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Abstract. We present a formal analysis of amino acid replacement dur-
ing mRNA translation. Building on an abstract stochastic model of ar-
rival of tRNAs and their processing at the ribosome, we compute prob-
abilities of the insertion of amino acids into the nascent polypeptide
chain. To this end, we integrate the probabilistic model checker Prism in
the Matlab environment. We construct the substitution matrix contain-
ing the probabilities of an amino acid replacing another. The resulting
matrix depends on various parameters, including availability and con-
centration of tRNA species, as well as their assignment to individual
codons. We draw a parallel with the standard mutation matrices like
Dayhoff and PET91, and analyze the mutual replacement of biologically
similar amino acids.

1 Introduction

The transfer of genetic information from DNA to mRNA to protein happens with
very high precision. Errors can have dramatic consequences for the organism as
a whole. In this paper we analyze the second stage of this information pathway—
the translation from mRNA to protein, i.e., the protein biosynthesis, in the light
of translation errors and the factors of potential influence.

An mRNA molecule can be considered as a string of codons, each of which
codes for a specific amino acid. The codons of an mRNA molecule are sequentially
read by a ribosome, where each codon is translated using an amino acid specific
transfer-RNA (aa-tRNA). This way, one-by-one, a chain of amino acids, i.e. a
protein is built. In this setting, aa-tRNA can be seen as molecules containing a
so-called anticodon, and carrying a specific amino acid. Arriving by Brownian
motion, an aa-tRNA, docks into the ribosome and may succeed in adding its
amino acid to the chain under construction, or alternatively dissociates in an
early or later stage of the translation. This depends on the pairing of the codon
under translation with the anticodon of the aa-tRNA, as well as on the stochastic
influences such as the changes in the conformation of the ribosome.

Thanks to the vast amount of research during the last thirty years, the overall
process of translation is reasonably well understood from a qualitative perspec-
tive. The process can be divided into around twenty small steps/reactions, a
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number of them being reversible. Relatively little is known exactly about the
kinetics of the translation. Over the past several years, Rodnina and collabora-
tors have measured kinetic rates for various steps in the translation process for
a small number of specific codons and anticodons [1–4]. Using various advanced
techniques, they were able to show that in several of those steps the rates strongly
depend on the degree of matching between the codon and the anticodon. Addi-
tionally, in [5] the average concentrations (amounts) of aa-tRNAs per cell have
been collected for the model organism Escherichia coli. Based on these results,
Viljoen and co-workers started from the assumption that the rates found by
Rodnina et al. can be used in general, for all codon-anticodon pairs as estimates
for the reaction dynamics. In [6], a complete detailed model is presented for
all 64 codons and all 48 aa-tRNA classes for E. coli, on which extensive Monte
Carlo experiments are conducted. In particular, using the model, codon insertion
times and frequencies of erroneous elongations are established. A strong correla-
tion of the translation error and the ratio of the concentrations of the so-called
near-cognate and cognate aa-tRNA species was observed. Consequently, one can
argue that the competition of aa-tRNAs, rather than their availability, decides
both speed and fidelity of codon translation.

In the present paper, we model the translation kinetics via the modelchecking
of continuous-time Markov chains (CTMCs) using the tool Prism [7, 8]. The tool
provides built-in performance analysis algorithms and a formalism (Computa-
tional Stochastic Logic, CSL) to reason about various properties of the CTMCs,
removing the burden of extensive mathematical calculations from the user. Ad-
ditionally, in our case, the Prism tool provides much shorter response times
compared to Gillespie simulation.

We present an improvement of the stochastic model from [9], integrated in
a Matlab environment. We use our model in the context of an original case
study. To this end, we define the notion of a translation substitution matrix.
The columns and rows of this matrix are labeled with amino acids. The element
of the matrix indexed by amino acids a1 and a2 is the probability that a1 is
substituted by a2 in the polypeptide chain. The translation substitution matrix
can be used to check the error resistance capabilities of the translation process
and the genetic code in general. It can also be used as an alternative similarity
measure between amino acids from a point of view of translation.

The flexibility of our integrated Matlab-Prism model makes it possible to
relatively easily investigate possible factors that can influence the probabilities
in the substitution matrix. Here, we consider two of them:

– Concentrations of the tRNAs. To check this, we modify our model by assum-
ing artificial conditions where all tRNAs have concentrations that deviate
from the realistic E. coli model.

– An alternative set of tRNAs. Instead of the standard tRNAs that are con-
firmed by the experiments in E. coli we use ‘synthetic’ tRNAs assuming
different number of tRNA species and their distributions over codons.

The obtained results indicate that the overall translation error is dependent on
the tRNA set.
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We also use the matrix to check the hypothesis that similar amino acids sub-
stitute for one another with higher probability than dissimilar ones. As a measure
of similarity we use mutation data matrices, like Dayhoff [10] and PET91 [11]
which are used for a similar purpose in sequence alignment tools, like BLAST.
Our results confirm this hypothesis by showing that to a great extent the similar-
ity patterns implied by the mutation data matrices emerge also in the translation
substitution matrix.

Related work We did not find other work on translation substitution matrices
and investigating the hypothesis that similar amino acids tend to substitute each
other. The model that is used in this paper builds upon [9], which was inspired
by the simulation experiments of mRNA translation reported in [6]. There, only
insertion errors per codon are considered, rather than amino acid-amino acid
substitution probabilities.1 A similar model, based on ordinary differential equa-
tions, was developed in [12]. Although probabilistic, it is used to compute inser-
tion times, but no translation errors. The model of mRNA translation in [13]
assumes insertion rates that are directly proportional to the mRNA concentra-
tions, but assigns the same probability of translation error to all codons.

There exist numerous applications of formal methods to biological systems.
A selection of recent papers from modelchecking and process algebra includes
[14–16]. More specifically pertaining to the current paper, [17] applies the Prism
modelchecker to analyze stochastic models of signaling pathways. Their method-
ology is presented as a more efficient alternative to ordinary differential equations
models, including properties that are not of probabilistic nature. Also, [8] em-
ploys Prism on various types of biological pathways, showing how the advanced
features of the tool can be exploited to tackle large models.

Acknowledgements. We are indebted to Timo Breit, Christiaan Henkel,
Erik Luit, Jasen Markovski, Tessa Pronk and Hendrik Viljoen for fruitful dis-
cussions and constructive feedback. We gratefully acknowledge the contribution
of the students of the 8P135 Bioinformatics project at TU/e.

2 Biological background

Proteins are essential building blocks for the production and regulation in cellular
life. In fact, proteins take care of the major part of the functioning of the cell.
Proteins are produced in two stages from the genetic information carried by
the DNA: From a gene at the DNA, several copies of mRNA can be generated
involving RNA-polymerases. Subsequently, from each mRNA, many identical
proteins can be produced with the help of a ribosome. In the present case study,
we will focus on the latter aspect of expression, the generation of proteins from
mRNA, the process generally referred to as translation.

In effect, proteins are long, typically folded, strains composed from amino
acids. Grossly, there are only twenty different types of amino acid present in
living material. On the other hand, a string of mRNA can be interpreted as a
1 The implementation of [6] was not available to us, impeding a direct comparison with

our implementation. However, the overall insertion error per codon is comparable.
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sequence of nucleotides, molecules out of four types only, A, C, G and U, short for
adenine, cytosine, guanine and uracil. Each three consecutive nucleotides form
a codon. So, codons are essentially triplets of nucleotides. One type of codon
prescribes exactly one type of amino acid, but not vice versa. Generally, in an
organism, several codons may code for the same amino acid. The correspondence
of codons and amino acids is the same for all organisms but for a few exceptions,
and is called the genetic code. So, an mRNA, as sequence of codons, specifies
precisely a protein, as sequence of amino acids.

Basically, the translation of an mRNA into a protein takes effect as follows: A
ribosome attaches to the mRNA. Next, the codons of the mRNA are processed
one-by-one, stepwise building up a chain of amino acids, the protein in nascent.
The amino acids used are brought to the mRNA-ribosome complex by aa-tRNA,
tRNA charged with an amino acid. Characteristic for an aa-tRNA is a specific
triplet of nucleotides, called the anticodon. It turns out that the anticodon de-
cides which amino acid can be charged at the tRNA. As for codons, there is
exactly one amino acid that corresponds to an anticodon. Now, an aa-tRNA
arriving at the mRNA-ribosome complex, docks into the A-site of the ribosome.
The aa-tRNA may either (i) immediately dissociate during the initial binding or
codon recognition phase, (ii) be rejected after reconfiguration of the elongation
factor Tu (EF-Tu) or (iii) successfully finish the second translocation phase and
have its amino acid added to the protein under construction. The particular
codon of the mRNA is then considered to be processed; the mRNA-ribosome
complex shifts one position with a new codon for translation, if available.

The binding of a codon and an anticodon differs from pair to pair. Given a
codon, we distinguish between cognate, near-cognate and non-cognate aa-tRNA,
dependent on the match of the codon and the anticodon of the particular aa-
tRNA. For a cognate aa-tRNA the binding of the codon and anticodon is strong,
for near-cognate the binding is less strong, for a non-cognate the binding is weak.
In fact, the codon-anticodon binding influences the success (going through none,
one or two phases) and the actual speed of a translation attempt.

Next, we give a brief overview of the individual steps of the translation mecha-
nism. Our explanation is based on [2, 18, 19].

An aa-tRNA arrives at the ribosome-mRNA complex in a ternary complex-
ation with EF-Tu and GTP with a rate determined by the interaction of EF-Tu
and the ribosome [18]. The initial binding is relatively weak. Codon recognition
comprises (i) the establishing of contact between the anticodon of the aa-tRNA
and the current codon in the ribosome-mRNA complex, and (ii) subsequent
conformational changes of the ribosome, that are different for cognate and near-
cognates. The overall rates are similar for cognates and near-cognates. Note that,
non-cognates are not selected during codon recognition. GTPase-activation of
the elongation factor is largely favored by the conformational changes in the ribo-
some induced by a cognate aa-tRNA, while for near-cognate aa-tRNA GTPase-
activation is lessened [20, 4]. During GTP-hydrolysis that takes place next, in-
organic phosphate Pi and GDP are produced. It is assumed that Pi is released,
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EF-Tu reconfigures and that aa-tRNA dissociates from the complex with EF-Tu
and GDP, see [21]. The accommodation step that follows happens rapidly for
cognate aa-tRNA, whereas for near-cognate aa-tRNA this proceeds slower and
the aa-tRNA is likely to be rejected, also because of the instability of the binding
to the ribosome-mRNA complex.

The translocation phase that follows, is unidirectional except for its reversible
first step involving the elongation factor EF-G. In short, during the transloca-
tion phase, another GTP-hydrolysis catalyzed by EF-G, produces GDP and Pi

and results in unlocking and movement of the aa-tRNA to the P-site of the
ribosome. The latter step is preceded or followed by Pi-release. Translocation
of the ribosome, with dramatic shifts in the positioning of ribosomal subunits,
and release of EF-G moves the tRNA, that has transferred its amino acid to the
polypeptide chain, into the E-site of the ribosome. Further rotation eventually
leads to dissociation of the used tRNA.

3 Abstract model

In this section, we present an abstract model of the translation mechanism
sketched in the previous section. Our aim is to capture various combined steps
by a probabilistic automaton. The grouping of multiple steps results in a limited
number of states and, subsequently, in a smoother analysis and quicker response
times for the Prism experiments. Figure 1 depicts the probabilistic automaton
obtained.

Given a particular codon under translation at the ribosome, we distinguish
the following states:

– State 1, initial binding. An aa-tRNA binds, in an arrival process, at the
mRNA-ribosome complex.

– State 2, recognition. The weak binding of aa-tRNA at the complex either
stabilizes (transition to state 3), or the binding breaks and the tRNA disso-
ciates (transition to state 0).

– State 3, conformation. Again, one out of two options may happen. A num-
ber of steps related to the processing of GTP may take place (modeled by
the transition to state 4). Alternatively, the binding of the aa-tRNA at the
mRNA-ribosome complex may lose strength (modeled by the transition back
from state 3 to state 2).

– State 4, proofreading. The aa-tRNA can either be rejected, resulting in a
dissociation from the mRNA-ribosome complex (transition to state 5), or
the aa-tRNA shifts to P-site of the ribosome.

– State 6, accommodation. A reversible reaction involving the elongation factor
EF-G, prepares for translocation (transition to state 7).

– State 7, translocation. Translocation may take place, as well as a number
of other unidirectional steps in the translation process, and the amino acid
is successfully added to the peptidyl chain (transition to state 8), or the
binding of EF-G does not lead to reconformation of the ribosome (transition
back form state 7 to state 6).
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Fig. 1. Abstract automaton representing translation.

Further, we have a number of auxiliary states, that do not have a concrete,
biological counterpart. However, the states are introduced for modelchecking
purposes, to discriminate between the various ‘exit modes’ of an aa-tRNA.

– State 0, dissociation. The initial binding of the aa-tRNA and the mRNA-
ribosome complex does not stabilize and the aa-tRNA floats away.

– State 5, rejection. The aa-tRNA dissociates from the mRNA-ribosome com-
plex while being transferred from the A-site to the P-site of the ribosome.

– State 8, elongation. The amino acid carried by the aa-tRNA is added to the
peptide chain. The uncharged tRNA flows back into the cytosol. (aa-tRNA
synthesis, the recharging of a tRNA with an amino acid is not modeled here.)

The choices in the abstract automaton of Figure 1 can all be considered to
be probabilistic. Of relevance are those in states 2, 3 and 4. In states 1 and 6
the choice is degenerated, in auxiliary states 0, 5 and 8 it does not occur. The
probabilistic choice in state 7 does not influence the eventual exit state. In the
past decade, Rodnina and co-workers have collected various kinetic parameters
of a number of steps in the peptidyl transfer phase of the translation mechanism
[1–4]. Additionally, using advanced fluorescent and crystallographic techniques,
they showed that the binding of the codon under translation, on the one hand,
and the anticodon of the aa-tRNA that has attached to the mRNA-ribosome
complex, on the other hand, decisively influences the success or failure of some of
the steps. Their rates are incorporated in the automaton, that can be interpreted
as a continuous-time Markov chain.2

In state 2, the transition to state 3 has rate 190 whereas the transition to
state 0 is taken with rate 85. These two rates are equal for cognate and near-
cognate aa-tRNA alike. The transition back from state 3 to state 2 has rate 0.23
for cognate aa-tRNA against 80 for near-cognate aa-tRNA. Conversely, the tran-
sition forward from state 3 to state 4 is of rate 260 for cognate aa-tRNA and of
rate 0.40 for near-cognate aa-tRNA. Note the difference between the two classes
of aa-tRNA. A similar phenomenon can be observed for state 4. A transition
from state 4 to state 6 of rate 167 and to state 5 of rate 60 for cognate aa-tRNA,
compared to a rate 46 from state 4 to state 6 for near-cognate aa-tRNA and a
fast rate (chosen to be 1000 in our experiments) for the alternative transition to
state 5.
2 All rates in this paper are of dimension s−1.
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Clearly, based on the rates provided, the probabilities of ending up in state 8
differ significantly for cognate aa-tRNA compared to near-cognate aa-tRNA.
Non-cognate aa-tRNA probabilistic choices do not apply, as stable association
to the mRNA-ribosome complex is considered to be negligible.

The substitution error for a codon is the probability that another amino acid
is added to the nascent protein than is coded for by the codon under translation.
The average insertion time is the expected time it takes for any amino acid to be
added for the particular codon. The model given above has been used previously
in [9] to analyze both the substitution error for a codon and its average insertion
time. To this end, the automaton of Figure 1 is combined with an arrival process
of cognate, near-cognates and non-cognate aa-tRNAs, the separation in classes
of aa-tRNA depending on the active codon. In the current paper, we refine the
analysis of the substitution error, by considering the actual amino acid that is
inserted.

We define P(aa|cd) as the probability for an elongation of the peptidyl chain
with an amino acid aa, given a codon cd. Let cd code for amino acid bb. Then, we
distinguish five categories of aa-tRNA: xx-cognate, yy-cognate, xx-near-cognate,
yy-near-cognate and non-cognate aa-tRNA. A cognate aa-tRNA is classified as
an xx-cognate if it carries the amino acid aa of interest (i.e. if aa equals bb);
the cognate aa-tRNA is considered an yy-cognate if it carries an amino acid
different from the amino acid aa (i.e. if we are interested in an amino acid aa
that is different from the amino acid bb coded for by cd). Similarly, a near-
cognate aa-tRNA is referred to as an xx-near-cognate if its amino acid is aa, and
is called an yy-near-cognate if its amino acid is different from aa. All aa-tRNA
that do not belong to any of the other classes are considered non-cognates. Thus,
the selected amino acid determines the xx-type or yy-type for a cognate or near-
cognate aa-tRNA; the active codon decides whether an aa-tRNA is cognate,
near-cognate or non-cognate. In our model, non-cognates never lead to insertion
of an amino acid. The binding of a non-cognate anticodon and the codon under
translation is considered too weak for the tRNA to move to state 3. Non-cognate
aa-tRNA will always exit at state 0.

2
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Fig. 2. Adapted automaton.

Given the above definitions of aa-tRNA, we end up with the automaton as given
in Figure 2. The rates cxx, cyy, nxx and nyy depend on the amount of the
aa-tRNAs that are classified as xx-cognate, yy-cognate, xx-near-cognate and
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yy-near-cognate, respectively, for the considered codon and amino acid. The
transitions from state 0 and state 5 to state 1 are added, since the process
continues as long as state 8 has not been reached, i.e. until an amino acid has
been transferred successfully. States 6 to 8 have been identified, as from state 6
the final state 8 will always be reached eventually. The rates have been kept
deliberately, although they could have been replaced by probabilities. In the
set-up of our experiments, it comes in handy to deal with CTMCs to which we
can feed numbers of aa-tRNAs, avoiding to calculate their relative fractions. An
overview of the reactions involved are collected in Table 1.

167
CR4 CR8

60
CR4 C + R1

190

0.23

85

cxx/cyy 260
CR3 CR4CR2C + R1

190

80

85

nxx/nyy 0.40

FAST46
NR4 NN + R1NR4 NR8

NR2N + R1 NR3 NR4

Table 1. Molecular reactions underlying the adapted model.

4 Amino acid substitution

In this section, we discuss how the amino acid-codon insertion probability ma-
trix AC and the amino acid-amino acid translation substitution matrix TS are
computed for the Escherichia coli bacterium. The abstract model of the previous
section is, per codon, supplemented with relevant concentrations of the various
types of aa-tRNAs, to establish the probability for an amino acid to be inserted
with the particular codon being active. When this information is available for
all codons, by proper grouping, the probability for an amino acid to replace the
amino acid that is actually coded for, can be obtained.

To calculate P(aa|cd), the probability of elongation of the growing protein
chain with the amino acid aa, when codon cd is under translation, we proceed
as follows: We provide the Prism modelchecker with four input parameters, viz.
xx cogn, yy cogn, xx near and yy near, each representing the amount of avail-
able cognate and near cognate tRNAs, carrying either the amino acid of interest
(indicated by xx) or an other amino acid (indicated by yy). This instantiates the
arrival process of an aa-tRNA at state 1 of the abstract automaton. The prob-
abilities for success, i.e. reaching state 8, and failure, dissociation via state 0 or
rejection via state 5 followed by re-activation of the arrival process at state 1,
are not independent from the arrival process itself. Therefore, we have to con-
sider the CTMC simultaneous representing the arrival process and translation
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mechanism. With this done in Prism, we only need to establish the CSL formula

P=? [ (s!=0 & s!=5) U (s=8) ] .

See Appendix B for the complete Prism code.
In order to facilitate the construction of the insertion probability matrix, we

have combined the Prism modelchecker with Matlab. We make use of Matlab’s
extern call mechanism and Prism’s command line option for parameter instan-
tiation. In two nested loops, the outer loop iterating over codons, the inner
loop iterating over amino acids, we call from within Matlab the Prism tool, for
example by

prism ourmodel.sm ourformula.csl -const xx_cogn=1037, ...

communicating the values of parameter xx cogn and others to the modelchecker.
The negligible value 1.0e−6 is used instead of 0, as only positive values are al-
lowed as rates of an exponential distribution. Apart from directory management,
the interaction of the two tools quite conveniently suited our purposes.

For the usual E. coli aa-tRNA set with standard concentrations, referred to
as real, we illustrate how the parameter values are obtained for the codon UUU
and amino acids Phe, Leu, and Ile.

codon amino acid xx cogn yy cogn xx near yy near

UUU Phe 1037 0 0 2944

UUU Leu 0 1037 2944 0

UUU Ile 0 1037 0 2944

Table 2. Some input values for the realistic model.

In case of calculating P(Phe|UUU), where the amino acid under consideration
coincides with the amino acid of the codon, we assign to xx cogn the total
amount of cognate tRNAs. From Table 7 in Appendix A, we see that tRNA 28 is
the only cognate, so xx cogn is set to 1037, the number of tRNA 28 in Table 8.
In this case, there are no cognates coding for an amino acid other than Phe,
hence yy cogn = 0. Next, we check the near-cognates of UUU. According to
Table 7, only tRNAs 22 and 23 act as near-cognates. Both code for Leu, the
amino acid leucine. Therefore, we put xx near = 0, as no near-cognate codes
for Phe and yy near = 1913+1031 = 2944 the sum of all counts of near-cognates
coding for an amino acid different from Phe. See the first row of Table 2.

To establish P(Leu|UUU), we put xx cogn to zero (or rather 10−6), as there
are no cognates of the codon UUU carrying Leu, and yy cogn to 1037, the num-
ber of molecules of the non-Leu cognate aa-tRNA 28. Since, the near-cognates
aa-tRNAs 22 and 23 both carry Leu, xx near is set to 2944, the sum of their
counts, and yy near is zero as there are no near-cognate with other amino acids.

To compute P(Ile|UUU), the substitution probability for the amino acid
isoleucine with respect to the codon UUU, we have that xx cogn and xx near
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are both nihil. No cognate or near-cognate aa-tRNAs will insert Ile, hence the
substitution probability will be zero. Because of this, no further calculation is
required. The Matlab script automatically puts P (Ile|UUU) = 0.

Having the amino acid-codon insertion matrix AC = ( P(aa|cd) )aa,cd avail-
able, we derive the amino acid-amino acid translation substitution matrix TS.
Each item TSaa, bb of TS denotes the probability that amino acid bb is inserted
while the current translation codes for the amino acid aa. To compensate for
the differences of occurrence in the E. coli genome of the various codons of an
amino acid, we balance the sum of amino acid-codon insertion probabilities, by
the relative frequencies of the codons:

TSaa, bb =
∑

cd∈codons(aa)

rf(cd, aa) · P(aa|cd)

with codons(aa) the set of codons coding for the amino acid aa according to the
genetic code, and rf(cd, aa) the relative frequency of the codon cd with respect
to codons(aa).

5 Alternative aa-tRNA sets

We investigate how substitution probabilities are affected by the aa-tRNA pop-
ulation. We consider both the effect of the concentration of aa-tRNA molecules
of a specific species, and the influence of the composition of the aa-tRNA set.
Our starting point is the E. coli model from the previous sections with an aa-
tRNA set containing 48 different tRNA species and numbers of molecules from
each species as reported in [5]. Alternative models, with an aa-tRNA set dif-
ferent from usual and with concentrations deviating from standard values, are
examined as well. The experimental set-up is rather flexible in this respect, only
different aa-tRNA populations with other amounts of available molecules need
to be supplied. We consider eight different models, listed in Table 3.

Name species aa-tRNA counts

Model 48R 48 based on Table 8

Model 48F 48 1000 per aa-tRNA

Model 48C 48 1000 for per codon recognized

Model 64R 64 based on Table 8

Model 64FC 64 1000 per aa-tRNA / codon

Model 25R 25 based on Table 8

Model 25F 25 1000 per aa-tRNA

Model 25C 25 1000 per codon recognized

Table 3. Alternative models: aa-tRNA sets of 48, 64 or 25 species, aa-tRNA concen-
trations based on real measurements, flat, or proportional to codon matching.

10



48 species aa-tRNA set

Model 48R, the so-called realistic model with parameters based on [6, 5], has 48
aa-tRNA species and molecule counts based on physical measurements. In order
to assay the stability of amino acid substitution, we have run similar experiments
with varying parameters. In one model, we use for each tRNA species the same
amount of molecules, arbitrarily chosen as 1000. This model with flat aa-tRNA
concentrations is referred to as 48F, with F for flat. Another variation is a model
in which we assign the equal amounts (again 1000 molecules) to each codon. If
the same codon is recognized by multiple aa-tRNAs, each of them is assigned
a proportional part. So, the count of 1000 is equally split over the number of
cognate tRNA species. If an aa-tRNA is cognate to several codons, it will be
allotted accordingly. We refer this model as 48C, with C for codon. Note that,
for models 48F and 48C, the arbitrarily chosen value of 1000 does not influence
the outcome, as the error probabilities are determined by the fractions of cognate
and near-cognate species and not by the values themselves.

64 species aa-tRNA set

Apart from variations in the concentrations of aa-tRNAs, one can also modify,
in silico, the sets of tRNA species. An obvious choice, is the model with the
maximal number of 64 aa-tRNA species. In this model, each of aa-tRNA is
considered to recognize exactly one codon. Thus, under this assumption, each
codon has exactly one cognate tRNA and nine near-cognate aa-tRNA.

For the model 64R, the count for each aa-tRNA species is equal to the sum
of tRNA species in the original model that recognize the corresponding codon.
For aa-tRNAs in the original model that recognize more than one codon, the
new aa-tRNAs get an equal share of the original amount. Analogously to the
models with a 48 species aa-tRNA set, we also define flat and cognate models
for the 64 aa-tRNA case, with equal amounts of molecules per tRNA species and
per codon. However, for this specific case these two models coincide, each with
an amount of 1000 molecules for each of the 64 aa-tRNA species. Consequently,
the model is named 64FC.

25 species aa-tRNA set

The other obvious choice of aa-tRNA set, is the opposite case, where the number
of species is minimal. However, instead of the theoretical minimum of aa-tRNA
species, where the choice of cognates seems arbitrarily, we decide to have exactly
one tRNA for each ‘genomic box or block’, i.e. a group of codons that codes for
the same amino acid and only differ in the third nucleotide. This model contains
25 aa-tRNA species, reminiscent to to fine-tuned genetic code in eukaryote mi-
tochondria. As before, 25F denotes the flat model variant, each tRNA species
having 1000 molecules. For 25R, the amount aa-tRNA is set to the total of the
tRNAs in the 48R model that belong to the block. The one exception being
release factor RF1, for which we assign the full amount to the block UAA, UAG
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although it recognizes both UAA and UAG (which belong to separate blocks).
Finally, for the model 64C, the amount of molecules for each aa-tRNA species is
calculated as 1000 times the number of codons in the corresponding block. See
Table 4.

aa-tRNA recognized codons aa-tRNA recognized codons

1 (Phe) UUU, UUC 14 (Gln) CAA, CAG

2 (Leu) UUA, UUG 15 (Asn) AAU, AAC

3 (Leu) CUU, CUC, CUA, CUG 16 (Lys) AAA, AAG

4 ( Ile ) AUU, AUC, AUA 17 (Asp) GAU, GAC

5 (Met) AUG 18 (Glu) GAA, GAG

6 ( Val ) GUU, GUC, GUA, GUG 19 (Cys) UGU, UGC

7 ( Ser ) UCU, UCC, UCA, UCG 20 (End) UGA

8 (Pro) CCU, CCC, CCA, CCG 21 (Trp) UGG

9 (Thr) ACU, ACC, ACA, ACG 22 (Arg) CGU, CGC, CGA, CGG

10 (Ala ) GCU, GCC, GCA, GCG 23 ( Ser ) AGU, AGC

11 (Tyr) UAU, UAC 24 (Arg) AGA, AGG

12 (End) UAA, UAG 25 (Gly) GGU, GGC, GGA, GGG

13 ( His ) CAU, CAC

Table 4. The 25 species aa-tRNA set.

For all the above models we have computed the substitution probability matrix
as sketched in Section 4. The diagonal of the matrices denotes the probability for
peptide elongation with the amino acid that was coded for. The average substi-
tution error for the model, shown in Table 5, is obtained by taking the average
over all amino acid for the probability of a substitution by a non-coded amino
acid. The table displays in parentheses a weighted average of errors, obtained by
scaling the errors for individual amino acids with the relative occurrence of their
codons in the E. coli genome. Remarkably, the errors for the 48 tRNA models
are always smaller than those of the synthesized 25 and 64 tRNA models. The
errors for individual amino-acids are shown in Figure 3.

model ‘real’ ‘flat’ ‘codon’

48 aa-tRNA set 0.48% (0.45%) 0.45% (0.45%) 0.39% (0.36%)

64 aa-tRNA set 0.93% (0.85%) 0.73% (0.69%) 0.73% (0.69%)

25 aa-tRNA set 1.16% (0.83%) 0.66% (0.64%) 0.76% (0.68%)

Table 5. Mean substitution error and occurrence-weighted substitution error (within
parentheses) for all eight models (model 64RF twice).

Notably, the ‘real’ 48R model has a striking low probability for errors for stop-
codons. None of the other models reaches such low value. Moreover, the proba-
bility for other codons to accidentally act as a stop-codon is lowest for 48R model
as well. See the red/grey bars in Figure 4.
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Fig. 3. Substitution errors for individual amino acids and the for stop-codon.

6 Groups of related amino acids

In this section, we check the hypothesis that biologically similar amino acids sub-
stitute for each other during translation. Its rationale is that such substitutions
would lower the chance that the resulting protein is non-functional. Namely, it
has been observed that if in a polypeptide chain an amino acid is substituted
by another biochemically similar amino acid, then it is likely that the modi-
fied protein has biochemical properties similar to the original one. Therefore, it
seems plausible to assume that, under evolutionary pressure, an error robustness
mechanism has been developed also exploited at translational level.

Our measure of similarity of amino acids is based on so-called mutation
data matrices, like Dayhoff [10] and PET91 [11]. Essentially, these matrices give
for each pair of amino acids an evolutionary substitution probability. Mutation
data matrices and their derivatives are widely used as an amino acid similarity
measure, e.g. in sequence alignment tools like BLAST. At first sight it may look
strange that we compare mutation errors, which introduce protein changes that
are permanent for the organism, with translation errors which only affect one
copy of the protein and are not inherited. Thus, it is worth emphasizing that
we use the matrices only as a similarity measure ‘approved’ by the evolution
without trying to draw any further analogy between these two phenomena.
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Fig. 4. Percentage of erroneous substitution of a stop-codon for an amino acid
(blue/dark), and percentage of erroneous substitution of any other codon by a stop-
codon (red/gray).

Based on the mutation data matrices, we divide amino acids in four groups.
There are different groupings of amino acids in the literature usually based on
their biochemical properties [22]. In this paper, we use the partitioning proposed
by Swanson [23] which is based on mutation data matrices, but also rather well
in agreement with the classifications based purely on biochemical properties.

The two main criteria for Swanson’s partitioning are the size (small vs. large)
of the amino acids and their positioning in the proteins based on their affinity
for water (hydrophobic/inner vs. hydrophilic/outer) The four groups are 1) the
small group: Pro, Gly, Ala, Ser, Thr, 2) the outer group: Glu, Asp, Asn, Gln,
Lys, His, 3) the large group: Arg, Trp, Tyr, Phe, and 4) the inner group: Cys,
Val, Ile, Met, Leu. A natural cyclic arrangement of those groups can be made
such that neighboring groups are small-outer, outer-large, large-inner and inner-
small. Thus, the groups small and large are considered as opposite groups and
the same holds for the groups inner and outer. See [23].

During translation three types of errors can be made. The least serious mis-
reading results in adding to the protein an amino acid of the same group as the
intended amino acid. A greater error would be a substitution with an amino acid
of a neighboring group. Finally, potentially greatest consequences have substi-
tutions with an amino acid of the opposite group. A completely different error
is the misinterpretation of a codon as the stop codon, which means that the
forming of the protein is terminated.

The probability GSPG1,G2 that an amino acid in group G1 will be substituted
with an amino acid from group G2 is given by

GSPG1,G2 =
∑

aa∈G1,bb∈G2

rf(aa, G1) · TSaa, bb
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where aa and bb are amino acids in groups G1 and G2, respectively, rf(aa, G1)
is the relative occurrence frequency of amino acids aa within G1, and TSaa,bb

is the probability that bb substitutes aa, i.e., the corresponding element of the
substitution matrix TS as defined in Section 4. The relative frequency of amino
acid aa within its group G1 is obtained as a ratio between the sum of the occur-
rence frequencies of all codons of aa and the sum of the occurrence frequencies
of all codons of the amino acids in G1. (Again we deal with the so-called codon
bias, i.e. within the genome of an organism not all codons and amino acids are
used with equal frequency.)

In Table 6 we give the above defined GSP probabilities for the realistic
model. Each row gives the error probabilities for amino acids of the correspond-
ing group. For all groups, the probability of generating the correct amino acid
is more than 0.995. The probability of generating a wrong amino acid from the
correct group is indicated in bold. Note that for groups 1, 2 and 4 this proba-
bility is larger than the probability of generating a wrong amino acid of another
group. Somewhat surprisingly, this does not hold for group 3. Furthermore, the
probability of an unexpected termination (stop codon) is extremely small.

to group 1 to group 2 to group 3 to group 4 stop-codon correct

group 1 0.22 % 0.077 % 0.047 % 0.11 % 0.0006 % 99.5 %

group 2 0.076 % 0.25 % 0.081 % 0.10 % 0 % 99.7 %

group 3 0.065 % 0.027 % 0.043 % 0.21 % 0.0019 % 99.7 %

group 4 0.069 % 0.029 % 0.055 % 0.17 % 0.0015 % 99.7 %

Table 6. Realistic model, percentage of erroneous amino acids, stop codon and the
correct amino acid for amino acids from the four groups.

A graphical representation of the error probabilities is given in Figure 5. In
this figure only the error probabilities, except the very small probability of an
erroneous stop codon, are shown. The probabilities of generating an erroneous
amino acid of the original group are indicated in white. The probabilities of
indicating an amino acid of the opposite group are shown in black. Clearly, the
probability of generating erroneous amino acids in the correct (white) group is
higher than the probability of generating amino acids in the opposite (black)
group, except for group 3.

We performed analogous analyses of the other models and in all cases the
outcome was similar. This indicates that the relatively small probability of out-
of-group amino acid substitutions is due to the distribution of the amino acids
over codons, i.e., the genetic code, rather than to the tRNA species and their
concentrations.

7 Conclusions and future work

We described a formal analysis of codon misreading errors during translation of
mRNA to protein, caused by a mismatch between codons and tRNAs. To this
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Fig. 5. Realistic model, probabilities of erroneous amino acid from another group (own
group: white, opposite group: black).

end, we presented a method based on probabilistic modelchecking, in particular
the modelchecker Prism in combination with Matlab.

Inspired by mutation data matrices, we introduced the notion of a transla-
tion substitution matrix. Using our model, we computed the elements of this
matrix which are the probabilities that amino acids replace each other in the
protein as a result of codon misreading. Further, we investigated the influence of
some parameters, like tRNA concentrations and different tRNA species, to the
misreading probabilities. It turned out that the translation mechanism is quite
robust. The mean substitution error for the realistic model is in line with exper-
imental findings, cf. [6]. Remarkably, for the realistic model it is smaller than
for our synthesized models. We also showed that biologically similar amino acid
replace each other with higher probabilities than dissimilar ones. Experiments
as described in Section 5 can easily be done in silico, but will require substantial
effort, if not impossible on such rigorous scale, in a wetlab. Additionally, our
case studies confirm that probabilistic modelchecking has advantage over simu-
lation regarding reliability and running times. Preliminary experiments indicate
that our modelchecking approach is about 10 times faster than our Gillespie
simulations.

In the future, we plan to apply our translation model to further investi-
gate the robustness of the translation mechanism and the genetic code. The
translation substitution belongs to a class of case studies for which the essential
properties are of a probabilistic nature. It would be interesting to employ the
methodology of this paper to similar problems, like the precision of DNA repair
and antibody recognition.
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A Additional tables

Codon Cognates Near-Cognates Codon Cognates Near-Cognates

UUU 28 22,23 GUU 44,45,46
UUC 28 9,17,20,22,23,36,42,43,45,46 GUC 45,46 2,8,15,17,20,28,44
UUG 22,23 18,19,25,26,27,28,34,41 GUG 44 13,18,19,22,25,26,27,45,46
UUA 23 21,22,28,32,33,44 GUA 44 1,12,14,21,23,45,46
UCU 33,36 34 GCU 1 2
UCC 36 2,9,28,30,33,34,37,39,42,43 GCC 2 1,8,15,30,36,37,39,45,46
UCG 33,34 22,29,36,38,41 GCG 1 2,13,29,34,38
UCA 33 1,23,31,32,34,36,40 GCA 1 2,12,14,31,33,40,44
UGU 9 3,32,41 GGU 15 3,13,14
UGC 9 15,28,32,35,36,41,42,43 GGC 15 2,8,9,13,14,35,45,46
UGG 41 4,6,9,13,22,32,34 GGG 13,14 4,6,15,41
UGA 32,48 5,9,14,23,33,41 GGA 14 1,5,12,13,15,32,44
UAU 42,43 GAU 8 12
UAC 42,43 7,8,9,16,28,36 GAC 8 2,7,12,15,16,42,43,45,46
UAG 47 11,22,34,41,42,43 GAG 12 8,11,13
UAA 47,48 10,12,23,24,32,33,42,43 GAA 12 1,8,10,14,24,44
CUU 20 3,19,21 AUU 17 18,25,26,27
CUC 20 16,17,19,21,28,30,45,46 AUC 17 7,18,20,25,26,27,28,35,37,39,45,46
CUG 19,21 4,11,18,20,22,25,26,27,29 AUG 25,26,27 6,17,18,19,22,38
CUA 21 10,19,20,23,31,44 AUA 18 5,17,21,23,24,25,26,27,40,44
CCU 30,31 3,29 ACU 37,39,40 38
CCC 30 2,16,20,29,31,36,37,39 ACC 37,39 2,7,17,30,35,36,38,40
CCG 29,31 4,11,19,30,34,38 ACG 38,40 6,18,25,26,27,29,34,37,39
CCA 31 1,10,21,29,30,33,40 ACA 40 1,5,24,31,33,37,38,39
CGU 3 4 AGU 35 3,5,6
CGC 3 4,9,15,16,20,30,35 AGC 35 5,6,7,9,15,17,37,39
CGG 4 3,6,11,13,19,29,41 AGG 6 4,5,13,18,25,26,27,35,38,41
CGA 3 4,5,10,14,21,31,32 AGA 5 6,14,24,32,35,40
CAU 16 3,10,11 AAU 7 24
CAC 16 7,8,10,11,20,30,42,43 AAC 7 8,16,17,24,35,37,39,42,43
CAG 11 4,10,16,19,29 AAG 24 6,7,11,18,25,26,27,38
CAA 10 11,12,16,21,24,31 AAA 24 5,7,10,12,40

Table 7. Codons and their cognate and near-conate tRNAs. Derived form Table 7.
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tRNA Amino acid Anticodon Recognized Codons Molecules/cell

1 Ala1 A UGC GCU, GCA, GCG 3250
2 Ala2 A GGC GCC 617
3 Arg2 R ACG CGU, CGC, CGA 4752
4 Arg3 R CCG CGG 639
5 Arg4 R UCU AGA 867
6 Arg5 R CCU AGG 420
7 Asn N GUU AAC, AAU 1193
8 Asp1 D GUC GAC, GAU 2396
9 Cys C GCA UGC, UGU 1587

10 Gln1 Q UUG CAA 764
11 Gln2 Q CUG CAG 881
12 Glu2 E UUC GAA, GAG 4717
13 Gly1 G CCC GGG 1068.5
14 Gly2 G UCC GGA, GGG 1068.5
15 Gly3 G GCC GGC, GGU 4359
16 His H GUG CAC, CAU 639
17 Ile1 I GAU AUC, AUU 1737
18 Ile2 I CAU AUA 1737
19 Leu1 L CAG CUG 4470
20 Leu2 L GAG CUC, CUU 943
21 Leu3 L UAG CUA, CUG 666
22 Leu4 L CAA UUG 1913
23 Leu5 L UAA UUA, UUG 1031
24 Lys K UUU AAA, AAG 1924
25 Met f1 M CAU AUG 1211
26 Met f2 M CAU AUG 715
27 Met m M CAU AUG 706
28 Phe F GAA UUC, UUU 1037
29 Pro1 P CGG CCG 900
30 Pro2 P GGG CCC, CCU 720
31 Pro3 P UGG CCA, CCU, CCG 581
32 Sec X UCA UGA 219
33 Ser1 S UGA UCA, UCU, UCG 1296
34 Ser2 S CGA UCG 344
35 Ser3 S GCU AGC, AGU 1408
36 Ser5 S GGA UCC, UCU 764
37 Thr1 T GGU ACC, ACU 104
38 Thr2 T CGU ACG 541
39 Thr3 T GGU ACC, ACU 1095
40 Thr4 T UGU ACA, ACU, ACG 916
41 Trp W CCA UGG 943
42 Tyr1 Y GUA UAC, UAU 769
43 Tyr2 Y GUA UAC, UAU 1261
44 Val1 V UAC GUA, GUG, GUU 3840
45 Val2A V GAC GUC, GUU 630
46 Val2B V GAC GUC, GUU 635
47 RF1 X UAA, UAG 1200
48 RF2 X UAA, UGA 6000

Table 8. tRNA species in E. coli, data from [5] and [6].
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B Prism code

stochastic

// constants
const double ONE=1;
const double FAST=1000;

// tRNA rates, precalculated
const double c_xx_cogn ;
const double c_yy_cogn ;
const double c_xx_near ;
const double c_yy_near ;
const double c_nonc ;

const double k1f = 140;
const double k2b = 85;
const double k2bx=2000;
const double k2f = 190;
const double k3bc= 0.23;
const double k3bn= 80;
const double k3fc= 260;
const double k3fn= 0.40;
const double k4rc= 60;
const double k4rn=FAST;
const double k4fc= 166.7;
const double k4fn= 46.1;
const double k6f = 150;
const double k7b = 140;
const double k7f = 145.8;

module ribosome

s_rib : [0..8] init 1 ;
cogn : bool init false ;
near : bool init false ;
nonc : bool init false ;
xx : bool init false ;

// initial binding
[ ] (s_rib=1) -> k1f * c_xx_cogn : (s_rib’=2) & (xx’=true) & (cogn’=true) ;
[ ] (s_rib=1) -> k1f * c_yy_cogn : (s_rib’=2) & (cogn’=true) ;
[ ] (s_rib=1) -> k1f * c_xx_near : (s_rib’=2) & (xx’=true) & (near’=true) ;
[ ] (s_rib=1) -> k1f * c_yy_near : (s_rib’=2) & (near’=true) ;
[ ] (s_rib=1) -> k1f * c_nonc : (s_rib’=2) & (nonc’=true) ;
[ ] (s_rib=2) & ( cogn | near ) -> k2b :

(s_rib’=0) & (cogn’=false) & (near’=false) & (xx’=false) ;
[ ] (s_rib=2) & nonc -> k2bx : (s_rib’=0) & (nonc’=false) ;

// codon recognition
[ ] (s_rib=2) & ( cogn | near ) -> k2f : (s_rib’=3) ;
[ ] (s_rib=3) & cogn -> k3bc : (s_rib’=2) ;
[ ] (s_rib=3) & near -> k3bn : (s_rib’=2) ;

// GTPase activation, GTP hydrolysis, EF-Tu conformation change
[ ] (s_rib=3) & cogn -> k3fc : (s_rib’=4) ;
[ ] (s_rib=3) & near -> k3fn : (s_rib’=4) ;

// rejection
[ ] (s_rib=4) & cogn -> k4rc : (s_rib’=5) & (cogn’=false) & (xx’=false);
[ ] (s_rib=4) & near -> k4rn : (s_rib’=5) & (near’=false) & (xx’=false);

// accommodation, peptidyl transfer
[ ] (s_rib=4) & cogn -> k4fc : (s_rib’=6) ;
[ ] (s_rib=4) & near -> k4fn : (s_rib’=6) ;

// EF-G binding
[ ] (s_rib=6) -> k6f : (s_rib’=7) ;
[ ] (s_rib=7) -> k7b : (s_rib’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,
// rearrangements of ribosome and EF-G, dissociation of GDP
[ ] (s_rib=7) -> k7f : (s_rib’=8) ;

// no entrance, re-entrance at state 1
[ ] (s_rib=0) -> FAST*FAST : (s_rib’=1) ;
// rejection, re-entrance at state 1
[ ] (s_rib=5) -> FAST*FAST : (s_rib’=1) ;
// elongation
[ ] (s_rib=8) -> FAST*FAST : (s_rib’=8) ;

endmodule
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