards a PLTS of 6.4x 10° action states. The graphs clearly indicate that the difference grows when the
probabilistic transition systems get larger.

In order to further understand the practical usability of the GRV algorithm, we applied it to a
number of benchmarks taken from the PRISM Benchmark Suite? and the mCRL2 toolset®. The tests
taken from PRISM were first translated into mCRL2 code to generate the corresponding PLTSs.

Table 2 collects the results for the experiments conducted. The ant_N_M_grid examples refer to the
ant-on-a-grid puzzle for an N by M grid with the ant initially placed at the approximate center of the
grid. The models airplane_N are instances of an airplane ticket problem using N seats. In the airplane
ticket problem N passengers enter a plane. The first passenger lost his boarding pass and therefore
takes a random seat. Each subsequent passenger will take his own seat unless it is already taken, in
which case he randomly selects an empty seat as well. The intriguing question is to determine the
probability that the last passenger will have its own seat (see [13] for a more detailed account).

The following three benchmarks stem from PRISM: The brp_N_MAX models are instances of
the bounded retransmission protocol when transmitting N packages and bounding the number of
retransmissions to MAX. The self_stab_N and shared_coin_N_K are extensions of the self stabilisation
protocol and the shared coin protocol, respectively. For the self stabilisation protocol, N processes are
involved in the protocol, each holding a token initially. The shared coin protocol is modelled using N
processes and setting the threshold to decide head or tail to K.

Finally, the random_N tests are randomly generated PLTSs with N action states. All the models
are available in the mCRL2 toolset.

At the left of Table 2, the characteristics for each PLTS are given: the number of action states (1), the
number of action transitions (i1,), the number of distributions (1), and the cumulative support of
the distributions (1m,). The symbol ‘K’ is an indicator for 1,000 states. The same characteristics for
the minimised PLTS are also provided. Furthermore, the runtime for minimising the probabilistic
transition system in seconds as well as the required memory in megabytes are indicated for both
algorithms. As mentioned earlier, we limited the runtime to 5 hours.

The experiments show that the GRV algorithm outperforms the reference algorithm quite
substantially in all studied cases. In the case of ‘random_100" the difference is four orders of magnitude,
despite the fact that this state space has only 100K action states. The one but last column of Table 2

www.prismmodelchecker.org /benchmarks/

3 www.mcrl2.org/

www.prismmodelchecker.org/benchmarks/
www.mcrl2.org/

680

681

682

715

716

717

718

719

720

Version August 20, 2018 submitted to Algorithms 20 of 22

lists the relative speed-up, i.e. the quotient of the time needed by BEM over the time needed by GRYV,
when applicable. Memory usage is comparable for both algorithms for small cases, whereas for larger
examples the BEM algorithm requires up to one order of magnitude more memory than the GRV
algorithm. The right-most column of Table 2 contains the relative efficiency in memory, i.e. the quotient
of the memory used by BEM over the memory used by GRYV, for the cases where BEM terminated
before the deadline.

6. Concluding remarks

We believe we have formulated a very efficient algorithm to determine probabilistic bisimulation. As
the algorithm restricts the handling of distributions to the states in the support of the distributions
the running time of the algorithm compare favourably when the fan-out is low in the PLTS under
consideration, a situation occurring frequently in practice.

Apart from deciding strong probabilistic bisimilarity, our algorithm is instrumental in the mCRL2
toolset for minimising PLTSs modulo probabilistic bisimulation. Such a reduction can be useful as a
preprocessing step before applying other forms of analysis on the PLTS. Occasionally, minimisation
can even simplify PLTSs such that they become suitable for visual inspection. See for example the
discussion the airplane ticket problem, also known as the problem of of problem of the lost boarding
pass, in [13]. However, having smaller state spaces will be beneficial anyway, as this reduces the
processing time for other tools further down the analysis chain.

To fine tune the algorithm it will be interesting in future work to investigate how to choose the
non-trivial constellations C and its sub-blocks B¢ optimally; their choice is now non-deterministic.
Furthermore, it is interesting to refine the algorithm to probabilistic bisimulation with combined
transitions [4] as this appears to be required to extend this algorithm to weaker notions of
equivalence [25], such as probabilistic branching bisimulation.

Author Contributions: Conceptualisation, JFG; Software and benchmarks, HJRV; Formal Analysis, JFG and EV;
Original Draft Preparation, JFG; Writing, Review & Editing, EV, JFG

Funding: This research received no external funding.

Acknowledgments: We thank Rodin Aarssen, Olav Bunte, and Thomas Neele for their helpful comments on a
final draft of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. G. Antonick. Ant on a grid. New York Times. August 12, 2013 (http://wordplay.blogs.nytimes.com//2013/
08/12/ants-2/).

2. C. Baier. Personal communication. 2018.

3. C. Baier, B. Engelen, M.E. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic processes.
Journal of Computional System Sciences 60(1):187-231, 2000.

4. E.Bandini and R. Segala. Axiomatizations for probabilistic bisimulation. In: F. Orejas, P.G. Spirakis, J. van
Leeuwen (eds), Automata, Languages and Programming. ICALP 2001. Lecture Notes in Computer Science,
vol 2076. pages 370-381, Springer, Berlin, Heidelberg, 2001.

5. S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In: L. Brim et al. (eds), Proc. 13th
CONCUR, LNCS 2421, pages 371-386, Springer 2002.

6. S. Crafa and F. Ranzato. Bisimulation and simulation algorithms on probabilistic transition systems by
abstract interpretation. Formal Methods in System Design 40(3):356-376, 2012.

7. S.Cranen, J.F. Groote,].J.A. Keiren, EP.M. Stapper, E.P. de Vink,].W. Wesselink, and T.A.C. Willemse. An
overview of the mCRL2 toolset and its recent advances. In N. Piterman and S.A. Smolka (eds.), Proc. TACAS
2013, LNCS 7795, pages 199-213, Springer 2014.

8. C. Dehnert, J.-P. Katoen, and D. Parker. SMT-based bisimulation minimisation of Markov models. In R.
Giacobazzi, J. Berdine, and I. Mastroeni (eds.), Proc. 14th. VMCAI, LNCS 7737, pages 28-47. Springer 2013.

http://wordplay.blogs.nytimes.com//2013/08/12/ants-2/
http://wordplay.blogs.nytimes.com//2013/08/12/ants-2/
http://wordplay.blogs.nytimes.com//2013/08/12/ants-2/

21 of 22

Version August 20, 2018 submitted to Algorithms

unpIode AYO oY) pue (NAF) WYILIOS e 90UaIa)al 3} J0J S)NSaI (A UT) asn ATowaw pue (*9s ur) swnuny g d[qeL,

- - 0S°€ST'6¥ 847799 - - MO0’ | M020'CE |M020°TE | M0T0°TE | M0F0°9S | M0’ 0F | MO0F0°9S | M0¥099 000 000% d1q
- - LY18€°CT |S6'STT - - MSTOCL | Y0108 Y0108 | MO010°8 [M0Z0FL |M9T00T |M0Z0FL | M0C0F1 0001000 d1q
- - VL€VL'S |¥9°6E - - MESST [I8€9 8C9 M8L9 |MOFTOT[M095°T [MOFT0T | MOFT'0T | PHS™009T 0091 3ue
- - yreere |s8ve - - MZ00°E | MS00C |MS00°T | MS00°T |MOTSE |M80ST [MOTSE [MOTSE 00S~ 0001 d1q
- - 88'608'C [£6'9C - - TEV'FC |0€9'8T |€98°TF |S80FL | MLEV'E |MF86'C |MG99'6 |MTTT'E G ¢ UuIod> pateys
- - PP O9'1 |4T8 - - A9¢9 6ST M6ST 6ST M09ST [M0V9 D095 | M095C pL8T008~ 008 3ue
- - W69T¥V'T STl - - 6€S°LT |€0L'CT |GGSEC |8LL'TT |M998'T |MCEI'T |M9TLE |M8S8'T 09 ¢ ur0d pareys
- - GL'69€°T €991 - - 81¢ 60T [E8€E 920'8S | MT¥T’S [ALICT |[MeeT’S | M9P0°T 01 qess” J[os
- - G0°684 76V - - A¥eL A8y | ESY AE|y |2A9%8 [IF09 [A9F8 | M9¥8 002 009 d1q
- - 6L 81%'T (8611 - - MCOV'T [DIE68 MOTTT 488 [MSTL'T |M6L0'T |MLLT'T | 008 008 wopuel
- - 8¥6'94L |TCY - - 1009 00y (21009 009 21008 [2I00F | X008 | X008 000001 ouerdire
1€91 SVLY €CL6E 60°C SLLIY9 |¥9°L16°6 |M8ST F09°6c |S09°6E |S09°6E [M0F9 D091 | M0F9 | M0F9 pLST00% 0% 3ue
1ze €e8 €I'68¢ G6'C V8Vl |SS LT T |64L°8 €989 S6LTL |868'S |y [TV [M9¢6 |MI89F 0€ ¢ ur0d pareys
- - ¥8°'6¢L 11 - - 0eL Moy (21609 Je6c |216S8 [0S |89 | M00F 00y wopuel
- - FARZA vel - - 074 09T (074 A0ve |2A0ce (09T [M0CE | M0CE 0000% ouedire
8/°L 6£¥'E G96'81¢ 88°0 08'€04'T |20'920°€ |808'8Z |POL'6L |S0L'6T |S0L'61 [MOTE |L66'6L |M0TE |M0TE PL8T007 00% ue
1ee 1001 89'Y6C 821 c6'VL6 ¥9184'T 89001 |ccs'L LYELT |TP8'S |MI8IE |MPLT |M4E8 |08C ¢ ¢ uiod pareys
(/A 4 6€C'T 71869 vee 7€608'C |€SSTOT |C19°69 |908°CE | METT LUl [MOST'T W6 |ASLT'T |M29T 6 qeis Jes
1¢¢C 09s 08861 611 8T 0¥¥ 76’799 648'S €89Y |GL8'L 8€6’c [DcIc |MS8T |M6IF | M0TC 0T ¢ ur0d parteys
88°¢ ¥a8'1 ¥8¥¢l 170 8L¥8Y L1094 8076 |¥08'6 |S08°6 G086 |M09T |4666E |M09T |M091 P800z 007 Jue
96°cl yegel 80°¢T¢C YI'T 8€'GL6'C |816EY'ST |MEST R rans ATST £09°€ |MISTT [JIFET 09T | 00T 001 wopuelx
€&v'6 1862 €8°¢ll L0 €9'¢L0'T |TI'S08'T |S66'65 |866'6E |F766'65 |S66'65 |166'6L [8666E |066'6L |1666L 00001 duefdare
661 6CS G8'c8 020 qay91 82'G01 80%'61 |P98F |9S8F GG8'V |886'6L |L666L |¥86'6L |¥86'6L pL8TO0T 00T Jue
00’8 LOV'Y 98'101 8¢0 68718 €SVL9'T |[FOV'I9 |POO'TF [FOO'T¥ |POO'TF |€00°CZL |€09°TS |€00°CL |€00°TL 05 00¢ diq
81 189 L1°LST 690 ¥'v6c L1'T0V el |TTL'6 |096'CE [90€9 |MT9T |££9°99 M09 |920°G9 8 qeis JIes
€'l [4:1! €18 9¢0 68201 1¥°99 6€6'C €0€'C |9S6°C 846'T |MISS |1€1'8% |ML0T |9€4°€S 01" ¢ uIod paiteys
68Y yeg’e 02111 090 1T97S 089941 |198°€L |T60'GY |¥#98°09 |019°6C |1€T98 |€CL'FS |186'€9 |000°0F 0% wopuer
9Tl [43! G819 710 8084 a8l 8096 Y0¥'c |S0¥'C GOF'T |886'6E |L66'6 |¥86'6E |¥86'6€ pL8TO0T 00T Jue
LT¢ 8.7¢ 8899 qro 10'61¢C QL 16y G66'CT [866'ST |V66'€C |S66'EC |166'1E |866'ST |066°1E |166°1E 000% ouerdire
02¢ 9/9'T 1799 o YC9L1 £9'89¢ Y04¥C |P0S9T |F0S9T |P0OS9T |€00°6C |€08°0C |€00'6C |€00'6C 0¥ 001 diq
80T €8 ge99 Z1°0 1L 8071 L9 9¢8'c |¥CE6 090'C |9¥E'LS |LEEFT |TIF9S |0ET9T £ qeis JIes
8Tl 129 6499 900 1978 LT LE Y0LCl |¥0S'8 | P0S°8 $0S'8 |€00°ST |€08'0T |€00°ST |€00°ST 02 001 d1q
70’1 89 ve'19 80°0 £45°¢S v's 6L¥'1 91’1 666’1 866 L108'FT |168°CL |T61'8C |960°F1 G ¢ UI0d pareys
TQOEQE 7 dn-paads| A¥O dw | AYO swn [NAg Pw [NG uﬁi du .E—i dy .Eﬂi vy .E—i vy .557 du TQ TS: T: [PPOIN

732

733

734

735

736

737

738

747

748

749

750

751

752

753

762

763

764

765

766

Version August 20, 2018 submitted to Algorithms 22 of 22

9. S. Dersavi, H. Hermanns, and H. Sanders. Optimal state-space lumping in Markov chains. Information
Processing Letters 87:309-315, 2003.

10. U. Dorsch, S. Milius, L. Schroder, and T. Wissmann. Efficient coalgebraic partition refinement. In R. Meyer
and U. Nestmann (eds.), Proc. 28th CONCUR, LIPIcs 85, pages 32:1-32:16, 2017.

11. J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communication Systems. The MIT Press 2014. (See
for the toolset www.mcrl2.org).

12. J.E. Groote, D.N. Jansen, J.J.A. Keiren, and A.J. Wijs. An O (mlogn) algorithm for computing stuttering
equivalence and branching bisimulation. ACM Transactions on Computational Logic 18(2):13:1-13:34, 2017.

13.].F. Groote and E.P. de Vink. Problem solving using process algebra considered insightful. In J.-P. Katoen and
R. Langerak and A. Rensink (eds.), ModelEd, TestEd, TrustEd — Essays Dedicated to Ed Brinksma on the
Occasion of His 60th Birthday, LNCS 10500, pages 48—63. Springer 2017

14. H.A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing
6:512-535, 1994.

15. M. Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Computing 24:749-768, 2012.

16. J. Hillston, A. Marin, S. Rossi, and C. Piazza. Contextual lumpability. In A. Horvéth et al., (eds), 7th
international conference on Performance Evaluation Methodologies and Tools, pages 194-203. ICST/ACM,
2013.

17. P. Kannelakis and S. Smolka. CCS expressions, finite state processes and three problems of equivalence.
Information and Computation 86:43-68, 1990.

18.].-P. Katoen, T. Kemna, I. Zapreev, and D.N. Jansen. Bisimulation minimisation mostly speeds up probabilistic
model checking. In O. Grumberg and M. Huth (eds.), 13th international conference on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 4424, pages 87-101. Springer 2007.

19. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo and J. Hillston
(eds.), Formal Methods for the Design of Computer, Communication and Software Systems: Performance
Evaluation, LNCS 4486, pages 220-270. Springer 2007.

20. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation 94:1-28,
1991.

21. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal of Computation 16(6):973-989,
1987.

22. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD. thesis, Laboratory
for Computer Science, MIT 1995. Available as Technical Report MIT/LCS/TR-676.

23. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Computing
2(2):250-273.

24. L.Song, L. Zhang, H. Hermanns, and J.C. Godskesen. Incremental bisimulation abstraction refinement. ACM
Transactions on Embedded Computing Systems 13(142)1-23.

25. A. Turrini and H. Hermanns. Polynomial time decision algorithms for probabilistic automata. Information
and Computation 244:134-171, 2015.

26. A. Valmari. Simple bisimilarity minimization in O (mlogn) time. Fundamenta Informaticae 105(3):319-339,
2010.

27. A. Valmari and G. Franceschinis. Simple O (mlogn) time Markov chain lumping. In J. Esparza and
R. Majumdar (eds.), Proc. 16th international conference on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 6015, pages 38-52. Springer 2010.

28. L. Zhang, H. Hermanns, F. Eisenbrand, and D.N. Jansen. Flow faster: efficient decision algorithms for
probabilistic simulations. Logical Methods in Computer Science 4(4:6):1-43, 2008.

29. L. Zhang and D.N. Jansen. A space-efficient simulation algorithm on probabilistic automata. Information and
Computation 249:138-159.

© 2018 by the authors. Submitted to Algorithms for possible open access publication
under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http:/ / creativecommons.org/licenses /by /4.0/).

www.mcrl2.org
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	A partition refinement algorithm for probabilistic bisimulation (outline)
	Stability of blocks and partitions
	Outline of the algorithm
	Refining the set of constellations and restoring the invariants
	An example

	A partition-refinement algorithm for probabilistic bisimulation (detailed)
	Grouping action transitions per action label
	Data structures
	Explanation of the detailed algorithm
	Marking
	Splitting
	Complexity analysis

	Benchmarks
	Concluding remarks
	References

