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Abstract. The coordination language Paradigm allows for a flexible
and orthogonal modeling of interprocess relationships at the architec-
tural level. It is shown how dynamic system adaptation can be captured
in Paradigm by means of a special evolution component and associated
evolution coordination scheme. The component, called McPal, drives the
migration following a just-in-time strategy in its own view of the sys-
tem, independent of other coordination relations. During migration, dy-
namic consistency between components remains assured, even for mix-
tures of old, intermediate and new behaviour. A restricted scheme of
McPal that supports various forms of self-adaptation is presented. A
simple but generic example of a scheduler and workers illustrates on-
the-fly updating of coordination and run-time adaptation of scheduling
policies using McPal.
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1 Introduction

Dynamic aspects of coordination arise naturally when considering evolution on-
the-fly of systems at the architectural level. Here, evolution on-the-fly, such as
dynamic software updating, is in contrast to other unanticipated system adap-
tation where components are first put to a halt, subsequently supplied with new
behaviour, and finally restarted, likely with their state restored. In the setting
here, the execution of the system should continue as much as possible. While
running, the system will adapt itself and evolve into a new one via a number of
migration steps, taken by the different components in a well-coordinated fashion.

The system architectures addressed in this paper are given as Paradigm mod-
els. Paradigm is a coordination language distinguishing detailed and global be-
haviour of processes (see [8, 12]). Coordination is achieved, by properly connect-
ing the detailed and global views via so-called consistency rules. These rules
relate detailed transitions between states of a process in a manager role to
global change of subprocess constraints of other processes in an employee role.
In Paradigm, separate coordination solutions for multiple collaborations can be
relatively easily combined into one single architecture.

The paper’s main contribution lies in showing how a specific component,
called McPal –abbreviating Managing changing Processes ad libitum (or at



leisure)– allows for modifying the dynamics of the system on-the-fly, while all
components remain in execution in a dynamically consistent manner. The im-
portant intuition here is, a process within a model is viewed as a subprocess of
an unknown larger process. As long as this subprocess constraint is valid, it is
irrelevant whether the remainder of that process is known or not. This allows
for defining new fragments of the process in a lazy manner, by modeling them
just in time. After having such new fragments defined in a suitable manner,
McPal can, on the basis of newly added dynamics, start to coordinate global
level behaviour, eventually leading into a new evolutionary phase for each com-
ponent. Thereby, the Paradigm notions guarantee enduring consistency between
the components’ behaviours before, during and after the migration, even for
mixtures of old, intermediate and new behaviours.

To keep our explanation clear and sufficiently brief, we restrict this paper to
a relatively simple form of McPal, not changing its own behaviour. This way,
an evolution pattern for Paradigm models emerges, illustrated by an example
of a scheduler and workers involved in different evolution scenarios. The start-
ing point is a scheduler that excludes almost all overlapping of activity of the
workers. As a first illustration, the coordination evolves to a situation where this
restriction is significantly alleviated, allowing for more parallelism amongst the
workers. A second illustration of the evolution pattern focuses on the scheduler,
that migrates from a non-deterministic selection of workers to a round-robin
selection policy.

In view of the above, the remainder of the paper has the following struc-
ture. Section 2 briefly describes Paradigm and introduces a small coordination
example model. First, the model is extended in Section 3 with McPal for coordi-
nating future self-adaptation of the model. Sections 4 and 5 present two different
evolutionary continuations, one for reducing the critical sections, the other for
changing the scheduling policy of workers. Both evolutionary changes are on-
the-fly. Finally, Section 6 gives conclusions and discusses both related work and
future research.

2 Paradigm

This section provides a very brief introduction to the coordination language
Paradigm by means of a small example. The example serves two purposes, of
illustrating the notions explained and of preparing the evolution to be addressed
later. For more detailed explanation, including formal operational semantics,
see e.g. [8, 12, 11]. Consider the following coordination situation. A scheduler
is coordinating the activities of three workers. The workers are performing the
same life-cycle simultaneously: alternating between not working and working. A
worker is idle in the state free. The activity working actually consists of four
smaller consecutive activities: nonCrit, pre, crit and post. The scheduler is
coordinating their working. For the moment, the scheduler allows at most one
worker outside of free and nonCrit. The activities of the workers and of the
scheduler can be described by a process or state transition diagram (STD).



In general, a process or STD S is a triple 〈ST, AC, TS〉, with ST the set of
states, with AC the set of actions or labels, and with TS ⊆ ST× AC× ST the set of
transitions. We write x

a
→ x′ in case (x, a, x′) ∈ TS, or even x → x′ if the precise

action is irrelevant.

Figure 1 visualizes the processes of a worker and of the scheduler as directed
graphs: transitions as edges and states as nodes. Activities have been mapped
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Fig. 1. Processes Workeri and Scheduler

to states (as time spent for an activity coincides with a sojourn in a state);
actions have been left empty. Each worker process, starts in state free, its non-
working activity. After state free, Workeri continues to work: in nonCrit he
does non-critical work, in pre he prepares the critical activity, in crit he does
his critical work and in post he does its follow-up. Thereby he finishes working
and continues in free with non-working. Process Scheduler starts in state idle
where he does not allow any worker to do non-critical working. From state idle

he can go non-deterministically to any of his states asgi, i = 1, 2, 3, where he
only allows Workeri to enter and leave states pre, crit and post for performing
one full turn of critical activity.

The coordination exerted by the scheduler is formulated in terms of three
global processes, each constituting a coarse-grained view of a worker process.
Global processes are built from subprocesses and traps of the process it cor-
responds to. In general, a subprocess of a process S = 〈ST, AC, TS〉 is a process
〈st, ac, ts〉 such that st ⊆ ST, ac ⊆ AC and ts ⊆ {(x, a, x′) ∈ TS | x, x′ ∈ st, a ∈
ac }. Furthermore, a trap θ of a subprocess S = 〈st, ac, ts〉 is a non-empty set

of states θ ⊆ st such that x ∈ θ and x
a
→ x′ ∈ ts imply that x′ ∈ θ. If θ = st,

the trap is called trivial. For the worker processes we model two subprocesses,
viz. Free and Busy with their traps started and done visualized as polygons
surrounding the states belonging to it. See the left part of Figure 2.
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Fig. 2. Partition CSM and global worker process at the level of CSM



Subprocesses and traps are both constraints: a subprocess of a process is a
constraint on the possible behaviours of the process, meant to be temporary and
meant to be imposed from outside the process by a manager. In the example, as
we shall see, the process Scheduler will be the manager. A trap of a subprocess
is a constraint on the subprocess’ state space –once entered the trap cannot be
left– valid only for the time the subprocess constraint holds, and committed to
from inside the process in its employee role. So, a trap indicates a final stage of
a subprocess.

To build suitable dynamics from such constraints, two more notions are
needed: partition and connecting trap. In general, a partition π of a process P =
〈ST, AC, TS〉 is a collection { (Si, Ti) | i ∈ I } of subprocesses Si = 〈sti, aci, tsi〉
of P , each with a set Ti of its traps. Furthermore, for two subprocesses S =
〈st, ac, ts〉 and S′ = 〈st′, ac′, ts′〉 of a partition π, a trap θ of S is called a
connecting trap from S to S ′, if the states, of S, belonging to the trap θ are
states in S′ as well, i.e. θ ⊆ st′. If such a connecting trap θ from S to S ′ ex-
ists, the triple (S, θ, S′) is called a subprocess change or transfer. In Figure 2,
the left part presents the elements of partition CSM (abbreviating critical section
management) of a worker process, comprising the two subprocesses and the two
traps. In this case, trap started of Free is connecting from Free to Busy as its
state nonCrit belongs to Busy too. Similarly, trap done of Busy is connecting
from Busy to Free as its state free belongs to Free too. A connecting trap
provides a kind of overlap between two consecutive subprocess constraints.

On the basis of a partition π of a process P , we construct a new process,
referred to as the global process at the level of partition π. This process is denoted
by P (π). Its states are the subprocesses from π, its actions are connecting traps
from π and its transitions are the subprocess changes corresponding to these con-
necting traps. The one subprocess expressing the constraint valid at a certain
moment, is referred to as the current subprocess of a partition at that moment.
By construction, the current subprocess of a partition corresponds to the cur-
rent state of the global process at the level of the partition. A process not being
global, is referred to as detailed. Figure 2’s right part presents the global pro-
cess Workeri(CSM), with its starting state Free chosen such that, as subprocess,
it contains starting state free of process Workeri. The process Workeri(CSM)
presents a behavioural view on the original Workeri process; being less detailed
than Workeri, process Workeri(CSM) is more coarse-grained, which is referred to
as global in our terminology. Note that, a process can have multiple partitions,
for each of which a global process exists.

Given a number of processes with associated partitions, so-called consistency
rules relate detailed transitions between states of a manager process to global
transfer between subprocesses of employee processes. (In this context, ‘consis-
tency’ refers to the notions of dynamic consistency, horizontal or vertical, as
proposed by Küster [14].) For a consistency rule to be applicable, one has to
keep track of the current state of detailed as well as global processes. Any appli-
cable consistency rule, no matter of what manager and partition, can be selected



for application. In general, a consistency rule has the format

P : s
a
→ s′ ∗ P1(π1):S1

θ1→ S′

1, . . . , Pn(πn):Sn
θn→ S′

n . (1)

In consistency rule (1), process P is the manager and process P1 to Pn are the
employees. Paradigm is restricted to having exactly one manager in a consistency
rule. In case there are no employees, i.e. n = 0, we simply write P : s

a
→ s′. Note

that the local transition of P in (1) does not refer to a partition. The requirement

on P for the consistency rule to apply is that the transition s
a
→ s′ is possible

in every current subprocess of process P , with respect to the various partitions
of P . The requirements on P1 to Pn with respect to consistency rule (1) is that
each process Pi in its partition πi has Si as the current subprocess and within
this subprocess trap θi has been entered. After application of the consistency
rule the current state of manager P becomes s′, the current subprocesses of
employees P1 to Pn become S′

1 to S′

n, respectively. Because of the demand of
traps θi being connecting for subprocesses Si and S′

i, it does not matter in which
detailed state the employees reside precisely. For each connecting trap, the whole
of it is admitted in the new subprocess as a possible state to continue from.

For the scheduler process of our example, we provide the consistency rules

Scheduler: idle → asgi ∗ Workeri(CSM): Free
started
→ Busy

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done
→ Free

The first consistency rule expresses that Scheduler may change its current state
idle into asgi, provided the current subprocess constraint on Workeri is Free

and the trap started has been entered, i.e. Workeri’s current state belongs to
the trap started. If Scheduler changes its current state from idle to asgi

indeed, then, according to the rule, global process Workeri(CSM) changes its
current state from Free to Busy, or, put otherwise, the subprocess constraint of
Workeri in partition CSM becomes Busy instead of Free. This is an example of
horizontal dynamic consistency [14], as the rule couples behaviours from different
components. Analogously, the second rule says, Scheduler may return from state
asgi to state idle, provided the current subprocess constraint on Workeri is Busy
and Workeri’s current state belongs to trap done. If Scheduler indeed changes its
current state from asgi to idle, then also global process Workeri(CSM) changes
its current state from Busy to Free. We see how both consistency rules couple one
local scheduler transition to a (simultaneous) global Workeri(CSM) transition. As
Scheduler does not have a partition, it neither has any process at such a level,
so Scheduler’s state transitions are not restricted by any current subprocess
constraint from such a global level.

The workers have no employees. Therefore, their consistency rules are simpler
than for the scheduler, each rule containing one of Workeri’s detailed transitions
only.

Workeri: free → nonCrit

Workeri: nonCrit → pre

Workeri: pre → crit

Workeri: crit → post

Workeri: post → free



A Workeri transition is possible only if it belongs to the current subprocess con-
straint of detailed process Workeri or, equivalently, to the current state of global
process Workeri(CSM). This is an example of vertical behavioural consistency in
the sense of [14] between a detailed process and the global processes at the levels
of its partitions.

In addition to the consistency rule format of (1), one can also have a so-called
change clause, a consistency rule used here solely for changing the total set of
consistency rules, instead of a consistency rule prescribing subprocess changes.
A change clause is formulated as

P : s
a
→ s′ ∗ [ var := expr ] (2)

concerning a variable var, typically holding the list of consistency rules. It spec-
ifies that after application of the rule, process P has moved to state s′ and the
value of expr in s has been assigned to variable var. This way consistency rules
can be added or deleted dynamically.

The initial configuration of a Paradigm model does not only comprise the
starting states of the various detailed processes, but also those of the various
global processes. Therefore, for every detailed process a starting state has to be
specified, together with a subprocess to start from, for each of its partitions. Our
example illustrates this as follows. The combined starting states are, grouped per
detailed process and with i = 1, 2, 3:

(Workeri, Workeri(CSM)) : (free, Free), Scheduler : idle

Note, each detailed starting state belongs indeed to each current subprocess
constraint for that particular detailed process. The consistency rules guarantee
the following property to be invariant: each current state of a detailed process
belongs for each partition of that process to the current subprocess.

In summary, the above is an example of a Paradigm model. In general, a
Paradigm model is a collection of detailed processes and global processes at
the level of their given partitions, together with a set of consistency rules and a
combination of detailed and global starting states. Dynamics within such a model
stem from subsequent application of consistency rules. Any change of constraint
specified by the particular consistency rule applied, then yields a number of
global process transitions, i.e. subprocess transfers.

3 Self-Adaptation and McPal

In this section we shall present a different model for the original coordination
problem from the previous section. Apart from solving the same coordination
problem, the model can modify itself and evolve, while remaining in execution,
into another model, unknown in the beginning. For this we add the special
process McPal. This McPal starts with not influencing the model as-is, nothing
special to begin with. But our McPal, by its careful design, has the property to
adapt the Paradigm model it belongs to. Process McPal is visualized in Figure 3.
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Fig. 3. Process McPal.

In state obs, McPal is observing the model as a whole and possibly comput-
ing or perhaps hearing from elsewhere how to change the model. As soon as
McPal arrives in state startMigr, it knows the new consistency rules accord-
ing to which the executing model is going to migrate uninterruptedly towards
a new model. This migration is coordinated by McPal outside its state obs. To

free nonCrit

post pre

crit
asg2 asg3

idle

asg1 Phase

Phase

Scheduler(Evol):

Worker (Evol):i

1

1

triv Worker  (Evol)’s Phasei 1
triv Scheduler(Evol)’s Phase 1

Fig. 4. Evolutionary phases and evolutionary processes to begin with

support the migration, every other detailed process has an additional partition
called Evol. It contains the subprocesses reflecting the evolutionary phases so-far
of that particular detailed process. As long as McPal is in state obs for the first
time, each such partition consists of exactly one subprocess, here called Phase1,
always being the full, unconstrained process itself, typically with the trivial trap
connecting from Phase1 towards an as yet unknown subprocess reflecting an in-
termediate migration phase. Figure 4 presents the Evol partitions for Workeri as
well as for Scheduler together with the degenerate global processes at the level
of these partitions. All other partitions are unchanged. The consistency rules for
the extended model are the original rules together with only one new rule for
McPal, viz. consistency rule (3) below, for the moment.

McPal: obs → startMigr ∗ [ CR := CR ∪ CRmig ∪ CRnext ] (3)

This one rule is a change clause: as the set of consistency rules we start with,
is going to change during the migration, the set of consistency rules is bound
to a local variable of McPal, here denoted as CR. Change clause (3) should be
taken parametrically, i.e., at the very moment process McPal decides to take the
transition from its state obs to state startMigr, the collection of consistency
rules gets updated via the assignment in the change clause with the whole of
consistency rules in CR, CRmig and CRnext at that moment. So the effect of the
change clause (3) fully depends on the actual values of its two parameters CRmig

and CRnext . As we shall see later, McPal determines the pace of evolution.
With respect to the new detailed process McPal it is important to note,

only the first transition of McPal, from state obs to startMigr is supported



by a consistency rule. This means, in the first phase of the evolution the other
transitions cannot occur. But, as a result of this, one possible transition in McPal,
the set CR of consistency rules is extended with two more sets: one, CRmig , for
the intermediate phase proper and the other, CRnext , for the next evolutionary
phase. In particular, once CRmig is known, there are consistency rules for the
other McPal transitions too, readily made, JIT-modeled (just in time), either
by computational effort of McPal while in state obs, or by modeling effort from
outside McPal and given as input to McPal while in state obs.

For this paper we shall keep process McPal unchanged. This means, we choose
one particular form of sufficiently useful standard behaviour of McPal for actually
coordinating the migration steps of other processes involved. By its first transi-
tion obs → startMigr, McPal extends via change clause (3) the rules, such that
other processes’ Phase1 constraint is going to be relaxed, if necessary. For the
examples we want to discuss here, three more migration steps will do: a tran-
sition startMigr → contMigr for continuing the migration, only if necessary,
by adjusting the migration already begun; a transition contMigr → endMigr

for restraining the other processes’ constraints to the Phase2 behaviours aimed
at, thus closing their migration; the last one, transition endMigr → obs, for re-
straining the migrational freedom for McPal too, thus preventing McPal in some
unknown future to repeat an old migration when a new one is in place. In the
next two sections we present some concrete self-adapting Paradigm models and
provide detail for McPal’s remaining three transitions.

The combined starting states of the Paradigm model are grouped according
to the five detailed processes:

(Workeri, Workeri(CSM), Workeri(Evol)) : (free, Free, Phase1),

(Scheduler, Scheduler(Evol)) : (idle, Phase1),

McPal : obs.

4 Reducing the Extent of Exclusive Behaviour

The example variants presented in this section exhibit a restricted form of self-
adaptation through step-wise modification of non-evolutionary global behaviours
only, i.e. exclusively at the level of the three Workeri(CSM) partitions. For the
moment, the detailed worker and scheduler processes are not going to change at
all, so their Phase1 subprocess constraints remain unchanged during the evolu-
tion as discussed here. The non-evolutionary global processes Workeri(CSM) do
change, however.

To become more concrete, suppose we want to modify the original mu-
tual exclusion management in two ways: by substantially restricting the ex-
clusive behaviour as well as by making the return to non-critical working most
asynchronous. These two improvements are realized by the new subprocesses
OutCS and InCS, drawn in Figure 5, with their traps entering and left. Trap
entering has been chosen as ‘near’ to state crit and as ‘small’ as possible. Trap



left has been chosen as ‘large’ as possible –the larger the more asynchronous–
and starting ‘immediately after’ state crit.

The trivial trap triv of subprocess Free is self-evident, so we do not re-
draw Free with its newly added trap. Nevertheless, it now also belongs to par-
tition CSM. What is even more important, trap triv is connecting from Free

to OutCS and the original trap done is connecting from Busy to OutCS. This is
used for constructing the global process Workeri(CSM) on the basis of the newly
extended partition CSM. See Figure 5. The consistency rules in play are the origi-
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Fig. 5. Extensions of partition CSM and of global process Workeri(CSM)

nal consistency rules in CR, the consistency rules CRmig that guide the migration,
and the consistency rules CRnext for the next evolutionary phase. The original
consistency rules are bound to McPal’s local variable CR, that is to say, CR has
the rules mentioned in Section 3 as initial value. The consistency rules CRmig for
the migration are the following.

McPal: startMigr → contMigr

McPal: contMigr → endMigr ∗ Worker1(CSM): OutCS
triv
→ OutCS

McPal: endMigr → obs ∗ [ CR := CRnext ]

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done
→ OutCS,

Workeri−1(CSM): Free
triv
→ OutCS, Workeri+1(CSM)Free

triv
→ OutCS

Here i−1 and i+1 denote the usual predecessor and successor values of i in the
cyclic order of 1, 2, 3.

The first rule for McPal above states that, in this migration, there is no coor-
dination task for McPal in the first step. The second rule for McPal expresses that
the migration has been completed, when the first worker runs restricted to the
OutCS subprocess at the level of its CSM partition. Once in state endMigr, McPal
cleans up the old and intermediate consistency rules by binding CR to CRnext

and comes back in state obs again. Here the actual migration is in the new
rule for Scheduler. When returning from any of the states asg1, asg2, asg3,



all workers, including the Worker1 that is checked by McPal, are transfered to
subprocess OutCS of the next evolution phase. Note, the actual migration is not
really enforced: Scheduler might carry on with the old coordination forever. As
soon as the new consistency rule has been applied, however, migration has taken
place irreversibly.

The consistency rules CRnext for the next evolutionary phase, the new solution
we are actually aiming at, are

Workeri: free → nonCrit

Workeri: nonCrit → pre

Workeri: pre → crit

Workeri: crit → post

Workeri: post → free

Scheduler: idle → asgi ∗ Workeri(CSM): OutCS
entering
→ InCS

Scheduler: asgi → idle ∗ Workeri(CSM): InCS
left
→ OutCS

McPal: obs → startMigr ∗ [ CR := CR ∪ CRmig ∪ CRnext ]

In the new evolution phase, the same scheduler continues to coordinate the
same workers with more parallelism between the workers, now the extent of the
exclusive, critical working interval has been reduced and trap left allows for
a most asynchronous continuation of a worker after having finished his critical
activity. The change clause for McPal for the transition from obs to startMigr

caters for later evolution, at McPal’s leisure.

Figure 6 might be viewed as a movie of global process Workeri(CSM) repre-
sented through three subsequent takes reflecting subsequent migration. The first

Free Free OutCS OutCS

InCSInCSBusyBusy

left

triv

entering

entering
startedstarted

done left

done

done

evolutionary phase 2during migrationevolutionary phase 1

Fig. 6. Migration of process Workeri(CSM), first variant

take of the movie lasts until McPal leaves state obs. The second take lasts while
McPal is in its three states startMigr, contMigr and endMigr. Upon arrival in
state endMigr it is guaranteed that the worker process executes either subprocess
OutCS or InCS. The third take starts when McPal returns in state obs.

An interesting variant, slightly different only, is McPal’s first migration rule in
the above set CRmig replaced by

McPal: startMigr → contMigr ∗ [ CR := CR\CRhelp ]



where CRhelp has been computed or has been read from input in state obs,
consisting of the ‘migration avoiding’ rules

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done
→ Free

The consequence thereof is, from McPal’s arrival in state contMigr, the migra-
tion is more enforcing towards Phase2, the actual evolutionary phase aimed at.
The movie now consists of four takes, see Figure 7. The enforcing is an exam-
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Fig. 7. Migration of process Workeri(CSM), second variant

ple of migration adjusting. Note, we have indeed specified the self-adaptation
through new global behaviour at the level of Workeri(CSM) only, leaving all de-
tailed behaviours untouched.

5 Changing Scheduling Order

This section presents example variants of self-adaptation affecting a detailed
process and involving non-trivial global behaviour at the level of partition Evol

of that detailed process, really evolutionary behaviour in terms of subsequent
phases.

To this aim, we reorganize the Paradigm model of Section 3 in a different way,
namely by changing the non-deterministic selection policy of the scheduler into
round robin selection. Figure 8 visualizes a combination of the original scheduler
process and a new, envisaged one. The four upper states, of the seven states
displayed, constitute the STD of the Scheduler process as in Figure 1. The six
lower states, asg1 to asg3 and check1 to check3, will comprise the state space
of the evolved Scheduler process. So, here we have a different type of change:
a detailed process is going to get new behaviour. Round robin checking of a
worker’s wish to enter its critical section, is done in the states checki, whereas
the meaning of states asgi is kept unchanged. The combined behaviours as
presented in Figure 8 actually obscure what transitions could be taken during
which evolutionary phase. At level of the partition Evol this becomes rather more
clear from global process Scheduler(Evol). Figure 9 presents the partition Evol

of the extended process Scheduler under migration, together with global process
Scheduler(Evol). Without the traps and with idle added as starting state of
the first evolutionary phase, it can be taken as a movie of process Scheduler’s
evolution represented through three subsequent takes. Consistency rules for the
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Fig. 8. Combined STD of two incarnations of Scheduler
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migration as well as for the new way of scheduling are grouped into the two
sets CRmig and CRnext , like before. Remember, we start with CR as modeled in
Section 3. As before, i+1 denotes the successor of i from the cyclic values 1, 2, 3.

In addition, we use the negative side rule P (π):S
θ
9 for the condition that

within partition π of process P either S is not the current subprocess, or trap θ

of subprocess S has not yet been entered. This condition is necessary for the
corresponding manager transition to occur and it leaves the current subprocess
at the level of partition π of P unchanged. The consistency rules for the migration
are now the following.

McPal: startMigr → contMigr ∗

Scheduler(Evol): Phase1

triv
→ Migration

McPal: contMigr → endMigr ∗

Scheduler(Evol): Migration
migrationDone

→ Phase2

McPal: endMigr → obs ∗ [ CR := CRnext ]

Scheduler: idle → check1



Please note, from the above list, the first rule for McPal starts the evolutionary
migration phase for Scheduler. The one rule of Scheduler expresses the actual
migration step, by going from idle to check1. The second rule of McPal stabilizes
the migration: Scheduler is in evolutionary phase Phase2 from the moment
the rule is applied. McPal’s last rule then discards rules no longer needed, by
keeping those from CRnext only. It may happen, that the actual migration step
to be taken by Scheduler does not occur, as Scheduler, while in asgi, gets its
phase Migration as the current subprocess constraint. In that case, Scheduler
migrates right then implicitly, without taking an explicit step. As an aside, we
have a non-trivial management relation: McPal manages the scheduler, while the
scheduler manages the workers.

The consistency rules CRnext for the envisioned evolutionary phase are the
following

Workeri: free → nonCrit

Workeri: nonCrit → pre

Workeri: pre → crit

Workeri: crit → post

Workeri: post → free

Scheduler: checki → asgi ∗ Workeri(CSM): Free
started
→ Busy

Scheduler: asgi → checki+1 ∗ Workeri(CSM): Busy
done
→ Free

Scheduler: checki → checki+1 ∗ Workeri(CSM): Free
started

9

McPal: obs → startMigr ∗ [ CR := CR ∪ CRmig ∪ CRnext ]

Figure 10 gives an alternative for partition Evol of the Scheduler process: during
migration it allows for some extra delay of introducing the round robin approach,
by a kind of last-orders possibility for at most one worker according to the old-
fashioned non-deterministic selection mechanism. (See the transition from state
idle to the states asgi in subprocess Migration.) Note that by thus changing

idle asg2

asg1

asg3

idle

Phase
1 2’Phase

Scheduler(Evol) trivPhase1 Migration Phase
migration

Done 2’

check1

check2

check3

asg2

asg1

asg3

check1

check2

check3

asg2

asg1

asg3

migrationDone

Migration

triv triv

Fig. 10. Partition Evol of Scheduler, second variant

the definition of subprocess Migration, i.e. the concrete constraint, we do not



have to change our consistency rule formulations for achieving the evolution as
depicted in Figure 10.

6 Conclusions, Related Work and Future Work

The scheduler and worker examples illustrate evolution on-the-fly as supported
in Paradigm. The detailed transitions of the special component McPal mark the
various migration steps from one evolutionary stage of the system to the next.
Via consistency rules, new subprocesses of old or new behaviour can be intro-
duced. Change clauses for McPal provide these consistency rules and dispose of
coordination that is not desired any more. Although, the mechanism of subpro-
cesses constrain the behaviour of components, the proposed evolution scheme
itself does not require any component to stop, to be restarted later with new
behaviour installed. In this sense, evolution is on-the-fly.

The evolution pattern as described allows for iterated evolution, as the McPal
process is persistent in the model. A new migration can take place as soon as
new consistency rules for intermediate and targeted behaviour and interaction
are defined. With new semantics specified lazily, just-in-time, the self-adaptation
is on-the-fly. In its present form, only one intermediate stage is foreseen in the
evolution pattern, represented by the state contMigr of the detailed process
of McPal. In the first evolution example variant, we have seen that this state
was superfluous. The opposite, having more than one intermediate migration
stage, is possible as well. Even stronger, the detailed behaviour of McPal can
be specified just-in-time, determining the migration trajectory on-the-fly too.
As such, our scheme provides unconstrained run-time selection of a migration
trajectory. In general, any finite DAG with a unique starting state will do, as
far as the structure of McPal is concerned.

Related work The contracts of Colman and Han [6] for the coordination
of loosely coupled systems connect the organizational and functional views on
an architecture, a distinction reminiscent to our managers and employees. The
connection of Colman and Han, though, is by role instantiation, mapping the
abstract to the concrete. Fundamental for Paradigm is the coupling of detailed
state transitions with global subprocess transfer.

In the context of Component Based Software Engineering, adaptation is to
be understood as component adaptation for interoperability purposes. Formal
descriptional approaches are gaining impact in this field [2, 19, 16, 4], moving
from IDLs based on finite state machines towards mobility-oriented process cal-
culi and induced bisimulation equivalences. Although Paradigm is supported by
a transition-based operational semantics [12], at present the behavioural theory
to compare different evolutions or different stages within the same evolution, is
not yet fully established. However, see [3, 13].

Oriol proposes to exploit asynchronous channels to drive unanticipated soft-
ware evolution [17]. Leading principles are anonymity of entities, late binding
and asynchronous communication in a setting of service-directed architectures.
A variation geared towards tuple spaces has been reported in [18]. Because of the



atomicity of the services involved, the granularity is more coarse-grained than
in the approach presented here, however.

There is a vast amount of literature on dynamic updating at the code level, for
example on concrete dynamic software updating systems design (see e.g. [15, 20]).
In the context of declarative programming, dynamic logic programming (see [1]
amongst others) involves sequences of logic programs to express the evolution of
knowledge over time. Controls have to be put in place to deal with inconsistencies
among separate programs and to fine-tune asserts and retracts of Horn clauses.
However, as with the work on imperative programming languages mentioned
above, as yet no migration pattern or architectural support is provided to guide
the evolution.

In addition, we like to mention [9, 10] as examples reporting on self-adaptive
systems on an architectural level. In these papers there is the same tendency
as noted above (service atomicity) of concentrating on forms of self-adaptation
referred to as: reconfiguration, structured reorganization, data-driven readjust-
ment, canned workflows being triggered, recomposition and the like. The sur-
vey [5] compares fourteen different approaches to self-adaptation, none of which
appears to achieve so-called unconstrained run-time selection. Our McPal pat-
tern however, allows for exactly this: the outcome of our JIT-modeling, occurring
while being in state obs, fully determines such run-time freedom: nothing hap-
pening during migration or during later evolutionary phases has been foreseen
from the beginning. The paper [7] is coming closest to our approach. It draws
attention to the dynamic consistency problem, which should be solved by co-
ordination; details about how to do this, are not given however, contrarily to
our McPal component which, based on Paradigm, specifies such coordination in
detail.

Future work Further research will be devoted to more elaborate migration
schemes. A case study of the dining philosophers evolving from deadlock to
starvation and beyond is under way. For the treatment of more intricate evo-
lution patterns, dynamic creation and deletion of complete detailed processes
is involved, which requires extension of Paradigm’s formal semantics. Larger
software architectures, for example in a setting of changes at the business level
requiring software adaptation of lower-level support-systems, are likely to be-
come multi-tier. Concise models will benefit from higher-order consistency rules
and coordination patterns. Thesis work is devoted to tooling that supports the
analysis of extensive examples as well as refactoring, transformation and refine-
ment strategies of Paradigm models.
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et structurée de systèmes mixtes. PhD thesis, IRIN, University of Nantes, 2000.
20. G. Stoyle, M.W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutan-

dis: safe and predictable dynamic software updating. In Proc. POPL 2005, Long

Beach, California, pages 183–194. ACM, 2005.


