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Abstract: We provide an algorithm to efficiently compute bisimulation for probabilistic labeled1

transition systems, featuring non-deterministic choice as well as discrete probabilistic choice. The2

algorithm is linear in the number of transitions and logarithmic in the number of states, distinguishing3

both action states and probabilistic states, and the transitions between them. The algorithm improves4

upon the proposed complexity bounds of the best algorithm addressing the same purpose so far by5

Baier, Engelen & Majster-Cederbaum (Journal of Computer and System Sciences 60:187–231, 2000).6

Also experimentally, on various benchmarks, our algorithm performs rather well; even on relatively7

small transition systems, a performance gain of a factor 10,000 can be achieved.8

Keywords: probabilistic system with nondeterminism; probabilistic labeled transition system;9

probabilistic bisimulation; partition-refinement algorithm10

1. Introduction11

In [20], Larsen and Skou propose the notion of probabilistic bisimulation. Although described for12

deterministic transition systems, the same notion is very suitable for probabilistic transition systems13

with nondeterminism [22,23], so-called PLTSs, too. It expresses that two states are equivalent exactly14

when the following condition holds: if one state can perform an action ending up in a set of states,15

each with a certain probability, then the other state can do the same step ending up in an equivalent16

set of states with the same distribution of probabilities. Two characteristic nondeterministic transition17

systems of which the initial states are probabilistically bisimilar are given in Figure 1.18
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Figure 1. Two probabilistically bisimilar nondeterministic transition systems.
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In [3], Baier et al. give an algorithm for probabilistic bisimulation for PLTSs, thus dealing both19

with probabilistic and nondeterministic choice, of time complexity O (mn(log m + log n)) and space20

complexity O (mn), where n is the number of states and m is the number of transitions (from states to21

distributions over states; there is no separate measure for the size of the distributions). As far as we22

know, it is the only practical algorithm for bisimulation à la Larsen-Skou for PLTSs. In essence, other23

algorithms for probabilistic systems typically target Markov chains without nondeterminism. The24

algorithm of [3] performs an iterative refinement of a partition of states and a partition of transitions25

per action label. The crucial point is splitting the groups of states based on probabilities. For this a26

specific data structure is used, called augmented ordered balanced trees, to support efficient storage,27

retrieval and ordering of states indexed by probabilities.28

In this paper, we provide a new algorithm for probabilistic bisimulation for PLTSs of time29

complexity O
(
(ma + mp) log np + mp log na)

)
and space complexity O

(
ma + mp

)
, where na is the30

number of states, ma the number of transitions labelled with actions, np the number of distributions31

and mp the cumulative support of the distributions. Our na coincides with the n of Baier et al. We prefer32

to use ma, np, and mp over m as the former support a more refined analysis. A detailed comparison33

between the algorithms reveals that if the distributions have a positive probability for all states, the34

complexities of the algorithms come near. However, when distributions only touch a limited number35

of states, as is often the common situation, the implementation of our algorithm outperforms our36

implementation of the algorithm of [3], both in time as well as in space complexity.37

Like the algorithm of Baier et al., our algorithm keeps track of a partition of states and of38

distributions (referred to as action states and probabilistic states below) but in line with the classical39

Paige-Tarjan approach [21] it also maintains a courser partition of so-called constellations. The40

treatment of distributions in our algorithm is strongly inspired by the work for Markov Chain lumping41

by Valmari and Franceschinis, but our algorithm applies to the richer setting of non-deterministic42

labelled probabilistic transition systems. Using a brilliant, yet simple argument, taken from [27], the43

number of times a probabilistic transition is sorted can be limited by the fan-out of the source state of44

the transition. This leads to the observation that we can use straightforward sorting without the need45

of any tailored data structure such as augmented ordered balanced trees or similar as in [3,9]. Actually,46

our algorithm uses a simplification of the algorithm of [27] since the calculation of so-called majority47

candidates can be avoided, too.48

We implemented both the new algorithm and the algorithm from [3]. We spent quite some49

effort to establish that both implementations are free from programming flaws. To this end we ran50

them side-by-side and compared the outcomes on a vast amount of randomly generated probabilistic51

transition systems (in the order of millions). Furthermore, we took a number of examples from the52

field, among others from the PRISM toolset [19], and ran both implementations on the probabilistic53

transition systems that were obtained in this way. Time-wise, all benchmarks indicated better results54

for our algorithm compared to the algorithm from [3]. Even for rather small transition systems of about55

100,000 states performance gains of a factor 10,000 can be achieved. Memory-wise the implementation56

of our algorithm also outperforms the implementation of [3] when the sizes of the probabilistic state57

space are larger. Both findings are in line with the theoretical complexity analyses of both algorithms.58

Both implementations have been incorporated in the open source mCRL2 toolset [7,11].59

Related work. Probabilistic bisimulation preserves logic equivalence for PCTL [14]. In [18], Katoen60

c.s. report up to logarithmic state space reduction obtained by probabilistic bisimulation minimisation61

for DTMCs. Quotienting modulo probabilistic bisimulation is based on the algorithm of [9]. In the same62

vein, Dehnert et al. propose symbolic probabilistic bisimulation minimisation to reduce computation63

time for model checking PCTL in a setting for DTMCs [8], where an SMT solver is exploited to do the64

splitting of blocks. Partition reduction modulo probabilistic bisimulation is also used as an ingredient65

in a counter-example guided abstraction refinement approach (CEGAR) for model checking for PCTL66

by Lei Song et al. in [24].67



Version August 20, 2018 submitted to Algorithms 3 of 22

For CTMCs, Hillston et al. propose the notion of contextual lumpability based on lumpable68

bisimulation in [16]. Their reduction technique uses the Valmari-Franceschinis algorithm for Markov69

chain lumping mentioned earlier. Crafa and Renzato [6] characterise probabilistic bisimulation of PLTSs70

as a partition shell in the setting of abstract interpretation. The algorithm for probabilistic bisimulation71

that comes with such a characterisation turns out to coincide with that of [3]. A similar result applies72

to the coalgebraic approach to partition refinement in [10] that yields a general bisimulation decision73

procedure, that can be instantiated with probabilistic system types.74

Probabilistic simulation for PLTSs has been treated in [3], too. In [28] maximum flow techniques75

are proposed to improve the complexity. Zhang and Jansen present in [29] a space-efficient algorithm76

based on partition refinement for simulation between probabilistic automata, which improves upon77

the algorithm for simulation by Crafa and Renzato in [6] for concrete experiments taken from the78

PRISM benchmark suite. A polynomial algorithm, essentially cubic, for deciding weak and branching79

probabilistic bisimulation by Turrini and Hermanns, recasting the algorithm of [5], is presented in [25].80

Synopsis. The structure of this article is as follows. In Section 2 we provide the notions of a81

probabilistic transition system as well as that of probabilistic bisimulation. In Section 3 the outline of82

our algorithm is provided and it is proven that it correctly calculates probabilistic bisimulation. This83

section ends with an elaborate example. In the subsequent section we provide a detailed version the84

algorithm with a focus on the implementation details necessary to achieve the complexity. In Section 585

we provide some benchmarking results and a few concluding remarks are made in Section 6.86

2. Preliminaries87

Let S be a finite set. A distribution f over S is a function f : S → [0, 1] such that ∑ s∈S f (s) = 1. For88

each distribution f its support is the set { s ∈ S | f (s) > 0 }. The size of f is defined as the number89

of elements in its support, written as | f |. The set of all distributions over a set S is denoted by D(S).90

Distributions are lifted to act on subsets T ⊆ S by f [T] = ∑ s∈T f (s).91

For an equivalence relation R on S, we use S/R to denote the set of equivalence classes of R. We92

define s/R = { t ∈ S | sRt } and, for a subset T of S, we define T/R = { s ∈ S | ∃t ∈ T : sRt }. A93

partition π = { Bi ⊆ S | i ∈ I } is a set of non-empty subsets such that Bi ∩ Bj = ∅ for all i, j ∈ I and94 ⋃
i∈I Bi = S. Each Bi is called a block of the partition. Slightly ambiguously, we use S/R to denote the95

set of equivalence classes of R with respect to S. Clearly, the set of equivalence classes of R forms a96

partition of S. Reversely, a partition π of S induces an equivalence relation Rπ on S, by sRπt iff s, t ∈ B97

for some block B of π. A partition π is called a refinement of a partition $ iff each block of π is a subset98

of a block of $. Hence, each block in $ is a disjoint union of blocks from π.99

We use probabilistic labeled transition systems as the canonical way to represent the behaviour of100

systems.101

Definition 2.1 (Probabilistic labeled transition system). A probabilistic labeled transition system (PLTS)102

for a set of actions Act is a pair A = ( S, →) where103

• S is a finite set of states, and104

• →⊆ S×Act×D(S) is a finite transition relation relating states and actions to distributions.105

It is common to write s a→ f for 〈 s, a, f 〉 ∈ →. For s ∈ S, a ∈ Act, and a set F ⊆ D(S) of distributions,106

we write s a→ F if s a→ f for some f ∈ F. Similarly, we write a9 F if there is no distribution f ∈ F107

such that s a→ f . For the presentation below, we associate a so-called probabilistic state u f with each108

distribution f provided there is some transition s a→ f of A. We write U for { u f | ∃s ∈ S, a ∈ Act : s a→109

f }, with typical element u. Note that, since→ is finite, U is also finite. We also use the notation s a→ u f110

if s a→ f for some f ∈ D(S). As a matter of notation we write u f [T] for f [T] if probabilistic state u f111

corresponds to the distribution f . We sometimes use a so-called probabilistic transition u f 7→p s for112

0 < p 6 1 and s ∈ S iff u f (s) = p. In order to stress S ∩U = ∅, we refer to states s ∈ S as action states.113
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Below, in particular in the complexity analysis, we use na = |S| as the number of action states,114

np = |U| as the number of probabilistic states, ma = |→| as the number of action transitions and115

mp = ∑ u f∈U | f | as the cumulative size of the support of the distributions corresponding to all116

probabilistic states. Note that mp > np as every distribution has support of at least size 1.117

The following definition for probabilistic bisimulation stems from [20].118

Definition 2.2 (Probabilistic bisimulation). Consider a PLTS A = ( S, →). An equivalence relation119

R ⊆ S× S is called a probabilistic bisimulation for A iff for all states s, t ∈ S such that sR t and s a→ f ,120

for some action a ∈ Act and distribution f ∈ D(S), it holds that t a→ g for some distribution g ∈ D(S),121

and f [B] = g[B] for each B ∈ S/R.122

Two states s, t ∈ S are probabilistically bisimilar iff a probabilistic bisimulation R for A exists such123

that sR t, which we write as s 'p t. Two distributions f , g ∈ D(S), and similarly two probabilistic124

states u f , ug ∈ U, are probabilistically bisimilar iff for all B ∈ S/'p it holds that f [B] = g[B], which we125

also denote by f 'p g and u f 'p ug, respectively.126

By definition, probabilistic bisimilarity is the union of all probabilistic bisimulations. To be able to127

speak of probabilistically bisimilar distributions (or of probabilistically bisimilar probabilistic states),128

probabilistic bisimilarity needs to be an equivalence relation. In fact, probabilistic bisimilarity is a129

probabilistic bisimulation. See [15] for a proof.130

3. A partition refinement algorithm for probabilistic bisimulation (outline)131

Many efficient algorithms for standard bisimulation calculate partitions of states [12,17,21]. Here, we132

consider the construction of a partition B of the sets of action states S and of probabilistic states U for133

some fixed PLTS A over a set of actions Act. Below blocks of the partition always contain either action134

states or probabilistic states.135

3.1. Stability of blocks and partitions136

An important notion underlying the algorithm introduced below is that of the stability of a block of137

a partition. If a block is not stable, it contains states that are not bisimilar. These states either have138

different transitions or different distributions. We first define the notion of stability more generically139

on sets instead of on blocks. Then we lift it to partitions.140

Definition 3.1 (Stable sets and partitions).141

1. A set of action states B ⊆ S is called stable under a set of probabilistic states C ⊆ U with respect to142

an action a ∈ Act iff s a→C whenever t a→C and vice versa for all s, t ∈ B. The set B is called stable143

under C iff B is stable under C with respect to all actions a ∈ Act.144

2. A set of probabilistic states B ⊆ U is called stable under a set of action states C ⊆ S iff u[C] = v[C]145

for all u, v ∈ B.146

3. A set of states B with B ⊆ S, respectively B ⊆ U, is called stable under a partition C of S ∪U, with147

C ⊆ S or C ⊆ U for all C ∈ C, iff B is stable under each C ∈ C with C ⊆ U, respectively C ⊆ S.148

4. A partition B is called stable under a partition C iff all blocks B of B are stable under C.149

There are two simple but important properties stating that stability is preserved when splitting sets.150

The first one says that subsets of stable sets are also stable.151

Lemma 3.2. Let B ⊆ S be a set of action states and C ⊆ U a set of probabilistic states. If B is stable152

under C, then any B′ ⊆ B is also stable under C. Similarly, if C is stable under B, then any C′ ⊆ C is153

also stable under B.154

Proof. We only prove the first part as the argument for the second part is essentially the same. If155

s, t ∈ B′, then also s, t ∈ B. As B is stable under C, it holds that for every action a ∈ Act either both156

satisfy s a→C and t a→C, or neither does. So, B′ is stable under C.157
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The second property says that splitting a set in two parts can only influence the stability of an other set158

if there is a transition or a positive probability from this other set to one of the parts of the split set.159

Lemma 3.3. Let B ⊆ S be a set of action states and C ⊆ U a set of probabilistic states.160

1. Suppose B is stable under C with respect to an action a, C′ ⊆ C, and there is no s ∈ B such that161

s a→C′. Then B is stable under C′ and C\C′ with respect to a.162

2. Suppose C is stable under B, B′ ⊆ B, and u[B′] = 0 for all u ∈ C. Then C is stable under B′163

and B\B′.164

Proof. We only provide the proof for the first part of this lemma. If s, t ∈ B, then both s a9 C′ and165

t a9 C′ by assumption. So, B is stable under C′ with respect to a. Furthermore, B is stable under C\C′:166

Suppose s, t ∈ B and s a→C\C′. So, s a→C. As B is stable under C, t a→C, and by assumption t a9 C′.167

Therefore, t a→C\C′. Suppose s a9 C\C′. Then also s a9 C. As B is stable under C, t a9 C and hence,168

t a9 C\C′.169

The following property, called the stability property, says that a partition stable under itself induces a170

probabilistic bisimulation. In general, partition based algorithms for bisimulation search for such a171

stable partition.172

Lemma 3.4 (Stability Property). Let A = ( S, →) be a PLTS. If a partition B for A is stable under173

itself, then the corresponding equivalence relation B on S is a probabilistic bisimulation.174

Proof. By the first condition of Definition 3.1 and stability of all blocks in B we have that either B ⊆ S175

or B ⊆ U, for each block B ∈ B. We write sBt iff s, t ∈ B for some B ∈ B. Note that used in this way B176

is an equivalence relation on S.177

Suppose sBt for some s, t ∈ S and s a→ f . Let u ∈ U correspond to f . Say s, t ∈ B and u ∈ B′178

for some blocks B, B′ ∈ B. Then s a→ B′. By stability of B for B′ it follows that t a→ B′. Hence, v ∈ B′179

and g ∈ D(S) exist such that v corresponds to g and s a→ g. Therefore, for any block B′′ ∈ B we have180

f [B′′] = u[B′′] = v[B′′] = g[B′′] since the block B′ of u and v is stable under each block B′′ of B.181

Thus the stable partition B induces an equivalence relation that satisfies the conditions for a182

probabilistic bisimulation of Definition 2.2, as was to be shown.183

3.2. Outline of the algorithm184

We present our algorithm in two stages. An abstract description of the algorithm is presented as185

Algorithm 1; the detailed algorithm is provided as Algorithm 2. The set-up of Algorithm 1 is a fairly186

standard, iterative refinement of a partition B, in this particular case containing both action states and187

probabilistic states, which are treated differently. In addition, following the approach of Paige and188

Tarjan [21], we maintain a coarser partition C, which we call the set of constellations. Each constellation189

in partition C is a union of one or more blocks of B, thus B is a refinement of C. A constellation C ∈ C190

that consists of exactly one block in B is called trivial. We refine partitions B and C until C only contains191

trivial constellations (see line 5 of Algorithm 1).192

Among other, we preserve the invariant that the blocks in partition B are always stable under193

partition C. If all constellations in C are trivial, then the partitions B and C coincide. Hence, the blocks194

in B are stable under itself, and according to Lemma 3.4 we have found a probabilistic bisimulation.195

Our algorithm works by iteratively refining the set of constellations C. When refining C we must also196

refine B to preserve the above mentioned invariant.197

Since the set of states of a PLTS is finite (cf. Definition 2.1) refinement of the partitions B and C198

cannot be repeated indefinitely. So, termination of the algorithm is guaranteed. The partition consisting199

of singletons of action states and of probabilistic states is the finest that can be obtained, but this is200

only possible if all states are not bisimilar. In practice, the main loop of the algorithm stops well before201

reaching that point.202

The algorithm maintains the following three invariants:203
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Algorithm 1 Abstract partition refinement algorithm for probabilistic bisimulation

1: function PARTITION-REFINEMENT

2: C := { S, U }
3: B := {U } ∪ { SA | A ⊆ Act }
4: where SA = { s ∈ S | ∀a ∈ A ∃u ∈ U : s a→ u }
5: while C contains a non-trivial constellation C do
6: choose block BC from B in C
7: replace in C constellation C by BC and C\BC
8: if C contains probabilistic states then
9: for all blocks B of action states in B unstable under BC or C\BC do

10: refine B by splitting B into blocks of states with the same actions into BC and C\BC
11: else
12: for all blocks B of probabilistic states in B unstable under BC do
13: refine B by splitting B into blocks of states with equal probabilities into BC
14: return B

Invariant 1. Probabilistic bisimilarity 'p is a refinement of B.204

Invariant 2. Partition B is a refinement of partition C.205

Invariant 3. Partition B is stable under the set of constellations C (mentioned already above).206

Invariant 1 states that if two action states or two probabilistic states are probabilistically bisimilar, then207

they are in the same block of partition B. Thus, the partition-refinement algorithm will not separate208

states if they are bisimilar. By Invariant 2 we have that, at the end and at the start of each iteration,209

each constellation in C is a union of blocks in B. Invariant 3 says that blocks in partition B cannot be210

split by blocks in constellation C.211

In lines 2 and 3 of Algorithm 1 the set of constellation and the initial partition are set such that the212

invariants hold. All probabilistic states are put in one block, and all action states with exactly the same213

actions labelling outgoing transitions are also put together in blocks. (Note the universal quantification214

over all actions a in A for the set comprehension at line 4 in order to ensure that only maximal blocks215

are included in B for it being a partition indeed.) The set of constellations contains two constellations216

namely one with all action states, and one with all probabilistic states. It is straightforward to see that217

Invariants 1 and 2 hold. Invariant 3 is valid because all transitions from action states go to probabilistic218

states and vice versa.219

Invariants 1 to 3 guarantee correctness of Algorithm 1. I.e., from the invariants it follows that220

upon termination, when all constellations have become trivial, the computed partition B identifies221

probabilistically bisimilar action states and probabilistically bisimilar probabilistic states.222

Theorem 3.5. Consider the partition B resulting from Algorithm 1. We find that (i) two action states223

are in the same block of B iff they are probabilistically bisimilar, and (ii) two probabilistic states are in224

the same block of B iff they are probabilistically bisimilar.225

Proof. Upon termination, because of the while loop of Algorithm 1, all constellations of C are trivial,226

i.e. each constellation in C consists of exactly one block of B. Hence, by Invariant 2, the partitions B227

and C coincide. Thus, by Invariant 3, each block of B is stable under each block in B. In other words,228

partition B is stable under itself.229

By the Stability Property of Lemma 3.4, we have that B is a probabilistic bisimulation on S. It230

follows that two action states in the same block of B are probabilistically bisimilar. Reversely, by231

Invariant 1, probabilistically bisimilar action states are in the same block of B. Thus, 'p and B coincide232

on S. In other words two action states are in the same block of B iff they are probabilistically bisimilar.233

To compare 'p and the relation B on U, choose probabilistic states u, v ∈ U such that uB v. So, u234

and v are in the same block of B. By stability of block B for B it follows that u[B′] = v[B′], for each235

block B′ ⊆ S. Since 'p and B coincide on S this implies u[B′] = v[B′] for all B′ ∈ S/'p. Thus, we236
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have u 'p v. Reversely, if u 'p v, we have u, v ∈ B for some block B of B by Invariant 1. So, two237

probabilistic states are in the same block of B iff they are probabilistically bisimilar.238

It is worth noting that in line 5 of Algorithm 1 an arbitrary non-trivial constellation is chosen and239

in line 6 an arbitrary block BC is selected from C (we later put a constraint on the choice of BC). In240

general there are many possible choices and this influences the way the final partition is calculated.241

The previous theorem indicates that the final partition is not affected by this choice, neither is the242

complexity upper-bound, see Section 4.6. But it is conceivable that practical runtimes can be improved243

by choosing the non-trivial constellation C and the block BC optimally.244

3.3. Refining the set of constellations and restoring the invariants245

As we see from the high-level description of the partition refinement Algorithm 1, a non-trivial246

constellation C and a constituent block BC are chosen (lines 5 and 6) and C is replaced in C by the247

smaller constellations BC and C\BC (line 7). This preserves Invariants 1 and 2, but Invariant 3 may248

be violated as stability under BC or C\BC (or both) may be lost: On the one hand, it may be the case249

that two actions states s and t both have an a-transition into C, but s may have one to BC but t to C\BC250

only or vice versa. On the other hand, it may be the case that two probabilistic states u and v yield251

the same value for C as a whole, i.e. u[C] = v[C], but by no means this needs to hold for BC or C\BC,252

i.e. u[BC] 6= v[BC] and u[C\BC] 6= v[C\BC]. Therefore, in the remainder of the body of Algorithm 1 the253

blocks that are unstable under BC and C\BC are split such that Invariant 3 is restored, both for blocks254

of actions states (lines 9 and 10) and for blocks of probabilistic states (lines 12 and 13). In the next255

section the detailed Algorithm 2 describes how this is done precisely.256

The general situation when splitting a block B for a constellation C containing a block BC is257

depicted in Figure 2, at the left where B contains action states and at the right where B consists of258

probabilistic states. We first consider the case at the left.259

a a a a
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BC C \ BC
C

B
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midp(B)

rightp(B)

Figure 2. Splitting a non-stable block B into left, middle and right.

In this case block B ⊆ S is stable under constellation C ⊆ U and C is non-trivial. Thus, C properly260

contains a block BC of B, and we distinguish two non-empty subsets of C, the block BC on its own and261

the remaining blocks together in C\BC. As B is stable under C, the block B can only be unstable under262

BC or C\BC if there is an action a ∈ Act and a state s ∈ B such that s a→ BC (Lemma 3.3.1). So, we only263

investigate and split blocks, for which such a transition s a→ BC exists.264
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We can restore stability by splitting B into the following three subsets:

lefta(B) = { s ∈ B | s a→ BC ∧ s a9 C\BC },
mida(B) = { s ∈ B | s a→ BC ∧ s a→C\BC }, and

righta(B) = { s ∈ B | s a9 BC ∧ s a→C\BC }.

Note that the remaining set { s ∈ B | s a9 BC ∧ s a9 C\BC } must be empty; if not, this would imply265

that there is some action state t such that t a9 C. But due to the existence of state s such that s a→ BC,266

this would mean that block B is unstable under C, contradicting Invariant 3.267

Checking that the sets lefta(B), mida(B), righta(B) are stable under C is immediate. As subsets of268

stable sets are also stable (Lemma 3.2) and B is stable all other configurations of C, the sets lefta(B),269

mida(B), righta(B) are stable under all other configurations of C too.270

Note that due to the existence of state s with s a→ BC, it is not possible that both lefta(B) and271

mida(B) are equal to the empty set. It is however possible that lefta(B) = B or mida(B) = B, leaving272

the other two sets empty.273

Lines 9 and 10 can now be read as follows. For all a ∈ Act investigate all blocks B such that there274

is an action state s ∈ B with s a→ BC as these blocks are the only candidates to be unstable. Replace275

each such block B in B by {lefta(B), mida(B), righta(B)} \∅ to restore stability under BC and C\BC.276

Invariants 1 and 2 are preserved by splitting B. For Invariant 2 this is trivial by construction.277

For Invariant 1, note that the states in different blocks among lefta(B), mida(B), righta(B) cannot be278

probabilistically bisimilar as they have unique transitions to states BC and C\BC and these target states279

cannot be bisimilar by Invariant 1. Thus, if two states of B are probabilistically bisimilar then both are280

in the same subset lefta(B), mida(B), or righta(B) of B.281

We next turn to the case of a set of probabilistic states B, see the right-side of Figure 2. Again we282

assume that the non-trivial constellation C is replaced by its two non-empty subsets BC and C\BC. As283

in the previous case, although the block B is stable under the constellation C, this may not be the case284

under the subsets BC and C\BC.285

To restore stability we now consider for all q, 0 6 q 6 1, the sets

Bq = { u ∈ B | u[BC] = q }.

Note that for finitely many q ∈ [0, 1] we have Bq 6= ∅.286

Observe that each set Bq is stable under BC as by construction u[BC] = v[BC] = q for any u, v ∈ Bq.287

The set Bq is also stable under C\BC. To see this consider two states u, v ∈ Bq. As block B ⊆ U is stable288

under constellation C ⊆ S, u[C] = v[C]. Hence, u[C\BC] = u[C]− u[BC] = v[C]− v[BC] = v[C\BC].289

By Lemma 3.2 the new blocks Bq are also stable under the other constellations in C.290

According to Lemma 3.3.2 only those blocks B that contain a probabilistic state u ∈ B such that291

u[BC] > 0 can be unstable under BC and C\BC. So, at line 12 of Algorithm 1 we consider all those292

blocks B and replace each of them by the non-empty subsets Bq, 0 6 q 6 1 at line 13 in B. This makes293

the partition stable again under all constellations in C, in particular under the new constellations BC294

and C\BC.295

Again it is straightforward to see that Invariants 1 and 2 are not violated by replacing the block B296

by the blocks Bq. For Invariant 1, if states are probabilistically bisimilar in B, they remain in the same297

block Bq. For Invariant 2, as B is refined, partition B remains a refinement of partition C.298

For the detailed algorithm in Section 4 it is required to group the sets Bq as follows: leftp(B) := B0,299

rightp(B) := B1, and midp(B) = { Bq | 0<q<1 }. This does not play a role here, but leftp(B), midp(B),300

and rightp(B) are already indicated in Figure 2, in particular midp(B) = {B 1
4
, B 1

2
, B 3

4
}.301

3.4. An example302

We provide an example to illustrate how Algorithm 1 calculates partitions.303
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Figure 3. A PLTS used to illustrate the calculation of partitions in Example 3.6.

Example 3.6. Consider the PLTS given in Figure 3. We provide a detailed account of the partitions that304

are obtained when calculating probabilistic bisimulation. The obtained partitions are listed in Table 1.305

In the lower table, 9 partitions together with their constellations are listed that are generated for a run306

of Algorithm 1. In the upper table the blocks that occur in these partitions are defined. Observe that307

we put the blocks and constellations with action states and probabilistic states in different columns.308

This is only for clarity, as in the current partition and the current set of constellations they are joined.309

Algorithm 1 starts with four blocks of action states, S0 to S3, which contain the action states with310

no outgoing transitions and those with an outgoing transition labelled with a, with b, and with c,311

respectively. In the algorithm all probabilistic states are initially collected in block U0. There are two312

constellations, viz. S0 ∪ S1 ∪ S2 ∪ S3 and U0. These initial partitions are listed in line 0 of the lower part313

of Table 1.314

Since the constellation with action states is non-trivial we split it, rather arbitrarily, in S0 and315

S1 ∪ S2 ∪ S3. The block U0 is not stable under S0 and S1 ∪ S2 ∪ S3 and is split in U1 = {u1, u3, v1−5},316

U2 = {u2, u4} and U3 = {u5, u6}. This is because we have u[S0] = 1 for u equal to u1, u3, and v1317

to v5; we have u[S0] =
1
2 for u equal to u2 and u4; we have u5[S0] = 0 and u6[S0] = 0. The resulting318

partitions are listed at line 1 in Table 1.319

For the second iteration, we consider the non-trivial constellation S1 ∪ S2 ∪ S3 and split it into S1320

and S2 ∪ S3. Note, the action states s1 to s4 in S1 do not have incoming transitions. Consequently, for321

all u ∈ U1 we have u[S1] = 0; for all u ∈ U2 we have u[S1] = 0; for all u ∈ U3 we have u[S1] = 0. Thus,322

all blocks of probabilistic states are stable under S1 and S2 ∪ S3. Hence, no block is split.323

In the third iteration we split the non-trivial constellation S2 ∪ S3 into S2 and S3. For all u ∈ U1324

we have u[S2] = 0. Thus U1 is stable under S2 and S3. For U2, the probabilistic states u2 and u4 agree325

on the value 1
2 for S2, hence for S3 too. Thus, U2 is stable as well. However, for u5 and u6 in U3 we326

have u5[S2] = 1 and u6[S2] =
1
3 . Therefore, U1 needs to be split in U4 = {u5} and U5 = {u6}.327

At this point, all constellations with actions states are trivial, so at iteration 4 we turn to the328

non-trivial constellation of probabilistic states U1 ∪U2 ∪U4 ∪U5 and split it into U1 and U2 ∪U4 ∪U5.329

Block S0 is stable since each of its states has no transitions at all. Block S1 is not stable: s1, s2
a→ U1330

and s1, s2
a→ U2 ∪ U4 ∪ U5, but s3, s4

a9 U1 and s3, s4
a→ U2 ∪ U4 ∪ U5. Thus, S1 needs to be split331

into S4 = {s1, s2} and S5 = {s3, s4}. Block S2 is stable since its states have only b-transitions into U1.332

Block S3 is a singleton and therefore cannot be split.333

The following iteration, iteration 5, sets U2 and U4 ∪U5 apart as constellations. Again, in absence334

of transitions, block S0 is stable under U2 and U4 ∪U5. The same holds for S2 that has only b-transitions335
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into U0. Block S3 can be ignored. For S4 both s1 and s2 have an a-transition into U2 as their only336

transition. Hence, block S4 is stable. Similarly, S5 is stable, as its states s3 and s4 both have an337

a-transition into U4 ∪U5 and no other transitions. All in all, in this iteration no blocks require splitting338

to restore Invariant 3.339

Next, at iteration 6, we split non-trivial constellation U4 ∪U5 into U4 and U5. For S0, S2, S3 and340

S4 we conclude stability in the same way as in the previous iteration. However, now we have for341

s3, s4 ∈ S5 on the one hand s3
a→U4 and s3

a9 U5, but on the other hand s4
a9 U4 and s4

a→U5. Hence,342

S5 needs to be split, yielding the singletons S6 = {s3} and S7 = {s4}.343

Returning to constellations of actions states, at iteration 7, we split S4 ∪ S6 ∪ S7 over S4 and S6 ∪ S7.344

All probabilistic states have value 0 for both S4 and S6 ∪ S7, hence no split of probabilistic blocks is345

needed.346

This is similar in iteration 8, where the non-trivial constellation S6 ∪ S7 is split, and none347

of the blocks become unstable. Now all constellations are trivial and the algorithm terminates.348

According to the Stability Property, Lemma 3.4, the corresponding equivalence relation is a probabilistic349

bisimulation. Thus the final partition is {S0, S2, S3, S4, S6, S7, U1, U2, U4, U5}. Moreover, the deadlock350

states t1, t3, t4, t6, t7 and r1 to r5 are probabilistically bisimilar, the states t2, t5, t8, t9 that have only a351

b-transition into a Dirac distribution to deadlock are probabilistically bisimilar, the states s1 and s2 are352

probabilistically bisimilar (which is clear when identifying states t7 and t8), whereas the remaining353

action states s3, s4 and t10 have no probabilistically bisimilar counterpart. For the probabilistic states354

the states u1, u3 and v1 to v5 are identified by probabilistic bisimulation. This also holds for the355

probabilistic states u2 and u4. Probabilistic states u5 and u6 each have no probabilistically bisimilar356

counterpart.

Table 1. The generated partitions for the PLTS of Example 3.6

blocks of actions states blocks of probabilistic states

S0 = {t1, t3, t4, t6, t7, r1−5} U0 = {u1−6, v1−5}
S1 = {s1−4} U1 = {u1, u3, v1−5}
S2 = {t2, t5, t8, t9} U2 = {u2, u4}
S3 = {t10} U3 = {u5, u6}
S4 = {s1, s2} U4 = {u5}
S5 = {s3, s4} U5 = {u6}
S6 = {s3}
S7 = {s4}

B C
0 S0, S1, S2, S3 U0 S0 ∪ S1 ∪ S2 ∪ S3 U0
1 S0, S1, S2, S3 U1, U2, U3 S0, S1 ∪ S2 ∪ S3 U1 ∪U2 ∪U3
2 S0, S1, S2, S3 U1, U2, U3 S0, S1, S2 ∪ S3 U1 ∪U2 ∪U3
3 S0, S1, S2, S3 U1, U2, U4, U5 S0, S1, S2, S3 U1 ∪U2 ∪U4 ∪U5
4 S0, S2, S3, S4, S5 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S5 U1, U2 ∪U4 ∪U5
5 S0, S2, S3, S4, S5 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S5 U1, U2, U4 ∪U5
6 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4 ∪ S6 ∪ S7 U1, U2, U4, U5
7 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4, S6 ∪ S7 U1, U2, U4, U5
8 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5 S0, S2, S3, S4, S6, S7 U1, U2, U4, U5

357

4. A partition-refinement algorithm for probabilistic bisimulation (detailed)358

Algorithm 1 gives an outline but leaves many details implicit. The detailed refinement-partition359

algorithm is presented in this section as Algorithm 2. It has the same structure as Algorithm 1, but in360

this section we focus on how to efficiently calculate whether and how blocks must be split, and how361

this split is actually carried out. We first explain grouping of action transitions per action, next we362
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Figure 4. Transitions with state_to_constellation_cnt stored in a global array.

introduce various data structures that are used by the algorithm, subsequently we explain how the363

algorithm is working line-by-line, and finally we give an account of its complexity.364

4.1. Grouping action transitions per action label365

To obtain the complexity bound of our algorithm it is essential that we can group action transitions366

by actions linearly in the number of transitions. Grouping means that the action transitions with the367

same action occur consecutively in this ordering. It is not necessary that the transitions are ordered368

according to some overall ordering.369

We assume that |Act| 6 ma and that the actions in Act are consecutively numbered. Recall,370

ma denotes the number of transitions s a→ u. These assumptions are easily satisfied, by removing those371

actions in Act that are not used in transitions and by sorting and numbering the remaining action372

labels. Sorting these actions adds a negligible O(|Act| log |Act|) 6 O(ma log ma).373

Grouping transitions is performed by an array of buckets indexed with actions. All transitions374

are put in the appropriate bucket in constant time exploiting actions being numbered. Furthermore,375

all buckets that contain transitions are linked together. When all transitions are in the buckets, a376

straightforward traversal of all linked buckets provides the transitions in a grouped order. This377

requires time linear in the number of considered action transitions. Note that the number of buckets is378

equal to |Act| 6 ma and therefore, the buckets do not require more than linear memory.379

4.2. Data structures380

We give a concise overview of the concrete data structures in the algorithm for states, transitions,381

blocks, and constellations. We list the names of the fields in these data structures in a programming382

vein to keep a close link with the actual implementation.383

The chosen data structures are not particularly optimised. Exploiting ideas from [12,26,27] to384

store states, blocks, and constellations, usage of time and memory can be further reduced. All data385

structures come in two flavours, one related to actions and the other related to probabilities. We treat386

them simultaneously and only mention their differences when appropriate.387

Global. In the detailed algorithm there are arrays containing transitions, actions, blocks as well388

as constellations. There is a stack of non-trivial constellations to identify in constant time which389

constellation must be investigated in the main loop. Furthermore, there is an array containing the390

variables state_to_constellation_cnt, which are explained below.391
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For all action transitions s a→ u it is maintained how many action transitions there are labelled392

with the same action a, and that go from s to the constellation C containing u. This value is called393

state_to_constellation_cnt for this transition. The value is required to efficiently split probabilistic blocks394

(the idea of using such variables stems from [21]). For each state s, constellation C, and action a there395

is one instance of state_to_constellation_cnt stored in a global array. Each transition s a→ u contains a396

reference called state_to_constellation_cnt_ptr to the appropriate value in this array. See Figure 4 for a397

graphical illustration with a constellation C of probabilistic states and blocks B1 and B2 of action states.398

The purpose of this construction is that state_to_constellation_cnt can be changed by one operation for399

all transitions from the same state with the same action to the same constellation, simultaneously.400

Transition. Each transition consists of the fields from, label and to. Here from and to refer to an401

action/probabilistic state, and label is the action label or probabilistic label of the transition. The action402

labels are consecutive numbers; the probabilistic labels are exact fractions. Action transitions also403

contain a reference state_to_constellation_cnt_ptr to the variable state_to_constellation_cnt as indicated404

above.405

State. Each action state and probabilistic state contains a list of incoming transitions and a406

reference to the block in which the state resides. For intermediate calculations, each state contains407

a boolean mark_state which is used to indicate that a state has been marked. Each action state also408

contains two more variables for temporary use. When deciding whether blocks need to be split,409

the variable residual_transition_cnt indicates how many residual transitions there are to blocks C\BC410

when splitting takes place by a block BC. The variable transition_cnt_ptr is used to let the variable411

state_to_constellation_cnt_ptr for an action transition point to a new instance of state_to_constellation_cnt412

when this transitions is moved to a new block. In probabilistic states there is the temporary variable413

cumulative_prob used to calculate the total probability to reach a block under splitting.414

Block. Blocks contain an indication of the constellation in which it occurs, a list of the states415

contained in the block including the size of this list, and a list of transitions ending in this block. For416

blocks of action states this list of transitions is grouped by action label, i.e., transitions with the same417

action label are a consecutive sublist. For temporary use there is also a variable to indicate that the418

block is marked. This marking contains exactly the information that the functions aMark and pMark,419

discussed below, provide for blocks of action states and blocks of probabilistic states, respectively.420

Constellation. Finally, constellations contain a list of the blocks in the constellation as well as the421

cumulative number of states contained in all blocks in this constellation.422

4.3. Explanation of the detailed algorithm423

Algorithm 1 focuses on how by refining partitions and sets of constellations probabilistic bisimulation424

can be calculated. In Algorithm 2 we stress the details of carrying out concrete refinement steps to425

realise the required time bound. As already indicated, the overall structure of both algorithms is the426

same.427

The initial lines 2 and 3 of Algorithm 2 are the same as those of Algorithm 1. In line 3 the428

partition B is set to contain one block with all probabilistic states and a number of blocks of action429

states, grouped per common outgoing action labels. Thus two action states are in the same block430

initially if their menu, i.e., the set of actions for which there is a transition, is identical. This initial431

partition B is calculated using a simple partition refinement algorithm on outgoing transitions of432

states. This operation is linear in the number of outgoing action transitions when using grouping of433

transitions as explained in Section 4.1.434

At line 4 the incoming transitions are ordered on actions as indicated in Section 4.1. At line 5435

an array with one instance of state_to_constellation_cnt for each action label is made where each436

instance contains the number of action transitions that contain that action label. The reference437

state_to_constellation_cnt for each action transition is set to refer to the appropriate instance in this array.438

This is done by simply traversing all transitions s a→ u grouped by action labels and incrementing439

the appropriate entry in the array containing all state_to_constellation_cnt variables. The appropriate440
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Algorithm 2 Partition refinement algorithm for probabilistic bisimulation
1: function PARTITION-REFINEMENT ( S, U, →)

2: C := { S, U } O
(
na+np

)
3: B := {U } ∪ { SA | A ⊆ Act }

O
(
np+na+ma

)
where SA = { s ∈ S | ∀a ∈ A ∃u ∈ U : s a→ u }

4: group the incoming action transitions in each block per label O (ma)

5: initialise state_to_constellation_cnt for each transition O (ma)

6: while C contains a non-trivial constellation C do 6 n iterations
7: choose a block BC from B in C such that |BC| 6 1

2 |C|
O (1)8: split constellation C into BC and C\BC in C

9: if C contains probabilistic states then
10: for all incoming actions a of states in BC do 6 |Act| iterations
11: 〈 Ba, lefta, mida, righta, largea 〉 := aMark(B, C, BC, a) O (nr of incoming a transitions in BC)

12: for all blocks B ∈ Ba do
O (nr of incoming a transitions in BC)13: for all non-empty subsets B′ ⊆ B, different from

largea(B) in {left(B)a, mida(B), righta(B)} do
14: move B′ out of B and add B′ as new block to B O (nr of incoming transitions in B′ )
15: else O (nr of incoming prob. transitions in BC)

plus a sorting penalty16: 〈 Bp, leftp, midp, rightp, largep 〉 := pMark(B, C, BC)

17: for all blocks B ∈ Bp do
O (nr of incoming prob. transitions in BC)18: for all non-empty sets of states B′ ⊆ B not equal to

largep(B) in {leftp(B)}∪midp(B)∪{right(B)p} do
19: move B′ out of B and add B′ as a new block to B O (nr of incoming transitions in B′ )
20: return B

entry can be found using the temporary variable transition_cnt_ptr associated to state s. If no entry441

for state_to_constellation_cnt exists yet, the variable transition_cnt_ptr belonging to s is null and an442

appropriate entry must be created.443

In line 6 selecting a non-trivial constellation is straightforward, as a stack of non-trivial444

constellations is maintained. Initially, this stack contains C = {S ,U}. To obtain the required time445

complexity, we select BC such that |BC| 6 1
2 |C| in line 7. This is done in constant time as we know446

the number of states in C. Hence, either the first or second block B of constellation C satisfies that447

|B| 6 1
2 |C| (for if the first block contains more than half the states the second one cannot). We replace448

the constellation C by BC and C\BC in C, see line 8, and put the constellation C\BC on the stack of449

non-trivial constellations if it is non-trivial.450

From line 9 to 19 the partition B is refined to restore the invariants, especially Invariant 3. This is451

done by first marking the blocks (line 11 and line 16) such that it is clear how they must be split, and452

by subsequently splitting the blocks (lines 12 to 14, and lines 17 to 19). Both operations are described453

in the next two subsections.454

4.4. Marking455

Given a constellation C that contains a block BC and in case of an action transition, an action a, we456

need to know which blocks need to be split in what way. This is calculated using the functions457

aMark(B, C, BC, a) and pMark(B, C, BC). The first one is for marking blocks with respect to action458

transitions, the second for marking blocks with respect to probabilities.459

Both functions yield a five-tuple 〈B, left, mid, right, large〉. Here B ⊆ B is a set of blocks that may460

have to be split and left, mid, right are functions that together for each block B ∈ B provide the sets into461

which B must be partitioned. The set large(B) is the largest set among them. For every set B′ in which462

B must be partitioned, except for large(B), it holds that |B′| 6 1
2 |B|. To obtain the complexity bound463

we only move such small blocks out of B, i.e., those blocks not equal to large(B).464
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We note that sets in left(B), mid(B) and right(B) can be empty. Such sets can be ignored. It is also465

possible that there is only one non-empty set being equal to B itself. In this case B is stable under BC466

and C\BC. Furthermore, it is equal to large(B) and therefore B is kept intact.467

We now concentrate on the function aMark(B, C, BC, a) with a partition B, a constellation C,468

a block BC contained in C, and an action a. In this situation, C is a non-trivial constellation of469

probabilistic states. Since C contains probabilistic states only, incoming transitions for states in BC are470

action transitions. The situation is depicted in Figure 2, at the left. The call aMark(B, C, BC, a) returns471

the tuple 〈Ba, lefta, mida, righta, largea〉 defined as follows.472

Ba = { B ∈ B | ∃s ∈ B : s a→ BC }
and, for each B ∈ Ba,

lefta(B) = { s ∈ B | s a→ BC ∧ s a9 C\BC },
mida(B) = { s ∈ B | s a→ BC ∧ s a→C\BC },

righta(B) = { s ∈ B | s a9 BC ∧ s a→C\BC }, and

largea(B) : the largest set among lefta(B), mida(B), and righta(B).

We calculate Ba by traversing the list of all transitions with action a going into BC and adding each473

block containing any source state of these transitions to Ba. The blocks in Ba are the only blocks that474

may be unstable under BC and C\BC with respect to a (Lemma 3.3).475

The for loop at line 10 iterates over all actions. As the incoming transitions into block BC are476

grouped per action, all incoming transitions with the same action can easily be processed together, while477

the total processing time is linear in the number of incoming transitions. But note that calculating Ba is478

based on partition B, while B is refined at line 14. Thus, the calculation of Ba for different actions a can479

be based on repeatedly refined partitions B.480

Next, we discuss how to construct the blocks lefta(B), mida(B), and righta(B). While traversing481

a-labelled transitions into BC, all action states in a block B with an a-transition into BC are marked and482

(temporarily) moved into lefta(B). The remaining states in block B form the subset righta(B). We keep483

track of the number of states in a block. Thus, we can easily maintain the size of righta(B).484

To find out which states now in lefta(B) must be transferred to mida(B), the variables485

state_to_constellation_cnt are used. Recall that these variables record for each transition s a→ u, with486

u ∈ S, how many transitions s a→ v there are to states v ∈ C. These variables are initialised in line 5 of487

Algorithm 2. When the first state is moved to lefta(B), we copy the value of state_to_constellation_cnt of488

transition s a→ u to the variable residual_transition_cnt belonging to state s of the transition, subtracted489

by one. The number residual_transition_cnt indicates how many unvisited a-transitions are left from490

the state s into C. Every time an a-transition is visited of which the source state is already in lefta(B),491

we decrease residual_transition_cnt of the source state by one again. If all a-transitions into BC have492

been visited, the number residual_transition_cnt of a state s indicates how many transitions labelled a493

go from s into C\BC.494

Subsequently we traverse the states in lefta(B). If a state s has a non-zero residual_transition_cnt,495

we know that there are a-transitions from s to both BC and C\BC. Therefore we move state s into496

mida(B). Otherwise, all transitions from s with action a go to BC and s must remain in lefta(B).497

While moving states into lefta(B) and mida(B), we also keep track of the sizes of these sets. Hence,498

it is easy to indicate in largea(B) which set is the largest.499

We calculate pMark(B, C, BC) in a slightly different manner than aMark. In particular, we have
midp : B → 22U

, i.e., midp(B) is a set of blocks. This indicates that the block B can be partitioned in
many sets, contrary to the situation with action blocks where B could be split in at most three blocks.
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The situation is depicted in Figure 2 at the right. The five-tuple that pMark returns has the following
components:

Bp = { B ∈ B | ∃u ∈ B : u[BC] > 0 }
and, for each B ∈ Bp,

leftp(B) = { u ∈ B | u[BC] = 1 },
midp(B) =

{
{ u ∈ B | u[BC] = q }

∣∣ q ∈ 〈0, 1〉
}

,

rightp(B) = { u ∈ B | u[BC] = 0 }, and

largep(B) : the largest set from {leftp(B)} ∪midp(B) ∪ {rightp(B)}.

The above is obtained by traversing through all incoming probabilistic transitions in BC. Whenever500

there is a state u in a block B such that u 7→p BC, one of the following cases applies:501

• If B is not in Bp yet, it is added now. The variable cumulative_prob in state u is set to p, and u is502

(temporarily) moved from B to leftp(B).503

• If B is already in Bp, then the probability p is added to cumulative_prob of state u.504

After the traversal of all incoming probabilistic transitions into BC, the variable cumulative_prob of u505

contains u[BC], i.e., the probability to reach BC from the state u.506

Those states that are left in B form the set rightp(B). We know the number of states in rightp(B) by507

keeping track how many states were moved to leftp(B). Next, the states temporarily stored in leftp(B)508

must be distributed over leftp(B) and midp(B). First, all states with cumulative_prob < 1 are moved509

into some set M such that leftp(B) contains exactly the states with cumulative_prob = 1. Then the states510

in M are sorted on their value for cumulative_prob such that it is easy to move all states with the same511

cumulative_prob into separate sets in midp(B). In Figure 2 at the right the set midp(B) consists of three512

sets, corresponding to the probabilities q = 1
4 , q = 1

2 and q = 3
4 to reach BC. Note that all processing513

steps mentioned require time proportional to the number of incoming probabilistic transitions in BC,514

except for the time to sort. In the complexity analysis below it is explained that the cumulative sorting515

time is bounded by O
(
mp log np

)
.516

By traversing the sets of states in leftp(B) and midp(B) once more, we can determine which set517

among leftp(B), rightp(B), and the set of sets midp(B) contains the largest number of probabilistic states.518

This set is reported in largep(B).519

4.5. Splitting520

In lines 14 and 19 of Algorithm 2 a block B′ is moved out of the existing block B. By the marking521

procedure, either aMark or pMark, the states involved are already put in separate lists and are moved522

in constant time to the new block B’.523

Blocks contain lists of incoming transitions. When moving the states to a new block, the incoming524

transitions are moved by traversing the incoming transitions of each moved state, removing them from525

the list of incoming transitions of the old block and inserting them in the same list for the new block.526

There is a complication, namely that incoming action transitions must be grouped by action labels.527

This is done separately for the transitions moved to B′ as explained in Section 4.1 and this is linear528

in the number of transitions being moved. When removing incoming action transitions from the old529

block B, the ordering of the transitions is maintained. So, the grouping of incoming action transitions530

into B remains intact without requiring extra work.531

When moving action states to a new block we also need to adapt the variable532

state_to_constellation_cnt for each action transition s a→ C with state s ∈ B. Observe that this only533

needs to be done if there are some a-transitions to BC and some to C\BC, which means that s ∈ mida(B).534

In that case residual_transition_cnt for state s is larger than 0.535

This is accomplished by traversing all incoming transitions s a→ u into BC one extra time.536

If residual_transition_cnt for s is larger than 0 we need to replace the state_to_constellation_cnt for537
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this transition s a→ u by the value of state_to_constellation_cnt− residual_transition_cnt of s. For all538

non-visited transitions s a→ u′ where u′ ∈ C\BC, the value of state_to_constellation_cnt must be set to539

residual_transition_cnt of s.540

This is where we use that state_to_constellation_cnt is actually referred to by the pointer541

state_to_constellation_cnt_ptr (see Figure 4). When traversing the first transition of the form s a→ u542

with u ∈ BC such that residual_transition_cnt for s is larger than 0, a new entry in the array containing543

the variables state_to_constellation_cnt is constructed containing the value state_to_constellation_cnt−544

residual_transition_cnt and the auxiliary variable transition_cnt_ptr is used to point to this entry. At the545

same time the value in old entry in this array for state_to_constellation_cnt is replaced by the value546

residual_transition_cnt of state s. In this way the values of state_to_constellation_cnt of all transitions547

labelled with a from s to C\BC are updated in constant time, i.e., without visiting the transitions that548

are not moved. For all transitions s a→ u′ with u′ ∈ BC, the variable state_to_constellation_cnt_ptr is549

made to refer the new entry in the array.550

4.6. Complexity analysis551

The complexity of the algorithm is determined below. Recall that na and np are the number of action552

states and probabilistic states, respectively, while ma is the number of action transitions and mp is the553

cumulative size of the supports of the distributions.554

Theorem 4.1. The total time complexity of the algorithm is O
(
(ma + mp) log np + (mp + na) log na

)
555

and the space complexity is O
(
ma + mp + na

)
.556

Proof. In Algorithm 2 the cost of each computation step is indicated. The initialisation of the algorithm557

at lines 2 to 5 is linear in na, np and ma. At line 3 calculating {SA | A ⊆ Act} can be done by iteratively558

splitting S using the outgoing transitions grouped per action label. This is linear in the number of559

action transitions. At line 4 grouping the incoming transitions per action is also linear as argued in560

Section 4.1.561

The while loop at line 6 is executed for each BC ⊆ C where |BC| 6 1
2 |C|. As BC becomes a562

constellation itself, each state can only be part of this splitting step log2(na) times and log2(np) times,563

respectively. The steps in lines 10 up till 13 respectively lines 16 up till 18 require steps proportional564

to the number of incoming action transitions respectively probabilistic transitions in BC, apart from a565

sorting penalty which we treat separately below. The cumulative complexity of this part is therefore566

O
(
ma log np + mp log na

)
.567

At lines 14 and 19 the states in B′ are moved to a new block. This requires to group the incoming568

action transitions in a block B′ per action, which can be done in time linear in the number of these569

transitions. Block B′ is not the largest block of B considered and therefore |B′| 6 1
2 |B|. Hence, each570

state can only be log2(np) or log2(na) times be involved in the operation to move to a new block.571

Hence, the total time to be attributed to moving is O
(
(ma + np) log np + (mp + na) log na

)
.572

While marking, probabilistic states in midp(B) need to be sorted. An ingenious argument by
Valmari and Franceschinis [27] shows that this will at most contribute O

(
mp log np

)
to the total

complexity: Let K be the total number of times sorting takes place. Assume, for 1 6 i 6 K, that the
total number of distributions in midp(B) when sorting it for the i-th time is ki. Clearly, ki 6 np. Each
time a distribution in midp(B) is involved in sorting, the number of reachable constellations with
non-zero probability from this distribution is increased by one. Before sorting it could reach C, and
after sorting it can reach both new constellations BC and C\BC with non-zero probability. Note that
this does not hold for the states in leftp(B) and rightp(B), and this is the reason why we have to treat
them separately. In particular, in order to obtain complexity O(mp log np) it is not allowed to involve
the states in leftp(B) and rightp(B) in the sorting process as shown by an example in [27]. Due to the
increased number of reachable constellations, the total number of times a probabilistic state can be
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involved in sorting is bounded by the size of the distribution. In other words, ∑K
i=1 ki 6 mp. Hence,

the total time that is required by sorting is bounded as follows:

O
(

∑K
i=1 ki log ki

)
6 O

(
∑K

i=1 ki log np

)
6 O

(
mp log np

)
.

Adding up the complexities leads to the conclusion that the total complexity of the algorithm is573

O
(
(ma + mp + np) log np + (mp + na) log na

)
. As mp > np, the stated time complexity in the theorem574

follows.575

The space complexity follows as all data structures are linear in the number of transitions and576

states. As np 6 mp, this complexity can be stated as O
(
ma + mp + na

)
.577

Note that it is reasonable that the number of probabilistic transitions mp is at least equal to the number578

of action states na − 1 as otherwise there are unreachable action states. This allows to formulate our579

complexity more compactly.580

Corollary 4.2. Algorithm 2 has time complexity O
(
(ma + mp) log np + mp log na)

)
and space581

complexity O
(
ma + mp

)
if all action states are reachable.582

The only other algorithm to determine probabilistic bisimilarity for PLTS is by Baier, Engelen and583

Majster-Cederbaum [3]. The algorithm uses extended ordered binary trees and is claimed to have a584

complexity of O (mn(log m + log n)) where m is the number of transitions (including distributions)585

and n the number of action states. For a fair comparison we reconstructed their complexity in586

terms of na, np, ma and mp. Their space complexity is O
(
nanp|Act|

)
and the time complexity is587

O
(
mana log na + nanp log np + n2

anp
)
. The last part n2

anp is not mentioned in the analysis in [3]. It is588

due to taking the time into account for ‘inserting Pre(α, µi) into v.states’ (see page 208 of [3]) for the589

version of ordered balanced trees used, and we believe it to be forgotten [2].590

This complexity is not easily comparable to ours. We make two reasonable assumptions to591

facilitate comparison. The first assumption is that the number of action transitions is equal to the592

number of distributions: ma = np. As second assumption we use that log np and log na only differ by593

a constant.594

In the rare case that the support of distributions is large, i.e., if all or nearly all action states595

have a positive probability in each distribution, then mp is equal or close to nanp. In this case our596

space complexity becomes O
(
nanp

)
and our time complexity is O

(
nanp log np

)
, which is comparable597

mutatis mutandis to the complexity of [3]. However, in the more common case where the support598

of distributions is limited by some constant c, i.e., mp 6 cnp, we can simplify the space and time599

complexities to those in the following table.600

GRV (this article) BEM [3]
Space complexity O

(
np
)

O
(
nanp|Act|

)
Time complexity O

(
np log na

)
O
(

nanp log na + n2
anp

)601

In the table the underlined part stems from the extra time needed for insertions. It is clear that if the602

assumptions mentioned are satisfied, the complexity of the present algorithm stands out well. This603

is confirmed in the next section where we report on the performance on a number of benchmarks of604

implementations of both algorithms.605

5. Benchmarks606

Both our algorithm, below referred to by GRV, and the reference algorithm by Baier, Engelen and607

Majster-Cederbaum [3], for which we use the abbreviation BEM, have been implemented in C++ as608

part of the mCRL2 toolset [7,11]1. This toolset is available under a Boost license which means that the609

1 See www.mcrl2.org.

www.mcrl2.org
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sort Direction = struct up | down | right | left ;

proc X(x, y : N) =
(x ≈ 1∨ x ≈ maxx)→ dead·X(x, y) �
(y ≈ 1∨ y ≈ maxy)→ live.X(x, y) �
( dist d : Direction[1/4] .

((d ≈ up)→ step·X(x + 1, y) +
(d ≈ down)→ step·X(x− 1, y) +
(d ≈ right)→ step·X(x, y + 1) +
(d ≈ left)→ step·X(x, y− 1)) ) ;

init X(ix, iy) ;

Figure 5. The specification of ant-on-a-grid in mCRL2

source code is open and available without restriction to be inspected or used. In the implementation of610

BEM some of the operations are not carried out exactly as prescribed in [3] for reasons of practicality.611

We have extensively tested the correctness of the implementation of the new algorithm by applying612

it to millions of randomly generated PLTSs, and comparing the results to those of the implementation613

of the BEM algorithm. This is not done because we doubt the correctness of the algorithm, but because614

we want to be sure that all the details of our implementation are right.615

We experimentally compared the performance of both implementations. All experiments have616

been performed on a relatively dated machine running Fedora 12 with INTEL XEON E5520 2.27 GHz617

CPUs and 1TB RAM. For the probabilities exact rational number arithmetic is used which is much618

more time consuming than floating point arithmetic. The reported runtimes do not include the time to619

read the input PLTS and write the output.620

Our first experimental question regards the growth of the practical complexity of the BEM and GRV621

algorithm when concrete probabilistic transition systems grow in size. To get an impression of this622

we considered the so-called “ant on a grid” puzzle published in the New York Times [1,13]. In this623

puzzle an ant sits on a square grid. When it reaches the leftmost or rightmost position on the grid it624

dies. When it reaches the upper or lower position of the grid it is free and lives happily ever after. On625

any remaining position, the ant chooses with equal probability to go to a neighbouring position on626

the grid. The question is what the probabilities for the ant are to die and stay alive, given an initial627

position on the grid.628

The specification in probabilistic mCRL2 of the ant-on-a-grid is given in Figure 5, where the629

dimensions of the grid are maxx and maxy, and the initial position is given by ix and iy. The actions630

dead, live and step indicate that the ant is dead, stays alive and makes a step. The process expression631

p·q stands for sequential composition and p + q represents the choice in behaviour. The notations632

c→p and c→p � q are the if-then and if-then-else of mCRL2. The curly equal sign (≈) in conditions633

stands for equality applied to data expressions. The expression dist d:Direction[1/4] means that each634

direction d is chosen with probability 1
4 . From this description PLTSs are generated that are used as635

input for the probabilistic bisimulation reduction tools.636

Figure 6 depicts the runtime results of a set of experiments when increasing the total number637

of states of the ant on the grid model. At the left are the results when running the BEM algorithm,638

whereas the results for the GRV algorithm are shown at the right. Note that the x-axis only depicts the639

number of action states. This figure indicates that the practical running times of both algorithms are640

pretty much in line with the theoretical complexity. This is in agreement with our findings on other641

examples as well. Furthermore, it should be noted that the difference in performance is dramatic. The642

largest example that our implementation of the BEM algorithm can handle within a timeout of five643

hours requires approximately 10,000 seconds compared to 2 seconds for GRV. The particular example644
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Figure 6. Scaling of runtime results for the ant-on-a-grid puzzle

regards a PLTS of 6.4×105 action states. The graphs clearly indicate that the difference grows when the645

probabilistic transition systems get larger.646

In order to further understand the practical usability of the GRV algorithm, we applied it to a647

number of benchmarks taken from the PRISM Benchmark Suite2 and the mCRL2 toolset3. The tests648

taken from PRISM were first translated into mCRL2 code to generate the corresponding PLTSs.649

Table 2 collects the results for the experiments conducted. The ant_N_M_grid examples refer to the650

ant-on-a-grid puzzle for an N by M grid with the ant initially placed at the approximate center of the651

grid. The models airplane_N are instances of an airplane ticket problem using N seats. In the airplane652

ticket problem N passengers enter a plane. The first passenger lost his boarding pass and therefore653

takes a random seat. Each subsequent passenger will take his own seat unless it is already taken, in654

which case he randomly selects an empty seat as well. The intriguing question is to determine the655

probability that the last passenger will have its own seat (see [13] for a more detailed account).656

The following three benchmarks stem from PRISM: The brp_N_MAX models are instances of657

the bounded retransmission protocol when transmitting N packages and bounding the number of658

retransmissions to MAX. The self_stab_N and shared_coin_N_K are extensions of the self stabilisation659

protocol and the shared coin protocol, respectively. For the self stabilisation protocol, N processes are660

involved in the protocol, each holding a token initially. The shared coin protocol is modelled using N661

processes and setting the threshold to decide head or tail to K.662

Finally, the random_N tests are randomly generated PLTSs with N action states. All the models663

are available in the mCRL2 toolset.664

At the left of Table 2, the characteristics for each PLTS are given: the number of action states (na), the665

number of action transitions (ma), the number of distributions (np), and the cumulative support of666

the distributions (mp). The symbol ‘K’ is an indicator for 1,000 states. The same characteristics for667

the minimised PLTS are also provided. Furthermore, the runtime for minimising the probabilistic668

transition system in seconds as well as the required memory in megabytes are indicated for both669

algorithms. As mentioned earlier, we limited the runtime to 5 hours.670

The experiments show that the GRV algorithm outperforms the reference algorithm quite671

substantially in all studied cases. In the case of ‘random_100’ the difference is four orders of magnitude,672

despite the fact that this state space has only 100K action states. The one but last column of Table 2673

2 www.prismmodelchecker.org/benchmarks/
3 www.mcrl2.org/

www.prismmodelchecker.org/benchmarks/
www.mcrl2.org/
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lists the relative speed-up, i.e. the quotient of the time needed by BEM over the time needed by GRV,674

when applicable. Memory usage is comparable for both algorithms for small cases, whereas for larger675

examples the BEM algorithm requires up to one order of magnitude more memory than the GRV676

algorithm. The right-most column of Table 2 contains the relative efficiency in memory, i.e. the quotient677

of the memory used by BEM over the memory used by GRV, for the cases where BEM terminated678

before the deadline.679

6. Concluding remarks680

We believe we have formulated a very efficient algorithm to determine probabilistic bisimulation. As681

the algorithm restricts the handling of distributions to the states in the support of the distributions682

the running time of the algorithm compare favourably when the fan-out is low in the PLTS under683

consideration, a situation occurring frequently in practice.684

Apart from deciding strong probabilistic bisimilarity, our algorithm is instrumental in the mCRL2685

toolset for minimising PLTSs modulo probabilistic bisimulation. Such a reduction can be useful as a686

preprocessing step before applying other forms of analysis on the PLTS. Occasionally, minimisation687

can even simplify PLTSs such that they become suitable for visual inspection. See for example the688

discussion the airplane ticket problem, also known as the problem of of problem of the lost boarding689

pass, in [13]. However, having smaller state spaces will be beneficial anyway, as this reduces the690

processing time for other tools further down the analysis chain.691

To fine tune the algorithm it will be interesting in future work to investigate how to choose the692

non-trivial constellations C and its sub-blocks BC optimally; their choice is now non-deterministic.693

Furthermore, it is interesting to refine the algorithm to probabilistic bisimulation with combined694

transitions [4] as this appears to be required to extend this algorithm to weaker notions of695

equivalence [25], such as probabilistic branching bisimulation.696
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