
BISIMULATION OF
LABELLED STATE-TO-FUNCTION TRANSITION SYSTEMS

COALGEBRAICALLY

D. LATELLA, M. MASSINK, AND E.P. DE VINK

CNR – Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, Pisa
e-mail address: Diego.Latella@isti.cnr.it

CNR – Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, Pisa
e-mail address: Mieke.Massink@isti.cnr.it

Department of Mathematics and Computer Science, Eindhoven University of Technology ,
Centrum voor Wiskunde en Informatica, Amsterdam
e-mail address: evink@win.tue.nl

Abstract. Labeled state-to-function transition systems, FuTS for short, are characterized by tran-
sitions which relate states to functions of states over general semirings, equipped with a rich set of
higher-order operators. As such, FuTS constitute a convenient modeling instrument to deal with
process languages and their quantitative extensions in particular. In this paper, the notion of bisimu-
lation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence result is
established stating that FuTS-bisimilarity coincides with behavioural equivalence of the associated
functor. As generic examples, the equivalences underlying substantial fragments of major examples
of quantitative process algebras are related to the bisimilarity of specific FuTS. The examples range
from a stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a (dis-
crete) timed process language, TPC, and a language for Markov Automata, MAL. The equivalences
underlying these languages are related to the bisimilarity of their specific FuTS. By the correspon-
dence result coalgebraic justification of the equivalences of these calculi is obtained. The specific
selection of languages, besides covering a large variety of process interaction models and modelling
choices involving quantities, allows us to show different classes of FuTS, namely so-called simple
FuTS, combined FuTS, nested FuTS, and general FuTS.

1. Introduction

In the last couple of decades, qualitative process languages have been enriched with quantitative
information. In the qualitative case, process languages equipped with formal operational semantics
have proven to be successful formalisms for the modeling of concurrent systems and the analysis
of their behaviour. Generally, the operational semantics of a qualitative process language are given
by means of a labeled transition system (LTS), with states being process terms and actions deco-
rating the transitions between states. Typically, based on the induced transition system relation, a

1998 ACM Subject Classification: D.2.4 Formal Methods, F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.3.2 Semantics of Programming Languages .

Key words and phrases: quantitative process algebra, FuTS, function of finite support, bisimulation, coalgebra, be-
havioral equivalence .

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Latella, Massink & De Vink
Creative Commons

1

ar
X

iv
:1

51
1.

05
86

6v
1

 [
cs

.L
O

]
 1

8
N

ov
 2

01
5

2 LATELLA, MASSINK & DE VINK

notion of process equivalence is defined, providing means to compare systems and to reduce their
representation to enhance subsequent verification.

Extensions of qualitative process languages allow a deterministic as well as stochastic repre-
sentation of time, or the use of discrete probability distributions for resolving (some) forms of non-
determinism. Among them, languages based on stochastic modeling of action duration or delays,
usually referred to as stochastic process algebras, or stochastic process calculi (SPC), are one of
the quantitative enrichments of process languages that have received particular attention. For SPC,
the main aim has been the integration of qualitative descriptions with quantitative ones in a single
mathematical framework, building on the combination of LTS and continuous-time Markov chains
(CTMC). The latter is one of the most successful approaches to modeling and performance analysis
of (computer) systems and networks. An overview of SPC, equivalences and related analysis tech-
niques may, for example, be found in [28, 5, 6]. A common feature of many SPC is that actions
are augmented with the rates of exponentially distributed random variables that characterize their
duration. Alternatively, actions are assumed to be instantaneous, in which case random variables
are used for modeling delays, as in [27]. Although exploiting the same class of distributions, the
models and techniques underlying the definition of the calculi turn out to be significantly different in
many respects. A prominent difference concerns the modeling, by means of the choice operator, of
the race condition arising from the CTMC interpretation of process behaviour, and its relationship to
the issue of transition multiplicity. In the quantitative setting, multiplicities can make a crucial dis-
tinction between processes that are qualitatively equivalent. Several different approaches have been
proposed for handling transition multiplicity. The proposals range from multi-relations [31, 27],
to proved transition systems [45], to LTS with numbered transitions [24, 28], and to unique rate
names [19], just to mention a few.

In [15, 17, 16], Latella, Massink et al. proposed a variant of LTS, called Rate Transition Sys-
tems (RTS). In LTS, a transition is a triple (P, α, P′) where P and α are the source state and the label
of the transition, respectively, while P′ is the target state reached from P via a transition labeled
with α. In RTS, a transition is a triple of the form (P, α,P). The first and second component are
the source state and the label of the transition, as in LTS, while the third component P is a contin-
uation function (or simply a continuation in the sequel), which associates a non-negative real value
with each state P′. A non-zero value for state P′ represents the rate of the exponential distribution
characterizing the average time for the execution of the action represented by α, necessary to reach
P′ from P via the transition. If P maps P′ to 0, then state P′ cannot be reached from P via this
transition. The use of continuations provides a clean and simple solution to the transition multiplic-
ity problem and make RTS particularly suited for SPC semantics. In order to provide a uniform
account of the many SPC proposed in the literature, in previous joint work of the first two authors,
see [18], State-to-Function Labeled Transition Systems (FuTS) have been introduced as a natural
generalization of RTS. In FuTS the codomain of the continuations are arbitrary semirings, rather
than just the non-negative reals. This provides increased flexibility while preserving basic proper-
ties of primitive operations like sum and multiplication. Furthermore, FuTS are equipped with a
rich set of (generic) operations on continuation functions, which makes the framework very well
suited for a compositional definition of the operational semantics of process calculi, including SPC
and models where both non-deterministic behaviour and stochastic delays are model led, like in the
Language of Interactive Markov Chains [27], or even in combination with probabilistic distribu-
tions over behaviours, as in languages for Markov Automata [53], besides calculi for deterministic
(discrete) timed systems [3].

In this paper we extend the work presented in [18] in two directions. The first contribution
concerns the extension of the FuTS framework by introducing the notions of combined FuTS and

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 3

nested FuTS. Given label sets L i and semirings R i, a combined FuTS takes the general format
S = (S , 〈�i 〉

n
i=1) with transition relations �i ⊆ S × L i × FS(S ,R i). In the degenerated

case of n = 1, we speak of a simple FuTS, which coincides with the definition of FuTS proposed
in [18]. Here, FS(S ,R i) is the set of total functions from S to R i with finite support, a sub-
collection of functions also occurring in other work combining coalgebra and quantitative modeling
(see, e.g. [35, 10]). So, a combined FuTS is characterized by the presence of multiple transition
relations which allow for a clean definition of the FuTS semantics of languages which integrate
different aspects of behaviour, such as non-determinism vs. stochastic time, as is characteristic for
Interactive Markov Chains. Using a single transition relation in such a setting requires additional
proof obligations ensuring type correctness of transition elements, in particular the continuations,
as can be seen in [18], for example. Instead, for combined FuTS this is ensured by construction.
The general format of a so-called nested FuTS over the label set L and semirings R1, . . .Rn, for
n > 1, is a tuple S = (S , �) with� ⊆ S × L × FS((. . . FS(S ,R1) . . .) ,Rn). For the purposes
of the present paper, n = 2 suffices; the nested FuTS we consider here are of the form S = (S , �)
with� ⊆ S × L × FS(FS(S ,R1),R2). For nested FuTS the transition relation relates functions
over states, instead of just states, to continuations. This makes it easy, for instance, to represent
non-deterministic choices between probabilistic distributions over behaviours, as it is the case for
(the non-timed fragment of languages for) Markov Automata. Finally, product construction for
combined FuTS and sequencing construction for nested FuTS) can easily be combined giving rise
to what one may call general FuTS (or just FuTS, in the sequel), which prove useful for a concise
definition of the operational semantics of Markov Automata languages.

We will briefly show how the various types of FuTS can be used conveniently for a clean and
compact definition of the fragments of interest of major process languages (more details on this can
be found in [18], which the interested reader is referred to). For combined FuTS, as well as nested
FuTS and general FuTS, we also present FuTS bisimilarity, a general notion of bisimilarity, which
will also be shown to coincide with the standard bisimilarity of the relevant process languages.

The second direction of investigation presented in this paper consists of a coalgebraic treatment
of the various type of FuTS. We will see that a combined FuTS (S , 〈�i 〉

n
i=1) is a coalgebra of the

product of the functors FS(·,R i)L i . For this to work, we need the relations �i to be total and
deterministic for the coalgebraic modeling as a function. This is not a severe restriction at all in
the presence of continuation functions: as we will see, the zero-continuation function, which maps
every state s′ to 0 will be associated to a state s and a transition, in order to indicate that no state s′ is
reachable from s via that transition, in the usual LTS-sense; if s allows a transition to some state s1
as well as to a state s2, then the continuation function will simply yield a non-zero value for s1 and
for s2. Therefore, it is no essential limitation to restrict our investigations to total and deterministic
FuTS. For example, by using Boolean functions, we can model non-deterministic behaviour, as
done in Section 7. Similarly, we see that a (two-level) nested FuTS (S ,�) is a coalgebra of
functor FS(FS(·,R1),R2)L.

Next, the notion of S-bisimilarity that arises from a FuTS S is compared to the coalgebraic
notion of behavioral equivalence. Following a familiar argument, we first establish that the functor
associated with a FuTS S possesses a final coalgebra and therefore has an associated notion of
behavioural equivalence. Then it is shown that behavioural equivalence of the functor coincides
with S-bisimilarity, bisimilarity for FuTS. Pivotal for the proof is the absence of multiplicities in
the FuTS treatment of quantities at the level of the transitions. In fact, quantities are accumulated
in the function values of the continuations and hidden at the higher level of abstraction. It is noted,
in the presence of a final coalgebra for FuTS a more general definition of behavioural equivalence
based on cospans coincides with the one given here, cf. [37, 51]. Finally, it is worth noting that

4 LATELLA, MASSINK & DE VINK

for the coalgebraic treatment itself of FuTS we propose here it is not necessary for the co-domain
of continuations to be semirings; working with monoids would be sufficient. However, the richer
structure of semirings is convenient, if not essential, when using continuations and their operators
in the formal definition of the FuTS semantics of SPC.

Using the bridge established by the FuTS bisimulation vs. coalgebraic behavioral equivalence
correspondence results, we continue by showing for two well-known stochastic process algebras,
viz. Hillston’s PEPA [31] and Hermanns’s IML [27], that the standard notions of PEPA strong
equivalence and IML strong bisimilarity coincide with bisimilarity of the associated proper simple
and combined FuTS, respectively. In turn, this means that the standard notions of strong equivalence
and strong bisimilarity coincide with behavioural equivalence when cast in a coalgebraic framework.

PEPA stands out as one of the prominent Markovian process algebras, and IML specifically
provides separate prefix constructions for actions and for delays. In passing, the issue of transition
multiplicity has to be dealt with. Appropriate lemmas are provided relating the relation-based cu-
mulative treatment with FuTS to the multi-relation-based explicit treatment of PEPA and IML. It is
noted that in our treatment below we restrict to the key-fragment of these two SPC. We furthermore
provide a combined FuTS semantics for a simple language of deterministically-timed processes,
viz. TPC [3] and we show the coincidence between FuTS bisimilarity and the standard equivalence
of timed bisimilarity for the language. Finally, we provide a general FuTS semantics for a process
language which incorporates non-determinism, discrete probabilities and Markovian randomized
delays, i.e. a language for Markov Automata [22, 23]. Also in this case we prove that FuTS bisimu-
lation and Markov Automata bisimulation coincide, adding to the claim that FuTS bisimulation is a
natural notion of process identification for SPC.

Related work on coalgebra includes the papers [56, 35, 50]. Additionally, these papers cover mea-
sures and congruence formats, a topic not touched upon in the present paper. For what concerns
the discrete parts, regarding the correspondence of bisimulations, our work is in line with the ap-
proach of the papers mentioned. In the treatment below the bi-algebraic perspective of SOS and
bisimulation [55] is left implicit. In [41] an approach similar to ours has been applied to the UL-
TraS model, a model which shares some features with simple FuTS. In ULTraS posets are used
instead of semirings, although a monoidal structure is then implicitly assumed when process equiv-
alences are taken into consideration [7]. Furthermore, in [41] a general GSOS specification format
is presented which allows for a ‘syntactic’ treatment of continuations involving so-called weight
functions. An interesting direction of research combining coalgebra and quantities studies various
types of weighted automata, including linear weighted automata, and associated notions of bisi-
mulation and languages, as well as algorithms for these notions [11, 34, 49, 10]. Klin considers
weighted transition systems, labelled transition systems that assign a weight to each transition and
develops Weighted GSOS, a (meta-)syntactic framework for defining well-behaved weighted tran-
sition systems. For commutative monoids the notion of a weighted transition system compares with
our notion of a FuTS, and, when cast in the coalgebraic setting, the associated concept of bisimu-
lation coincides with behavioral equivalence. Weights of transitions of weighted transition systems
are computed by induction on the syntax of process terms and by taking into account the contribu-
tion of all those GSOS rules that are triggered by the relevant (apparent) weights. Note that such a
set of rules is finite. So, in a sense, the computation of the weights is distributed among (the instan-
tiations of) the relevant rules with intermediate results collected (and integrated) in the final weight.
In comparison, as mentioned before, in the FuTS approach, the relevant values are manipulated in
a more direct way, using the higher-order operators on continuation functions, applying them di-
rectly to the continuations in the transitions within the same the semantics definition rules. So, in a

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 5

sense, the FuTS approach is better suited for a compositional definition of the operational seman-
tics of a wide range of process calculi due to the suitable choice of a rich set of generic operations
on continuation functions. In [39] the investigation on the relationship for nested FuTS between
FuTS bisimilarity, and behavioural equivalence, and also coalgebraic bisimilarity is presented. In
particular, it is shown that the functor type involved preserves weak pullbacks when the underlying
semiring satisfies the zero-sum property.

The process languages with stochastic delays we consider in the sequel, involve a multi-way
CSP-like parallel operator; components proceed simultaneously when synchronization on an action
from the synchronization alphabet that indexes the parallel operator is possible. However, here
we do not distinguish between internal and external non-determinism, cf. [33], since an explicit
representation of such a distinction is not relevant for the subject of this paper. A coalgebraic
treatment of this distinction is proposed in [57], which uses a functor for so-called non-deterministic
filter automata, viz. P(P(A)) × [A 7→ Pf (·)] involving partial functions from a set of actions A to
a finite power-set. Via currying, this can be brought into the form FS(·,B)L for L = P(P(A)) ×
A, fitting the format of the functor for the (simple) FuTS considered here. In [12] processes are
interpreted as formal power-series over a semiring in the style of [47]. This allows to compare
testing equivalence for a CSP-style language and bisimulation in a Moore automaton. Note that
the notions of equivalence addressed in this paper, as often in coalgebraic treatments of process
relations, are all strong bisimilarities.

An extended abstract of part of this paper has appeared as [38] where the coalgebraic view of
the FuTS approach and its application to PEPA and IML was originally presented. The workshop
contribution [40] gives an account of bisimulation of FuTS of specific type and provides a general
correspondence result with of FuTS-bisimulation and behavioral equivalence. The present paper
covers these ideas in a structured way, going from simple FuTS to combined FuTS and nested
FuTS. It includes the presentation of the use of combined FuTS for the definition of the semantics of
a language of deterministically timed processes and the treatment of nested FuTS for the integration
of stochastically timed, non-deterministic and probabilistic processes, as in Markov Automata.

For the present paper we assume the reader to have some familiarity with SPC and the application
of FuTS for the definition of their semantics. The reader is referred to [18] for an introduction on
the subject. Furthermore, in [39] an illustrative definition of a simple, qualitative, process calculus
in the FuTS framework is shown. Section 2 provides basic concepts and notation. Simple FuTS
are introduced in Section 3, followed by their coalgebraic treatment in Section 4. Simple FuTS
are illustrated by the case of PEPA in Section 5 which also covers the correspondence of the re-
spective notions of bisimulation. Section 6 introduces combined FuTS as well as their coalgebraic
representation. Sections 7 and 8 treat IML and TPC. For both SPC, semantics based on combined
FuTS are given, and FuTS bisimulation is compared to standard bisimulation. Next, Section 9 in-
troduces nested as well as general FuTS, again tying up with behavior equivalence. In Section 10,
a general FuTS is used for the semantics of a Markov Automata language, for which the notion of
bisimulation is related to the standard one. Section 11 wraps up and discusses closing remarks.

2. Preliminaries

A tuple R = (R, +, 0, ∗, 1) is called a semiring if (R, +, 0) is a commutative monoid with neutral
element 0, (R, ∗, 1) is a monoid with neutral element 1, ∗ distributes over +, and 0 ∗ r = r ∗0 = 0 for
all r ∈ R. As examples of a semiring we will use the Booleans B = { false, true } with disjunction
as sum and conjunction as multiplication, the non-negative reals R>0 with the standard operations,

6 LATELLA, MASSINK & DE VINK

and the powerset construct 2X for a set X with intersection and union as sum and multiplication,
respectively. We will consider, for a semiring R and a function ϕ : X → R, (countable) sums∑

x ∈ X′ ϕ(x) in R, for X′ ⊆ X. For such a sum to exist we require ϕ to be of finite support, i.e.
the support set spt(ϕ) = { x ∈ X | ϕ(x) , 0 } is finite. We use the notation ⊕ϕ to denote the value∑

x∈X ϕ(x) in R.
We use the notation FS(X,R) for the collection of all functions of finite support from the set X

to the semiring R. A construct [x1 7→ r1, . . . , xn 7→ rn], or more compactly [xi 7→ ri]n
i=1, with

xi ∈ X all distinct and ri ∈ R, denotes the mapping that assigns ri to xi, i = 1, . . . , n, and assigns 0
to all x ∈ X \ {x1, . . . , xn}. In particular [], or more precisely []R, is the constant function x 7→ 0 and
DRx = [x 7→ 1] is the Dirac function on R for x ∈ X; in the sequel we will often drop the subscript
or superscript R from []R and DRx , when the semiring R is clear from the context.

For ϕ, ψ ∈ FS(X,R), the function ϕ + ψ is the pointwise sum of ϕ and ψ, i.e. (ϕ + ψ)(x) =

ϕ(x) + ψ(x) ∈ R. Clearly, ϕ + ψ is of finite support as are ϕ and ψ. Slightly more generally,
for functions ϕi ∈ FS(X,R) where i = 1, . . . , n, we define the function

∑ n
i=1 ϕi in FS(X,R) by(∑ n

i=1 ϕi
)
(x) =

∑ n
i=1 ϕi (x). Given an injective operation | : X × X → X, we define ϕ | ψ : X → R, by

(ϕ | ψ)(x) = ϕ(x1) ∗ψ(x2) if x = x1 | x2 for some x1, x2 ∈ X, and (ϕ | ψ)(x) = 0 otherwise. Injectivity
of the operation | guarantees that ϕ |ψ is well-defined. Again, ϕ |ψ is of finite support as are ϕ and ψ.
Such an operation is used in the setting of syntactic processes P that may have the form P1 | P2 for
two processes P1 and P2 and a syntactic operator |.

We recall some basic definitions from coalgebra. See e.g. [46] for more details. For a functor
F : Set→ Set on the category Set of sets and functions, a coalgebra X of F is a set X together with
a mapping α : X → F (X). A homomorphism between two F -coalgebras X = (X, α) and Y = (Y, β)
is a function f : X → Y such that F (f) ◦α = β ◦ f . An F -coalgebra (ΩF , ωF) is called final or
terminal, if there exists, for everyF -coalgebraX = (X, α), a unique homomorphism [[·]]X

F
: (X, α)→

(ΩF , ωF). Two elements x1, x2 of an F -coalgebra X are called behavioural equivalent with respect
to F if [[x1]]X

F
= [[x2]]X

F
, denoted x1 ≈

S
F

x2. In the notation [[·]]X
F

as well as ≈X
F

, the indication of the
specific coalgebra X will be omitted when clear from the context.

A functor F is called accessible if it preserves κ-filtered colimits for some cardinal number κ.
However, in the category Set, we have the following characterization of accessibility: for every
set X and any element ξ ∈ F X, there exists a subset Y ⊆ X with |Y | < κ, such that ξ ∈ F Y . It holds
that a functor has a final coalgebra if it is κ-accessible for some cardinal number κ. See [2, 1].

A number of proofs of results on process languages P in this paper rely on so-called guarded induc-
tion [36]. Typically, constants X, also called process variables, are a syntactical ingredient in these
languages. As usual, if X := P, i.e. the constant X is declared to have the process P as its body,
we require P to be prefix-guarded, i.e. any occurrence of a constant in the body P is in the scope
of a prefix-construct of the language. Guarded induction assumes the existence of a ‘complexity’
function c : P → N such that c(P) = 1 if P is a prefix construct, c(P1 • P2) > max{ c(P1), c(P2) }
for all other syntactic operators • of P, and, in particular, c(X) > c(P) if X := P. For all concrete
process languages treated in this paper such a complexity function can be given straightforwardly.
See [14] for more detail.

For convenience we collect here a number of abbreviations used in the sequel: CTMC and
DTMC for the standard notions of Continuous-Time Markov Chains and Discrete-Time Markov
Chains, respectively; LTS for Labelled Transition System, RTS for Rate Transition System, and
FuTS for Labelled State-to-Function Transition System, the extension of LTS we focus on in this
paper; SPC for Stochastic Process Calculus, referring to the class of process algebras featuring

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 7

a choice construct based on a non-negative exponential distribution; for specific process calculi
and semantic models, viz. PEPA for Performance Evaluation Process Algebra, IMC for Interactive
Markov Chains and IML for the IMC-based language used in this paper, TPC for an example
Timed Process Calculus, MA for Markov Automata and MAL for the MA-based language used in
this paper.

3. Simple State-to-Function Labelled Transition Systems

Below we introduce simple FuTS, i.e. FuTS with a single transition relation, which are sufficient for
the definition of the semantics of many of the relevant stochastic process languages proposed in the
literature (see [18] for details).

Definition 1. A simple FuTS S, in full ‘a simple state-to-function labelled transition system’, over
label set L and semiring R, is a tuple S = (S , �) where� ⊆ S × L × FS(S ,R). •

In the sequel we omit the word ‘simple’ when this cannot give rise to confusion. Similar as for state-

to-state transitions of LTS, for state-to-function transitions of FuTS we write s
`
� v for (s, `, v) ∈

�. Note that a (simple) FuTS over a label set L and a semiring R is reminiscent of a weighted
automaton [21]. However, for a FuTS no output function is given, as is for a weighted automaton.
To stress the relationship between LTS and FuTS we stick to the terminology and notion stemming
from LTS.

For a FuTS S = (S ,�) the set S is called the set of states or the carrier set. We refer to�
as the state-to-function transition relation of S or just as the transition relation. A FuTS S is called

total and deterministic if, for all s ∈ S and ` ∈ L, we have s
`
� v for exactly one v ∈ FS(S ,R). In

such a situation, the state-to-function relation� corresponds to a function S → L → FS(S ,R).
For the remainder of the paper, all FuTS we consider will be total and deterministic. It is noted that
Definition 1 slightly differs in formulation from the one provided in [18].

As an example, Figure 1 displays a simple FuTS over the action setA and the semiring R>0 of
the non-negative real numbers with standard sum and multiplication. The functions v0 to v3 used in
the example have the property that ⊕vi(s) = 1, for i = 0, . . . , 3. More explicitly, we have

s0
a
� [s0 7→

1
2 , s1 7→

1
2] s2

a
� [s2 7→

1
2 , s3 7→

1
2] s3

a
� [s0 7→

1
2 , s3 7→

1
2]

s1
a
� [s1 7→

1
2 , s2 7→

1
2] s1

b
� [s0 7→

1
6 , s2 7→

1
2 , s3 7→

1
3]

si
b
� []B for i = 0, 2, 3

Usually, such a FuTS over R>0, with its weights adding up to 1, is called a (reactive) probabilistic
transition system [24].

Below it will be notationally convenient to consider a (total, deterministic and simple) FuTS as a
tuple (S , θ) with transition function θ : S → L → FS(S ,R), rather than using the form (S ,�)
that occurs more frequently for concrete examples in the literature. We will use the notation with
transition functions θ : S → L → FS(S ,R) to introduce the notion of bisimilarity for a simple
FuTS.

Definition 2. Let S = (S , θ) be a simple FuTS over label set L and semiring R. An equivalence
relation R ⊆ S × S is called an S-bisimulation if R(s1, s2) implies∑

t′∈[t]R θ (s1)(`)(t′) =
∑

t′∈[t]R θ (s2)(`)(t′) (3.1)

8 LATELLA, MASSINK & DE VINK

Figure 1: Simple FuTS for a probabilistic process.

for all t ∈ S and ` ∈ L, where we use the notation [t]R to denote the equivalence class of t ∈ S with
respect to R. Two elements s1, s2 ∈ S are called S-bisimilar if R(s1, s2) for some S-bisimulation R
for S. Notation x1 'S x2. •

Note that the sums in equation (3.1) exist since the functions θ (s1)(`), θ (s2)(`) ∈ FS(S ,R) are of
finite support.

4. Simple FuTS coalgebraically

In this section we will cast simple FuTS in the framework of coalgebras and prove a correspondence
result of FuTS bisimilarity and behavioural equivalence for functors of the form FS(·,R)L on Set,
with R a semiring and L a set of labels.

Definition 3. Let L be a set of labels and R a semiring. Functor UL
R

: Set → Set assigns to a
set X the function space FS(X,R)L of all functions ϕ : L → FS(X,R) and assigns to a mapping
f : X → Y the mappingUL

R
(f) : FS(X,R)L → FS(Y,R)L where

UL
R

(f)(ϕ)(`)(y) =
∑

x ∈ f −1(y) ϕ(`)(x)

for all ϕ ∈ FS(X,R)L, ` ∈ L and y ∈ Y . •

Working in the context of FuTS we include the label set L in the notation for the functorUL
R

. The
functor FS(·,X) itself, forX not necessarily a semiring, but a commutative monoid or field instead,
have been studied frequently in the literature, see e.g. [25, 34, 10].

Again we rely on ϕ(`) ∈ FS(X,R) having a finite support for the sum to exist and for UL
R

to
be well-defined. We observe that for any simple FuTS (S , θ) over L and R we have θ : S → L →
FS(S ,R). Thus (S , θ) can be interpreted as aUL

R
-coalgebra. In the sequel, we will abbreviateUL

R

withU whenever L and R are clear from the context.

As we aim at comparing our notion of bisimilarity for simple FuTS with behavioural equivalence
for the functorUL

R
,U for short, given a set of labels L and a semiring R, we need to check thatU

possesses a final coalgebra. For this, one may adapt the proof for the functor FS(·,M) : Set→ Set
where M is a monoid (rather than a semiring) as sketched in [48, 49] to the setting here. An
alternative route to showing the existence of a final coalgebra is to verify accessibility. We directly
apply the results of [2, Section 5].

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 9

Lemma 1. For a set of labels L and a semiring R, the functorU has a final coalgebra.

Proof. It suffices to show that the Set-functorU is accessible for some suitable cardinal number. In
fact, U is |L|×ω -accessible: Consider ϕ : L → FS(X,R) in the image of the set X. Let Y` ⊆ X
be the support of ϕ(`) ∈ FS(X,R) and Y =

⋃
`∈L Y` ⊆ X. Then ϕ can be seen as an element of

L → FS(Y,R), since outside of Y it holds that ϕ equals 0 ∈ R.

Next we establish, for a given simple FuTS S, the correspondence of S-bisimulation as given by
Definition 2 and behavioural equivalence induced byU. The proof is similar to [10, Theorem 1].

Theorem 2. Let S = (S , θ) be a simple FuTS over the label set L and semiring R, and U as in
Definition 3. Then s1 'S s2 ⇔ s1 ≈U s2, for all s1, s2 ∈ S .

Proof. Let s1, s2 ∈ S . We first prove s1 'S s2 ⇒ s1 ≈U s2. So, assume s1 'S s2. Let R ⊆
S × S be an S-bisimulation with R(s1, s2). Note (S , θ) is aU-coalgebra. We turn the collection of
equivalence classes S/R into aU-coalgebra SR = (S/R, %R) where

%R([s]R)(`)([t]R) =
∑

t′ ∈ [t]R θ(s)(`)(t′)

for s, t ∈ S , and ` ∈ L. This is well-defined since R is an S-bisimulation: if R(s, s′) then we
have

∑
t′∈[t]R θ(s)(`)(t′) =

∑
t′∈[t]R θ(s′)(`)(t′). The canonical mapping εR : S → S/R is a U-

homomorphism: For ` ∈ L and t ∈ S , we have

U(εR)(θ(s))(`)([t]R)
=

∑
t′ ∈ ε−1

R ([t]R) θ(s)(`)(t′) by definition ofU

=
∑

t′ ∈ [t]R θ(s)(`)(t′) by definition of εR

= %R ([s]R)(`)([t]R) by definition of %R

= %R (εR(s))(`)([t]R) by definition of εR

Thus, U(εR) ◦ θ = % ◦ εR, i.e. εR is a U-homomorphism. Therefore, by uniqueness of a final
morphism, we have [[·]]S

U
= [[·]]SR

U
◦ εR. In particular, with respect to S, this implies [[s1]]

U
= [[s2]]

U

since εR(s1) = εR(s2). Thus, s1 ≈U s2.
For the reverse, s1 ≈U s2 ⇒ s1 'S s2, assume s1 ≈U s2, i.e. [[s1]]

U
= [[s2]]

U
, for s1, s2 ∈ S .

Since the map [[·]]
U

: (S , θ) → (Ω, ω) is a U-homomorphism, the equivalence relation RS with
RS (s′, s′′) ⇔ [[s′]]

U
= [[s′′]]

U
is an S-bisimulation: Suppose RS (s′, s′′), i.e. s′ ≈

U
s′′, for some

s′, s′′ ∈ S . Pick ` ∈ L, t ∈ S and assume [[t]]
U

= w ∈ Ω. Since [[·]]
U

: (S , θ) → (Ω, ω) is a
U-homomorphism we have that ω ◦ [[·]]

U
= U([[·]]

U
) ◦ θ. Hence, for s ∈ S , it holds that

ω([[s]]
U

)(`)(w) = U([[·]]
U

)(θ(s))(`)(w) =
∑

t′∈ [[·]]−1
U

(w) θ(s)(`)(t′) (4.1)

Therefore we have ∑
t′ ∈ [t]RS

θ(s′)(`)(t′)

=
∑

t′ ∈ [[·]]−1
U

(w) θ(s′)(`)(t′) by definition of RS and w

= ω([[s′]]
U

)(`)(w) by equation (4.1)
= ω([[s′′]]

U
)(`)(w) s′ ≈

U
s′′ by assumption

=
∑

t′ ∈ [[·]]−1
U

(w) θ(s′′)(`)(t′) by equation (4.1)

=
∑

t′ ∈ [t]RS
θ(s′′)(`)(t′) by definition of RS and w

Thus, if RS (s′, s′′) then
∑

t′ ∈ [t]RS
θ(s′)(`)(t′) =

∑
t′ ∈ [t]RS

θ(s′′)(`)(t′) for all t ∈ S and ` ∈ L, and
therefore RS is an S-bisimulation. Since [[s1]]

U
= [[s2]]

U
, it follows that RS (s1, s2). Thus RS is an

S-bisimulation relating s1 and s2. Conclusion, it holds that s1 'S s2.

10 LATELLA, MASSINK & DE VINK

In the next section we will provide FuTS semantics for a fragment of PEPA, a representative process
language. For this language we will establish that its standard notion of strong equivalence as known
in the literature coincides with the notion of strong bisimulation as induced by the FuTS semantics.
The results of this section form the basis for showing that the standard notions of strong equivalence
on the one hand, and behavioural equivalence on the other hand, are all the same. The notion of
bisimulation for FuTS plays an intermediary role: it bridges between the standard notion of concrete
equivalence and the abstraction notions from coalgebra.

5. FuTS Semantics of PEPA

In this section we consider a significant fragment of the Performance Evaluation Process Algebra,
PEPA, [31] –which we still call PEPA for simplicity– including the parallel operator implementing
the scheme of so-called minimal apparent rates, and provide a FuTS semantics for it. We point out
that there is no technical difficulty in extending the FuTS approach to the full language; we do not
do so here since its treatment does not yield a conceptual benefit for this paper. We present a FuTS
semantics for PEPA in line with [18] and show that PEPA’s notion of equivalence ∼pepa , called
strong equivalence in [31], fits with the bisimilarity induced by the FuTS semantics.

Definition 4. The set Ppepa of PEPA processes is given by the grammar below:

P ::= nil | (a, λ).P | P + P | P BCA P | X

where a ranges over the set of actions A, λ over R>0, A over the set of finite subsets of A, and
X over the set of constants X. •

For X ∈ X, the notation X := P indicates that the process P is associated with the process constant X.
It is required that each occurrence of a process constant in the body P of the definition X := P is
guarded by a prefix.

PEPA, like many other SPC, e.g. [29, 8], couples actions and rates. The prefix (a, λ) of the
process (a, λ).P expresses that the duration of the execution of the action a ∈ A is sampled from
a random variable with an exponential distribution of rate λ. The CSP-like parallel composition
P BCA Q of a process P and a process Q for a set of actions A ⊆ A allows for the independent,
asynchronous execution of actions of P or Q not occurring in the subset A, on the one hand, and
requires the simultaneous, synchronized execution of P and Q for the actions occurring in A, on the
other hand. The transition rules of the FuTS-semantics of the fragment of PEPA we consider here
is given in Figure 2, on which we comment below.

Characteristic for the PEPA language is the choice to model parallel composition, or coopera-
tion in the terminology of PEPA, scaled by the minimum of the so-called apparent rates. By doing
so, PEPA’s strong equivalence becomes a congruence [31]. Informally, the apparent rate ra(P) of an
action a for a process P is the sum of the rates of all possible a-executions for P. The apparent rate
ra(P) can easily be defined recursively on the structure of P (see [31, Definition 3.3.1] for details).
Accordingly, in the sequel we will refer to ra(P) as the ‘syntactic’ apparent rate. When consider-
ing the parallel composition P BCA Q, with cooperation set A, an action a occurring in A has to be
performed by both P and Q. The rate of such an execution is governed by the slowest of the two
processes, on average, in this respect. (One cannot take the slowest process per sample, because
such an operation cannot be expressed as an exponential distribution in general.) Thus ra(P BCA Q)
for a ∈ A is the minimum min{ ra(P), ra(Q) }. Now, if P schedules an execution of a with rate r1
and Q schedules a transition of a with rate r2, in the minimal apparent rate scheme the combined

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 11

(NIL)
nil

δa
�pepa []R>0

(RAPF1)
(a, λ).P

δa
�pepa [P 7→ λ]

(RAPF2)
b , a

(a, λ).P
δb
�pepa []R>0

(CHO) P
δa
�pepa P Q

δa
�pepa Q

P + Q
δa
�pepa P + Q

(CNS) P
δa
�pepa P X := P

X
δa
�pepa P

(PAR1)
P

δa
�pepa P Q

δa
�pepa Q a < A

P BCA Q
δa
�pepa (P BCA DQ) + (DP BCA Q)

(PAR2)
P

δa
�pepa P Q

δa
�pepa Q a ∈ A

P BCA Q
δa
�pepa arf(P ,Q) · (P BCA Q)

Figure 2: FuTS Transition Deduction System for PEPA.

execution yields the action a with rate r1 · r2 ·arf(P,Q). Here, the ‘syntactic’ scaling factor arf(P,Q),
the apparent rate factor, is defined by

arf(P,Q) =
min{ ra(P), ra(Q) }

ra(P) · ra(Q)

assuming ra(P), ra(Q) > 0, otherwise arf(P,Q) = 0. Organizing the product r1 · r2 · arf(P,Q)
differently as r1/ra(P) · r2/ra(Q) · min{ ra(P), ra(Q) } we see that for P BCA Q the minimum of the
apparent rates min{ ra(P), ra(Q) } is adjusted by the relative probabilities r1/ra(P) and r2/ra(Q) for
executing a by P and Q, respectively.

The FuTS we consider for the semantics of PEPA has been proposed originally in [18]. The
transition relation is given by the rules in Figure 2. The set of labels involved is ∆A defined by
∆A = { δa | a ∈ A }. In the context of the FuTS semantics considered in this paper, we convention-
ally use the special symbol δ for denoting that there is a random delay, with an negative exponential
distribution, associated with the action. The underlying semiring for the FuTS for PEPA is the
semiring R>0 of non-negative reals.

Definition 5. The simple FuTS Spepa = (Ppepa,�pepa) over ∆A and R>0 has as transition relation
the smallest relation satisfying the axioms and rules of Figure 2. •

We discuss the rules of Spepa. The FuTS semantics provides nil
δa
�pepa []R>0 , for every action a,

with []R>0 the 0-function of R>0. Therefore we have θpepa(nil)(δa)(P′) = 0 for every a ∈ A and
P′ ∈ Ppepa, or, in standard terminology, nil has no transition. For the rated action prefix (a, λ) we
distinguish two cases: (i) execution of the prefix in rule (RAPF1); (ii) no execution of the prefix
in rule (RAPF2). In the case of rule (RAPF1) the label δa signifies that the transition involves the
execution of the action a. The continuation [P 7→ λ] is the function that assigns the rate λ to the
process P. All other processes are assigned 0, i.e. the zero-element of the semiring R>0. In the
second case, rule (RAPF2), for labels δb with b , a, we do have a state-to-function transition,
but it is a degenerate one. The two rules for the prefix, in particular having the ‘null-continuation’
rule (RAPF2), support the unified treatment of the choice operator in rule (CHO) and the parallel
operator in rules (PAR1) and (PAR2). The treatment of constants is as usual.

The semantics of the choice operator is defined by rule (CHO), where the continuation of
process P + Q is given by direct composition—using pointwise sum—of the continuation P of P
and the continuation Q of Q.

Regarding the parallel operator BCA , with respect to some cooperation set A ⊆ A there are two
rules. Now the distinction is between interleaving and synchronization. In the case of a label δa
involving an action a not in the subset A, either the P-operand or the Q-operand of P BCA Q makes
progress. For example, the effect of the pattern P BCA DQ is that the value P(P′) · 1 is assigned to

12 LATELLA, MASSINK & DE VINK

(RAPF)
(a, λ).P

a,λ
−−−→pepa P

(CHO1) P
a,λ
−−−→pepa P′

P + Q
a,λ
−−−→pepa P′

(CHO2) Q
a,λ
−−−→pepa Q′

P + Q
a,λ
−−−→pepa P′

(PAR1a)
P

a,λ
−−−→pepa P′ a < A

P BCA Q
a,λ
−−−→pepa P′ BCA Q

(PAR1b)
Q

a,λ
−−−→pepa Q′ a < A

P BCA Q
a,λ
−−−→pepa P BCA Q′

(CNS) P
a,λ
−−−→pepa P′ X := P

X
a,λ
−−−→pepa P′

(PAR2) P
a,λ1
−−−−→ P′ Q

a,λ2
−−−−→ Q′ a ∈ A

P BCA Q
a,λ
−−−→pepa P′ BCA Q′

λ = arf(P,Q)·λ1·λ2

Figure 3: Standard Transition Deduction System for PEPA.

a process P′ BCA Q, the value P(P′) · 0 = 0 to a process P′ BCA Q′ for all Q′ , Q, and the value 0 for
a process not of the form P′ BCA Q′. Note that the syntactic constructor BCA : Ppepa × Ppepa → Ppepa
is clearly injective; so, for all functions P and Q in FS(Ppepa,R>0), we can define P BCA Q, as
described in Section 2. Here, as in all other rules, the right-hand sides of the transitions only involve
functions in FS(Ppepa,R>0) and operators on them.

For the synchronization case of the parallel construct, assuming P
δa
�pepa P and Q

δa
�pepa Q,

the ‘semantic’ scaling factor arf(P ,Q) is applied to P BCA Q. This scaling factor for continuation
in FS(Ppepa,R>0), is, very much similar to its ‘syntactic’ counterpart, given by

arf(P , Q) =
min { ⊕P , ⊕Q }
⊕P · ⊕Q

provided ⊕P ,⊕Q > 0, and arf(P , Q) = 0 otherwise. For a process R = R1 BCA R2 we obtain the
value arf(P , Q) · (P BCA Q)(R1 BCA R2) = arf(P , Q) ·P(R1) ·Q(R2).

The following lemma establishes the relationship between the ‘syntactic’ and ‘semantic’ ap-
parent rate factors defined on processes and on continuation functions, respectively.

Lemma 3. Let P ∈ Ppepa and a ∈ A. Suppose P
δa
�pepa P . Then ra(P) = ⊕P .

The proof of the lemma is straightforward (relying on the obvious definition of ra(P), omitted above,
which can be found in [31]). It is also easy to prove, by guarded induction, that the FuTS Spepa given
by Definition 5 is total and deterministic.

Lemma 4. The FuTS Spepa is total and deterministic.

In view of the lemma it is justified to write Spepa = (Ppepa, θpepa). We use the abbreviated nota-
tion 'pepa for denoting 'Spepa , the bisimulation equivalence induced by Spepa.

Example To illustrate the ease to deal with multiplicities in the FuTS semantics, consider the
PEPA processes P1 = (a, λ).P and P2 = (a, λ).P + (a, λ).P for some P ∈ Ppepa. We have that

P1
δa
�pepa [P 7→ λ] by rule (RAPF1), but P2

δa
�pepa [P 7→ 2λ] by rule (RAPF1) and rule (CHO).

The latter makes us to compute [P 7→ λ] + [P 7→ λ], which equals [P 7→ 2λ]. Thus, in particular
we have P1 ;Spepa P2. Intuitively it is clear that, in general we cannot have P + P ∼ P for any
reasonable quantitative process equivalence ∼ in the Markovian setting. Having twice as many a-
labelled transitions, the average number for (a, λ).P+ (a, λ).P of executing the action a per time unit
is double the average of executing a for (a, λ).P. •

The standard operational semantics of PEPA [31, 32] is given in Figure 3. The transition relation
−→pepa ⊆ Ppepa × (A × R>0) × Ppepa is the least relation satisfying the rules. For an appropriate

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 13

treatment of the rates, the transition relation is considered as a multi-transition system, where also

the number of possible derivations of a transition P
a,λ
−−−→pepa P′ matters. We stress that such

bookkeeping is not needed in the FuTS-approach. In rule (PAR2) we use the ‘syntactic’ apparent
rate factor for PEPA processes.

The so-called total conditional transition rate q[P,C, a] of a PEPA-process [31, 32] for a subset
of processes C ⊆ Ppepa and a ∈ A is given by

q[P,C, a] =
∑

Q ∈C
∑
{| λ | P

a,λ
−−−→pepa Q |}.

Here, {| P
a,λ
−−−→pepa Q |} is the multiset of transitions P

a,λ
−−−→pepa Q and {| λ | P

a,λ
−−−→pepa Q |} is the

multiset of all λ’s involved. The multiplicity of P
a,λ
−−−→pepa Q is to be interpreted as the number of

different ways the transition can be derived using the rules of Figure 3. We are now ready to define
PEPA’s notion of strong equivalence.

Definition 6. An equivalence relation R ⊆ Ppepa × Ppepa is called a strong equivalence if

q[P1, [Q]R, a] = q[P2, [Q]R, a]

for all P1, P2 ∈ Ppepa such that R(P1, P2), all Q ∈ Ppepa and all a ∈ A. Two processes P1, P2 ∈ Ppepa
are strongly equivalent if R(P1, P2) for a strong equivalence R, notation P1 ∼pepa P2. •

The next lemma couples, for a PEPA-process P, an action a and a function P ∈ FS(Ppepa,R>0),
the evaluation P(P′) with respect to the FuTS-semantics to the cumulative rate for P of reaching P′

by a transition involving the label a in the standard operational semantics. The lemma is pivotal in
relating FuTS bisimulation and standard bisimulation for PEPA in Theorem 6 below.

Lemma 5. Let P ∈ Ppepa and a ∈ A. Suppose P
δa
�pepa P . The following holds: P(P′) =

∑
{| λ |

P
a,λ
−−−→pepa P′ |} for all P′ ∈ Ppepa.

Proof. Guarded induction on P. We only treat the cases for the parallel composition. Note, the
operation BCA : Ppepa×Ppepa → Ppepa with BCA (P1, P2) = P1 BCA P2 is injective. Recall, for P1,P2 ∈

FS(Ppepa,R>0), we have (P1 BCA P2)(P1 BCA P2) = P1(P1) ·P2(P2).

Suppose a < A. Assume P1
δa
�pepa P1, P2

δa
�pepa P2, P1 BCA P2

δa
�pepa P . We distinguish

three cases.
Case (I), P′ = P′1 BCA P2, P′1 , P1. Then we have∑

{| λ | P1 BCA P2
a,λ
−−−→pepa P′ |}

=
∑
{| λ | P1

a,λ
−−−→pepa P′1 |} by rule (PAR1a)

= P1(P′1) by the induction hypothesis
= P1(P′1) · DP2(P2) since DP2(P2) = 1
= (P1 BCA DP2)(P′1 BCA P2) + (DP1 BCA P2)(P′1 BCA P2)

definition BCA on FS(Ppepa,R>0), DP1(P′1) = 0
= P(P′) by rule (PAR1)

Case (II), P′ = P1 BCA P′2, P′2 , P2: similar.

14 LATELLA, MASSINK & DE VINK

Case (III), P′ = P1 BCA P2. Then we have:∑
{| λ | P1 BCA P2

a,λ
−−−→pepa P′ |}

=
(∑
{| λ | P1

a,λ
−−−→pepa P1 |}

)
+

(∑
{| λ | P2

a,λ
−−−→pepa P2 |}

)
by rules (PAR1a) and (PAR1b)

= P1(P1) + P2(P2) by the induction hypothesis
= (P1 BCA DP2)(P1 BCA P2) + (DP1 BCA P2)(P1 BCA P2)

definition BCA on FS(Ppepa,R>0), DP1(P1), DP2(P2) = 1
= P(P′) again by rule (PAR1)

Suppose a ∈ A. Assume P1
δa
�pepa P1, P2

δa
�pepa P2, P1 BCA P2

δa
�pepa P . Without loss of

generality, P′ = P′1 BCA P′2 for suitable P′1, P
′
2 ∈ Ppepa.

∑
{| λ | P1 BCA P2

a,λ
−−−→pepa P′ |}

=
∑
{| arf(P1, P2) · λ1 · λ2 | P1

a,λ1
−−−−→pepa P′1, P2

a,λ2
−−−−→pepa P′2 |} by rule (PAR2)

= arf(P1, P2) ·
(∑
{| λ1 | P1

a,λ1
−−−−→pepa P′1 |}

)
·
(∑
{| λ2 | P2

a,λ2
−−−−→pepa P′2 |}

)
by distributivity

= arf(P1, P2) ·P1(P′1) ·P2(P′2) by the induction hypothesis
= arf(P1,P2) ·P1(P′1) ·P2(P′2) by Lemma 3
= arf(P1,P2) · (P1 BCA P2)(P′1 BCA P′2) definition BCA on FS(Ppepa,R>0)
= P(P′) by rule (PAR2)

The other cases are simpler and omitted here.

With the lemma in place we can prove the following correspondence result for Spepa-bisimilarity
and strong equivalence as given by Definition 6.

Theorem 6. For PEPA-processes P1, P2 ∈ Ppepa, it holds that P1 'pepa P2 iff P1 ∼pepa P2.

Proof. Let R be an equivalence relation on Ppepa. Choose P,Q ∈ Ppepa and a ∈ A. Suppose

P
δa
�pepa P . Thus θpepa(P)(δa) = P . We have

q[P, [Q]R, a] =
∑

Q′ ∈ [Q]R

∑
{| λ | P

a,λ
−−−→pepa Q′ |} by definition q[P, [Q]R, a]

=
∑

Q′ ∈ [Q]R P(Q′) by Lemma 5
=

∑
Q′ ∈ [Q]R θpepa(P)(a)(Q′) by definition θpepa

Therefore, for PEPA-processes P1 and P2 it holds that q[P1, [Q]R, a] = q[P2, [Q]R, a] for all Q ∈
Ppepa, a ∈ A iff

∑
Q′∈[Q]R θpepa(P1)(a)(Q′) =

∑
Q′∈[Q]R θpepa(P2)(a)(Q′) for all Q ∈ Ppepa, a ∈ A.

Thus, the equivalence relation R is a strong equivalence (Definition 6) iff R is an Spepa-bisimulation
(Definition 2), from which the theorem follows.

By the theorem the FuTS semantics for PEPA of Definition 5 is correct with respect to PEPA’s
standard semantics of Figure 3. However, because of the use of continuation functions, the former
does not involve implicit counting, decorations or multisets. From the general results on FuTS of the
previous section, we also obtain a coalgebraic semantics for PEPA for which behavioral equivalence
coincides with strong equivalence as defined in [31].

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 15

6. Combined FuTS

In the sequel of this article we will deal with a number of calculi and models that mix non-
deterministic behaviour with stochastic or deterministic time or with probabilistic behaviour. In
this section, we introduce the notion of a combined FuTS, which allows for a clean definition
of the semantics of calculi where different aspects of behaviour are integrated in an orthogonal
way. Prominent examples of such calculi are IML, a language for IMC where non-determinism
is integrated with stochastic continuous delays (see Section 7) and TPC, a language where where
non-determinism is integrated with deterministic discrete delays (see Section 8).

Definition 7. A combined FuTS S, in full ‘a combined state-to-function labeled transition system’,
over a number of label sets L i and semirings R i, i = 1, . . . , n, is a tuple S = (S , 〈�i 〉

n
i=1) with set

of states S and such that�i ⊆ S × L i × FS(S ,R i), for i = 1, . . . , n. •

Combined FuTS of Definition 7 extend the simple ones of Definition 1. Note, a combined FuTS is
defined over a number of label sets and semirings, and, accordingly, gives rise to the same number of
transition relations. Thus, a combined FuTS can be seen as a multi-dimensional simple FuTS. The
underlying idea is that the behaviour model given by a combined FuTS is such that one can identify
different types of labels, assuming disjoint label sets L1, . . . , Ln. Then, the continuation function
of a transition labeled with an element of L i is taken from FS(S ,R i), expressing the association
of the label set Li with the semiring Ri.

For example, in the case of IML, with set of processes Piml, both non-deterministic behaviour
and stochastically-timed behaviour are treated. Furthermore, action execution is intended to be
instantaneous, while stochastic time is characterized by the rates of negative exponential distribu-
tions. Consequently, it is convenient to use two label sets, namely a set of actions A and a single-
ton set ∆ = {δ } where the symbol δ is used as label to indicate that the transition involves some
exponentially distributed delay. The relevant semirings will be B, used for modeling the purely
non-deterministic aspects of behaviour, and R>0, used for the rates characterizing the stochastic as-
pects of behaviour, as in the case of PEPA, but here without any association of delay and actions.
Consequently, for IML there will be two transition relations: �1 ⊆ Piml × A × FS(Piml,B) mod-
eling non-deterministic behaviour, and�2 ⊆ Piml × ∆ × FS(Piml,R>0) modeling stochastic-time
behaviour.

It is worth pointing out here that one could use an alternative approach instead of taking resort
to combined FuTS, namely one based on disjoint unions of label sets, and respectively, continuation
functions. Letting

⊕n
i=1 Xi denote the disjoint union of sets Xi, i = 1, . . . , n, one could use a single

transition relation

� ⊆ S ×
n⊕

i=1

L i ×

n⊕
i=1

FS(S ,R i)

satisfying the additional property that v ∈ FS(S ,R i) if ` ∈ L i, for all transitions s
`
� v. As a

matter of fact, this approach based on disjoint unions and a single transition relation has been used
in [18]. Technically, the two approaches are equivalent. On the other hand, in the definition with
a single transition relation, type compatibility between labels and continuation functions yields an
additional proof obligation for the well-definedness the definition of the operational semantics for
every specific process calculus (the interested reader is referred to [18] for details). The use of
an approach with multiple transition relations instead, automatically guarantees type compatibility,
viz. by definition. Furthermore, the approach based on disjoint unions appears less amenable to a
category-theoretical treatment. For the reasons mentioned we stick to the format of Definition 7 in
this paper.

16 LATELLA, MASSINK & DE VINK

As we will see, for the purposes of the present paper it is sufficient to consider only total
and deterministic combined FuTS, i.e. those where every transition relation�i is a total function.
Consequently, it will be notationally convenient to consider a combined FuTS S = (S , 〈�i 〉

n
i=1)

as a tuple (S , 〈 θi 〉
n
i=1) with transition functions θi : S → L i → FS(S ,R i), for i = 1, . . . , n,

rather than using the form (S , 〈�i 〉
n
i=1) that occurs more frequently for concrete examples in the

literature. In the sequel, we occasionally omit the qualification ‘combined’ for a combined FuTS
when this cannot cause confusion. All relevant definitions and results presented in Sections 3 and 4
can be extended straightforwardly to combined FuTS. We refer to [39] for details on the extension
of definitions, results and their proofs. Here we recall the most important ones.

Definition 8. For a combined FuTS S = (S , 〈 θi 〉
n
i=1), an S-bisimulation is an equivalence relation

R ⊆ S × S such that R(s1, s2) implies∑
t′∈[t]R θi (s1)(`)(t′) =

∑
t′∈[t]R θi (s2)(`)(t′)

for all t ∈ S and ` ∈ L i, i = 1, . . . , n. Two elements s1, s2 ∈ S are called S-bisimilar for the
combined FuTS S if R(s1, s2) for some S-bisimulation R for S. Notation s1 'S s2.

Working with total and deterministic FuTS, we can interpret a combined FuTS S = (S , 〈 θi 〉
n
i=1)

over the label sets L i and semirings R i, i = 1, . . . , n, as a product θ1× · · · × θn : S →
∏n

i=1 (L i →

FS(S ,R i)) of functions θi : S → L i → FS(S ,R i). To push this idea a bit further, we want to
consider the combined FuTS S = (S, 〈 θi 〉

n
i=1) as a coalgebra of a suitable product functor on sets.

Definition 9. Let L = 〈L1, . . . ,Ln〉 be an n-tuple of label sets and R = 〈R1, . . . ,Rn〉 be an n-tuple
of semirings. The functorVL

R on Set is defined byVL
R =

∏n
i=1 FS(· ,R i)L i .

Referring to Definition 3, we have FS(· ,R i)L i = U
L i
R i

, for i = 1, . . . , n. Therefore, VL
R =∏n

i=1 U
L i
R i

. We note that any combined FuTS S = (S , 〈 θi 〉
n
i=1) over label sets Li and semirings Ri,

for i = 1, . . . , n, is in fact a VL
R -coalgebra. Reversely, every VL

R -coalgebra, for L = 〈L1, . . . ,Ln〉

and R = 〈R1, . . . ,Rn〉, corresponds to a combined FuTS over the label sets Li and semirings Ri,
for i = 1, . . . , n. Below we shall use V as an abbreviation for VL

R whenever L = 〈L1, . . . ,Ln〉 and
R = 〈R1, . . . ,Rn〉 are clear from the context. Similarly, for the sake of readability, we shall often
abbreviateUL i

R i
byUi.

As product of accessible functors, the functor V of Definition 9 is accessible and possesses a final
coalgebra, (Ω, ω) say. So, we can speak of the behavioural equivalence ≈

V
on any V-coalgebra

or, equivalently, of any combined FuTS S. Moreover, writing [[·]]
V

for the final morphism of a
V-coalgebra S into (Ω, ω), we have

[[·]]
V

= [[·]]
U1
× · · · × [[·]]

Un

Next we establish for a given FuTS S over L1, . . . ,Ln and R1 . . . ,Rn the correspondence of S-
bisimulation 'S and the behavioural equivalence ≈

V
for the functor V. Thus, one may argue,

Definition 8 provides an explicit description of behavioral equivalence. The proof of the theorem
below for combined FuTS is an adaptation of the proof of Theorem 2 for simple ones (see [39] for
details).

Theorem 7. Let S = (S , 〈 θi 〉
n
i=1) be a FuTS over the label sets L i and semirings R i , i = 1, . . . , n,

andV as in Definition 9. Then s1 'S s2 ⇔ s1 ≈V s2, for all s1, s2 ∈ S .

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 17

In the sequel of the paper we will consider combined FuTS, as well as a so-called general FuTS, for
concrete process languages. We will show for each process language that the notion of bisimulation
of its FuTS coincides with the notion of strong bisimulation that is associated in the literature with
the language. Consequently, as a corollary of Theorem 7, we obtain that the notions of strong
bisimulations align with behavioral equivalence.

7. FuTS Semantics of IML

In this section we provide a FuTS semantics for a relevant part of IML, the language of Interactive
Markov Chains [27], IMC for short, and compare the notion of bisimulation induced by its FuTS to
the standard notion of bisimulation based on the SOS-semantics as reported in the literature.

IMC are automata that combine two types of transitions: interactive transitions that involve
the execution of actions, and Markovian transitions that represent the progress of time governed by
exponential distributions. As a consequence, IMC embody both non-deterministic behaviour and
stochastic, i.e. stochastically timed, behaviour. System analysis using IMC proves to be a powerful
approach because of the orthogonality of qualitative and quantitative dynamics, their logical under-
pinning and tool support, cf. [9, 30, 13]. Such orthogonality makes it natural to use a combined
FuTS for the semantics of IML. A number of behavioural equivalences, both strong and weak,
are available for IMC [22]. In our treatment here, we discuss a sublanguage of IML, which we
still call IML for simplicity. In particular we do not deal with internal τ-steps, since we focus on
strong bisimilarity here. The FuTS semantics we consider in the sequel has been originally proposed
in [18].

Definition 10. The set Piml of IML processes is given by the grammar

P ::= nil | a.P | λ.P | P + P | P ‖A P | X

where a ranges over the set of actionsA, λ over R>0, A over the set of finite subsets ofA and X over
the set of constants X. •

We assume the same notation and (action) guardedness requirements for constant definitions and
usage as in Section 5 for PEPA.

In line with the discussion above, in IML there are separate prefix constructions for actions a.P
(meaning that the process instantaneously performs action a and then behaves like P) and for time-
delays λ.P (meaning that the process is delayed for a period of time governed by a random variable
with negative exponential distribution with rate λ, and then behaves like P). No restriction is im-
posed on the alternative and parallel composition of processes. For example, in IML, we have the
process a.λ.nil + µ.b.nil. With respect to the FuTS semantics to be defined below, we will see that
this process admits both a non-trivial interactive transition and a non-trivial Markovian transition,

a.λ.nil + µ.b.nil
a
�1 [λ.nil 7→ true] + []B = [λ.nil 7→ true]

a.λ.nil + µ.b.nil
δ
�2 []R>0 + [b.nil 7→ µ] = [b.nil 7→ µ]

leading to an interactive continuation and a Markovian continuation, respectively.

Definition 11. The FuTS semantics of Piml is given by the FuTS Siml = (Piml,�1,�2), a com-
bined FuTS over the label setsA and ∆ = {δ } and the semirings B and R>0 with transition relations
�1 ⊆ Piml × A × FS(Piml,B) and�2 ⊆ Piml × ∆ × FS(Piml,R>0) defined as the least relations
satisfying the rules of Figure 4. •

18 LATELLA, MASSINK & DE VINK

(NIL1) a ∈ A
nil

a
�1 []B

(NIL2)
nil

δ
�2 []R>0

(RPF1) a ∈ A
λ.P

a
�1 []B

(APF1)
a.P

a
�1 [P 7→ true]

(APF2)
b , a

a.P
b
�1 []B

(APF3)
a.P

δ
�2 []R>0

(RPF2)
λ.P

δ
�2 [P 7→ λ]

(CHO1) P
a
�1 P Q

a
�1 Q

P + Q
a
�1 P + Q

(CHO2) P
δ
�2 P Q

δ
�2 Q

P + Q
δ
�2 P + Q

(PAR1) P
a
�1 P Q

a
�1 Q a < A

P ‖A Q
a
�1 (P ‖A DQ) + (DP ‖A Q)

(PAR2) P
a
�1 P Q

a
�1 Q a ∈ A

P ‖A Q
a
�1 P ‖A Q

(PAR3) P
δ
�2 P Q

δ
�2 Q δ < A

P ‖A Q
δ
�2 (P ‖A DQ) + (DP ‖A Q)

(CON1) P
a
�1 P X := P

X
a
�1 P

(CON2) P
δ
�2 P X := P

X
δ
�2 P

Figure 4: FuTS Transition Deduction System for IML.

Actions a ∈ A decorate �1, the special symbol δ, with δ for delay, decorates �2. Note that
rule (APF3) and rule (RPF1) involve the null-functions of R>0 and of B, respectively, to express that
a process a.P does not trigger a delay and a process λ.P does not execute any action. In Figure 4
and in the rest of this section we use P ,Q ∈ FS(Piml,B) as typical interactive continuations, and
P,Q ∈ FS(Piml,R>0) as typical Markovian continuations.

For the parallel construct ‖A, interleaving applies both for non-synchronized actions a < A as
well as for delays. Therefore we have rule (PAR1) pertaining to�1 and rule (PAR3) pertaining
to �2. The same holds for non-deterministic choice, rules (CHO1) and (CHO2), and constants,
rules (CON1) and (CON2). Finally, IML does not provide synchronization of delays in the parallel
construct. Hence, rule (PAR2) only concerns the transition relation�1 capturing synchronization
on actions. We recall that for all R ∈ Piml, on the one hand,

(P ‖A Q)(R) =

{
P(R1) ∧Q(R2) if R = R1 ‖A R2 for some R1,R2 ∈ Piml

false otherwise

and, on the other hand,

(P ‖A Q)(R) =

{
P(R1) · Q(R2) if R = R1 ‖A R2 for some R1,R2 ∈ Piml

0 otherwise

where · is the product in R>0.

Example For a.(λ.nil + b.nil), µ.a.nil ∈ Piml and A = {a} we have

a.(λ.nil + b.nil) ‖A µ.a.nil
δ
�2 []R>0 ‖A D

µ.a.nil + Da.(λ.nil+b.nil) ‖A [a.nil 7→ µ]

= []R>0 ‖A [µ.a.nil 7→ 1] + [a.(λ.nil + b.nil) 7→ 1] ‖A [a.nil 7→ µ]

= [a.(λ.nil + b.nil) ‖A a.nil 7→ µ]

For X := a.λ.b.X and Y := a.µ.b.Y , and A = {a, b} we have

X ‖A Y
a
�1 [λ.b.X ‖A µ.b.Y 7→ true] λ.b.X ‖A b.Y

δ
�2 [b.X ‖A b.Y 7→ λ]

b.X ‖A b.Y
b
�1 [X ‖A Y 7→ true] b.X ‖A µ.b.Y

δ
�2 [b.X ‖A b.Y 7→ µ]

λ.b.X ‖A µ.b.Y
δ
�2 [b.X ‖A µ.b.Y 7→ λ, λ.b.X ‖A b.Y 7→ µ]

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 19

(APF)
a.P

a
−−→ P

(CHO1) P
a
−−→ R

P + Q
a
−−→ R

(CHO2) Q
a
−−→ R

P + Q
a
−−→ R

(CON1) P
a
−−→ Q X := P

X
a
−−→ Q

(PAR1a) P
a
−−→ P′ a < A

P ‖A Q
a
−−→ , P′ ‖A Q

(PAR1b) Q
a
−−→ Q′ a < A

P ‖A Q
a
−−→ P ‖A Q′

(PAR2) P
a
−−→ P′ Q

a
−−→ Q′ a ∈ A

P ‖A Q
a
−−→ P′ ‖A Q′

(RPF)
λ.P

λ
d P

(CHO3) P
λ
d R

P + Q
λ
d R

(CHO4) Q
λ
d R

P + Q
λ
d R

(CON2) P
λ
d Q X := P

X
λ
d Q

(PAR1c) P
λ
d P′

P ‖A Q
λ
d P′ ‖A Q

(PAR1d) Q
λ
d Q′

P ‖A Q
λ
d P ‖A Q′

Figure 5: Standard Transition Deduction System for IML.

It is not difficult to verify that Siml is a total and deterministic combined FuTS.

Lemma 8. The FuTS Siml is total and deterministic.

Below we use Siml = (Piml, θ1, θ2) and write 'iml rather than 'Siml , the bisimulation equivalence
induced by Siml.

The standard SOS semantics of IML [27] is given in Figure 5 involving the transition relations

−→ ⊆ Piml ×A × Piml and d ⊆ Piml × R>0 × Piml

Below we will use functions T and R based on −→ andd, cf. [30]. We have T : Piml×A×2Piml → B

given by T(P, a,C) = true if the set { P′ ∈ C | P
a
−−→ P′ } is non-empty, for all P ∈ Piml, a ∈ A and

any subset C ⊆ Piml. For R : Piml × Piml → R>0 we put R(P, P′) =
∑
{| λ | P

λ
d P′ |}. Here, as

common for probabilistic and stochastic process algebras, the comprehension is over the multiset of
transitions leading from P to P′ with label λ. Alternatively, one could define an explicit cnt -function,

cnt : Piml × R>0 × Piml → R>0 returning the number of multiplicities of a transition P
λ
d P′, or

other means of decorations. We extend R to Piml × 2Piml by R(P,C) =
∑

P′ ∈C
∑
{| λ | P

λ
d P′ |}, for

P ∈ Piml, C ⊆ Piml .
For IML we have the following notion of strong bisimulation [27, 30] that we will compare

with the notion of bisimulation associated with the FuTS Siml.

Definition 12. An equivalence relation R ⊆ Piml × Piml is called a strong bisimulation for IML if,
for all P1, P2 ∈ Piml such that R(P1, P2), it holds that

• for all a ∈ A and Q ∈ Piml: T(P1, a, [Q]R) ⇐⇒ T(P2, a, [Q]R)
• for all Q ∈ Piml: R(P1, [Q]R) = R(P2, [Q]R).

Two processes P1, P2 ∈ Piml are called strongly bisimilar if R(P1, P2) for a strong bisimulation R
for IML, notation P1 ∼iml P2. •

To establish the correspondence of FuTS bisimilarity 'iml for Siml as given by Definition 11 and
strong bisimilarity ∼iml for IML as given by Definition 12, we need to connect the state-to-function
relation�1 and the transition relation −→ as well as the state-to-function relation�2 and the tran-
sition relationd .

20 LATELLA, MASSINK & DE VINK

Lemma 9.
(a) Let P ∈ Piml and a ∈ A. If P

a
�1 P then P

a
−−→ P′ ⇐⇒ P(P′) = true.

(b) Let P ∈ Piml . If P
δ
�2 P then

∑
{| λ | P

λ
d P′ |} = P(P′).

Proof. (a) Guarded induction. Let a ∈ A. We treat two typical cases, viz. λ.P and P1 ‖A P2 for
a < A.

Case λ.P. Suppose λ.P
a
�1 P . Then we have P = []B. We have λ.P

a
−−→ P′ for no P′ ∈ Piml,

as no transition is provided in −→, and we have P(P′) = false by definition of []B, for all P′ ∈ Piml.
Case P1 ‖A P2, a < A. Suppose P1

a
�1 P1, P2

a
�1 P2 and P1 ‖A P2

a
�1 P . Then it holds

that P = (P1 ‖A DP2) + (DP1 ‖A P2). Recall, for Q ∈ Piml, by definition of DQ ∈ FS(Piml,B),
DQ(Q′) = true iff Q′ = Q, for Q′ ∈ Piml. We have

P1 ‖A P2
a
−−→ P′

⇔ (P1
a
−−→ P′1 ∧ P′ = P′1 ‖A P2) ∨ (P2

a
−−→ P′2 ∧ P′ = P1 ‖A P′2)

by analysis of −→
⇔ (P1(P′1) = true ∧ P′ = P′1 ‖A P2) ∨ (P2(P′2) = true ∧ P′ = P1 ‖A P′2)

by the induction hypothesis
⇔ (P1(P′1) · DP2(P2) = true ∧ P′ = P′1 ‖A P2) ∨

(DP1(P1) ·P2(P′2) = true ∧ P′ = P1 ‖A P′2)
by definition of DP1 and DP2

⇔ ((P1 ‖A DP2)(P′1 ‖A P2) = true ∧ P′ = P′1 ‖A P2) ∨
((DP1 ‖A P2)(P1 ‖A P′2) = true ∧ P′ = P1 ‖A P′2)

by definition of ‖A
⇔ (P1 ‖A DP2)(P′) = true ∨ (DP1 ‖A P2)(P′) = true

by definition of ‖A, DP1 and DP2

⇔ ((P1 ‖A DP2) + (DP1 ‖A P2))(P′) = true
by definition of + on FS(Piml,B)

⇔ P(P′) = true

The other cases are standard, or similar and easier.
(b) Guarded induction. We treat the cases for µ.P and P1 ‖A P2.

Case µ.P. Assume µ.P
δ
�2 P, then P = [P 7→ µ]. Moreover, it holds that µ.P admits a single

d -transition, viz. µ.P
µ
d P. Thus we have

∑
{| λ | µ.P

λ
d P′ |} = µ = [P 7→ µ](P) = P(P).

Case P1 ‖A P2. Assume P1
δ
�2 P1, P2

δ
�2 P2 and P1 ‖A P2

δ
�2 P. It holds that P =

(P1 ‖A DP2) + (DP1 ‖A P2). We calculate∑
{| λ | P1 ‖A P2

λ
d P′ |}

=
∑
{| λ | P1

λ
d P′1, P′ = P′1 ‖A P2 |} +

∑
{| λ | P2

λ
d P′2, P′ = P1 ‖A P′2 |}

by analysis ofd

= (if P′ = P′1 ‖A P2 then
∑
{| λ | P1

λ
d P′1 |} else 0 end) +

(if P′ = P1 ‖A P′2 then
∑
{| λ | P2

λ
d P′2 |} else 0 end)

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 21

= (if P′ = P′1 ‖A P2 then P1(P′1) else 0 end) +

(if P′ = P1 ‖A P′2 then P2(P′2) else 0 end)
by induction hypothesis for P1 and P2

= (P1 ‖A DP2)(P′) + (DP1 ‖A P2)(P′)
by definition of ‖A, DP1 , DP2 and + on FS(Piml,R>0)

= P(P′)

The remaining cases are left to the reader.

We are now in a position to relate FuTS bisimilarity and standard strong bisimilarity for IML. In
essence, Lemma 9 is all we need.

Theorem 10. For any two processes P1, P2 ∈ Piml it holds that P1 'iml P2 iff P1 ∼iml P2.

Proof. Let R be an equivalence relation on Piml. Pick P ∈ Piml, a ∈ A and choose any Q ∈ Piml.
Suppose P

a
�1 P . Thus θ1(P)(a) = P . Then we have

T(P, a, [Q]R) ⇔ ∃Q′ ∈ [Q]R : P
a
−−→ Q′ by definition of T

⇔ ∃Q′ ∈ [Q]R : P(Q′) = true by Lemma 9a
⇔

∑
Q′ ∈ [Q]R θ1(P)(a)(Q′) = true by definition of θ1

Note, summation in B is disjunction. Likewise, on the Markovian side, we have

R(P, [Q]R) =
∑

Q′ ∈ [Q]R

∑
{| λ | P

λ
d Q′ |} by definition of R

=
∑

Q′ ∈ [Q]R P(Q′) by Lemma 9b
=

∑
Q′ ∈ [Q]R θ2(P)(δ)(Q) by definition of θ2

We conclude that a strong bisimulation for IML is also an Siml-bisimulation for the pFuTS Siml,
and vice versa. From this the theorem follows.

From the theorem we conclude that also for IML the concrete notion of strong bisimilarity ∼iml is
coalgebraically underpinned, as it coincides with the behavioral equivalence 'iml that comes with
the corresponding FuTS Siml.

8. FuTS Semantics of TPC

In this section we consider a simple language of timed processes for which we provide a com-
bined FuTS. The language is a relevant fragment of the timed process algebra TPC presented in [3].
The model of time under consideration is discrete and deterministic. The relevant construct is the
time-prefix (n).P, with n ∈ N, n > 0, expressing that the process P is to be executed after n time
steps. We will provide a FuTS semantics and compare the induced notion of bisimulation to the
notion of timed bisimulation underlying the operational semantics reported in [3].

To the best of our knowledge, this is the first time a deterministically timed model is dealt
with in the coalgebraic framework. As we will see, we resort to 2N as co-domain for the time
continuations, instead of just N, as one may expect. In particular, we use the semiring 2N with
set union as sum and intersection as multiplication. The reason of this choice is mainly technical
and is connected to the proof of the bisimulation correspondence theorem (Theorem 14 below).
Furthermore, the appropriate treatment of delays requires the extension of the set of operators on
continuations.

22 LATELLA, MASSINK & DE VINK

(NIL1) a ∈ A
nil

a
�1 []B

(NIL2)
nil

√

�2 []2N

(APF1)
a.P

a
�1 [P 7→ true]

(APF2)
b , a

a.P
b
�1 []B

(APF3)
a.P

√

�2 []2N

(TPF1) a ∈ A
(n).P

a
�1 []B

(TPF2) P
√

�2 P

(n).P
√

�2 [n; P] + [P 7→ {n}] + (n + P)

(CHO1) P
a
�1 P Q

a
�1 Q

P + Q
a
�1 P + Q

(CHO2) P
√

�2 P Q
√

�2 Q

P + Q
√

�2 P [+] Q

(PAR1) P
a
�1 P Q

a
�1 Q a < A

P ‖A Q
a
�1 (P ‖A DQ) + (DP ‖AQ)

(PAR2) P
a
�1 P Q

a
�1 Q a ∈ A

P ‖A Q
a
�2 P ‖AQ

(PAR3) P
√

�2 P Q
√

�2 Q

P ‖A Q
√

�2 P [‖A] Q
(CON1) P

α
�1 P X := P

X
α
�1 P

(CON2) P
α
�2 P X := P

X
α
�2 P

Figure 6: FuTS Transition Deduction System for TPC.

Definition 13. The set Ptpc of TPC processes is given by the grammar below:

P ::= nil | a.P | (n) . P | P + P | P ‖A P | X

where a ranges over the set of actionsA, n over N with n > 0, A over the set of finite subsets ofA,
and X over the set of constants X. •

We assume the same notation and guardedness requirements for constant definition and usage as for
PEPA or IML.

Definition 14. The formal semantics of Ptpc is given by the FuTS Stpc = (Ptpc,�1,�2), a com-
bined FuTS over the label sets A and Θ with Θ = {

√
} and the semirings B and 2N with transition

relations�1 ⊆ Ptpc × A × FS(Ptpc,B) and�2 ⊆ Ptpc × Θ × FS(Ptpc, 2N) defined as the least
relations satisfying the rules of Figure 6. •

Also Stpc is a combined FuTS, having the two state-to-function relations�1 and�2. Actions a ∈
A decorate�1, the special symbol

√
decorates�2 (with a similar role as δ for IML). As for�2

the label is always the same, we occasionally suppress it. Note rule (APF3) and rule (TPF1) involve
the null-functions of 2N and of B, respectively, to express that a process a.P does not trigger a
delay and a process (n).P does not execute an action. In Figure 6 and in the rest of this section we
use P ,Q ∈ FS(Ptpc,B) as typical action continuations, and P,Q ∈ FS(Ptpc, 2N) as typical time
continuations.

The second time prefix rule (TPF2) combines a possible evolution over time of the process P
into its continuation P with the elapse of the prefix. Note, the continuation in the conclusion of rule
(TPF2) is a sum of three parts, viz. [n; P], [P 7→ {n}], and (n + P). The auxiliary mappings [n; P]
and (n + P), for timed continuations, are given by

[n; P](Q) =

{
{m} if Q = (n − m).P, 0 < m < n
∅ otherwise (n + P)(Q) = { n + m | m ∈ P(Q) }

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 23

It is easy to see that, for n ∈ N, Q ∈ Ptpc, and P ∈ FS(Ptpc, 2N), [n; Q] = [(n − i).Q 7→ {i}]n−1
i=1 ,

and if P(Q) = ∅, then also (n + P)(Q) = ∅. Time progress taking fewer steps than n is covered by
the continuation [n; P]. For m strictly between 0 and n, after m time steps there remains (n−m).P to
be executed. After exactly n time steps, P is to be executed, i.e. the component [P 7→ {n}] is used).
After more than n time steps, say n + m time steps, process Q is to be executed if m ∈ P(Q). Thus,
if no such m exist, i.e. if P(Q) = ∅, this yields an empty set too.

The rules for the choice and parallel construct of TPC make use of corresponding operations
on FS(Ptpc,B) and FS(Ptpc, 2N). For P ,Q ∈ FS(Ptpc,B), the functions P + Q and P ‖A Q are
as before. For FS(Ptpc, 2N) the following operators are used:

(P [+] Q)(R) =

{
P(P) ∩ Q(Q) if R = P + Q for P,Q ∈ Ptpc

∅ otherwise

and, likewise

(P [‖A] Q)(R) =

{
P(P) ∩ Q(Q) if R = P ‖A Q, for P,Q ∈ Ptpc

∅ otherwise

We have that for P ∈ Ptpc there exists a unique P ∈ FS(Ptpc, 2N) such that P �2 P. Moreover,
given the rules for Stpc and the definition of the operators above, it can verified that, for P,Q ∈ Ptpc

and P ∈ FS(Ptpc, 2N) such that P �2 P it holds that P(Q) is either a singleton or the empty set.
See Lemma 11 below.

In order to prove the lemma we introduce an auxiliary function md : Ptpc → N, establishing
the so-called maximum delay of a process, given by

md(nil) = 0 md(P1 + P2) = min{md(P1), md(P2) }
md(a.P) = 0 md(P1 ‖A P2) = min{md(P1), md(P2) }

md((n).P) = n + md(P) md((X) = md(P) if X := P

By guarded induction, one straightforwardly verifies the property that md(Q′) < md(Q) for Q,Q′ ∈
Ptpc and Q ∈ FS(Ptpc,N) such that Q �2 Q and Q(Q′) , ∅. From this observation is follows
that [n; P], [P 7→ {n}] and (n + P) have disjoint supports: We have that (i) if [n; P](P′) , ∅ then
P′ = (n−m).P for 0 < m < n, hence md(P′) = (m− n) + md(P) > md(P); (ii) if [P 7→ {n}](P′) , ∅
then P′ = P, hence md(P′) = md(P); (iii) if (n + P)(P′) , ∅ then P(P′) , ∅ hence, using the
property above, md(P′) < md(P).

Lemma 11.
(a) The FuTS Stpc is total and deterministic.

(b) If P
√

�2 P then either P(Q) = {n} for some n > 0 or P(Q) = ∅.

Proof. Part (a) goes by guarded induction on P, both for�1 and�2. Part (b) follows by guarded
induction. For the time prefix (n).P we use that [n; P], [P 7→ {n}] and (n +P) have disjoint supports,
as noted above. For the constructs P + Q and P ‖A Q we observe that the operations [+] and [‖A]
preserve the property mentioned, as the intersection of two singletons holding a positive number is
either a singleton with a positive number or the empty set.

Below we have Stpc = (Ptpc, θ1, θ2) and use 'tpc to denote the bisimulation equivalence induced
by Stpc.

The standard SOS semantics of the TPC fragment of interest is given in Figure 7, involving the
transition relations

−→ ⊆ Ptpc ×A × Ptpc and { ⊆ Ptpc × N>0 × Ptpc

24 LATELLA, MASSINK & DE VINK

(APF)
a.P

a
−−→ P

(PRE)
(n).P n

{ P
(DEC) n = m + `

(n).P m
{ (`).P

(SUM) P n
{ P′

(m).P n+m
{ P′

(CHO1) P
a
−−→ R

P + Q
a
−−→ R

(CHO2) Q
a
−−→ R

P + Q
a
−−→ R

(ALT) P n
{ P′ Q n

{ Q′
P + Q n

{ P′ + Q′

(PAR1a) P
a
−−→ P′ a < A

P ‖A Q
a
−−→ P′ ‖A Q

(PAR1b) Q
a
−−→ Q′ a < A

P ‖A Q
a
−−→ P ‖A Q′

(PAR2) P
a
−−→ P′ Q

a
−−→ Q′ a ∈ A

P ‖A Q
a
−−→ P′ ‖A Q′

(SYN) P n
{ P′ Q n

{ Q′
P ‖A Q n

{ P′ ‖A Q′
(CON1) P

a
−−→ Q X := P

X
a
−−→ Q

(CON2) P n
{ Q X := P

X n
{ Q

Figure 7: Standard Transition Deduction System for TPC.

Note that for timed transitions P n
{ P′ it is required that n > 0. Therefore, regarding rule (DEC),

a process (n).P for example with a timed prefix will not yield a zero-time step (n).P 0
{ (n).P for

which time does not progress. The case for (n).P where n time step elapse, is covered by rule (PRE).
The definition of timed bisimilarity for TPC we give below is a bit more concise than the one

originally introduced in [3], but the two notions can be easily proven to coincide. We will compare
timed bisimilarity with the notion of bisimulation associated with the combined FuTS Stpc.

Definition 15. An equivalence relation R ⊆ Ptpc × Ptpc is a timed bisimulation for TPC if, for all
P1, P2 ∈ Ptpc such that R(P1, P2), it holds that for all a ∈ A and n ∈ N

• whenever P1
a
−−→ Q1, then P2

a
−−→ Q2 for some Q2 ∈ Ptpc with R(Q1,Q2);

• whenever P1
n
{ Q1, then P2

n
{ Q2 for some Q2 ∈ Ptpc with R(Q1,Q2).

Two processes P1, P2 ∈ Ptpc are called timed bisimilar, notation P1 ∼tpc P2 if R(P1, P2) for some
timed bisimulation for Ptpc. •

To establish the correspondence of FuTS bisimilarity 'tpc for Stpc of Definition 14 and timed bisim-
ilarity ∼tpc for TPC of Definition 15, we need to connect the state-to-function relation�1 and the
transition relation −→ as well as the state-to-function relation �2 and the transition relation { .
The connection is established by Lemma 13. First we state an auxiliary result, which is commonly
referred to as time-determinism (cf. [4]) and which can be shown straightforwardly by guarded
induction.

Lemma 12. If P n
{ P′ and P n

{ P′′, for P, P′, P′′ ∈ Ptpc and n > 0, then P′ = P′′.

We use time-determinism of TPC in the proof of the following lemma.

Lemma 13.
(a) Let P ∈ Ptpc and a ∈ A. If P

a
�1 P then P

a
−−→ P′ ⇐⇒ P(P′) = true.

(b) Let P ∈ Ptpc. If P
√

�2 P then P n
{ P′ ⇐⇒ P(P′) = {n}.

Proof. Part (a) is similar to the corresponding part of Lemma 9. Part (b) can be shown by guarded
induction for which we exhibit two cases (the others being similar or straightforward). For readabil-
ity, we suppress the label

√
of�2.

Case (m).P. Suppose (m).P �2 P and P �2 P
′. Then, by (TPF2), we have P(P′) = {`},

for 0 < ` < m, iff P′ = (m − `).P, P(P′) = {m} iff P′ = P, and P(P′) = {`}, for ` > m iff
P′(P′) = {` − m}. Now, if (m).P n

{ P′ for 0 < n < m, then P′ = (m − n).P, because of rules (PRE)
and (DEC) and Lemma 12. Therefore, P(P′) = P((m− n).P) = {n}. If (m).P n

{ P′ with n = m, then
P′ = P, as (PRE) applies (and with an appeal to Lemma 12). Therefore, P(P′) = P(P) = {m} = {n}.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 25

Finally, if (m).P n
{ P′ for n > m, then we have P n−m

{ P′, in view of rule (SUM) and because
of time-determinism. By induction hypothesis, we obtain P′(P′) = {n − m} and therefore P(P′) =

(m + P′)(P′) = {m + n | n ∈ P′(P′) } = {m + n − m} = {n}. Reversely, by rules (PRE) and (DEC)
we have (m).P `

{ (m − `).P, for 0 < ` < m and (m).P m
{ P. Moreover, if P(P′) = {`}, for ` > m,

then P′(P′) = {` − m}. By induction hypothesis, P `−m
{ P′. Hence, (m).P m+`−m

{ P′, i.e. (m).P `
{ P′,

by (SUM).
Case P1 + P2. Suppose P1 + P2 �2 P. Then P = P1 [+] P2 for P1,P2 ∈ FS(Ptpc, 2N) such

that P1 �2 P1 and P2 �2 P2. If P1 + P2
n
{ P′, then exist P′1, P

′
2 ∈ Ptpc such that P1

n
{ P′1,

P2
n
{ P′2 and P′ = P′1 + P′2, because (ALT) is the only rule applicable. By induction hypothesis,

P1(P′1) = {n} and P2(P′2) = {n}. Hence P(P′) = (P1 [+] P2)(P′1 + P′2) = {n}. In the other direction, if
P(P′) = {n}, then P′ = P′1 + P′2 for processes P′1, P

′
2 ∈ Ptpc such that P1(P′1) = {n} and P2(P′2) = {n}.

By induction hypothesis, P1
n
{ P′1 and P2

n
{ P′2, from which it follows that P1 + P2

n
{ P′1 + P′2,

i.e. P1 + P2
n
{ P′, by (SUM).

With Lemma 13 in place we are ready to show the correspondence of FuTS bisimilarity and timed
bisimilarity for TPC.

Theorem 14. For any two processes P1, P2 ∈ Ptpc it holds that P1 'tpc P2 iff P1 ∼tpc P2.

Proof. Suppose P1 'tpc P2, for P1, P2 ∈ Ptpc. Let R ⊆ Ptpc × Ptpc be a bisimulation with respect
to Stpc such that R(P1, P2). We verify that R meets the two transfer conditions of Definition 15.

If P1
a
−−→ Q1, for some a ∈ A and Q1 ∈ Ptpc, then θ1(P1)(a)(Q1) = true by Lemma 13. From

the definition of a FuTS bisimulation we obtain∑
Q′ ∈ [Q]R θ1(P1)(a)(Q′) =

∑
Q′ ∈ [Q]R θ1(P2)(a)(Q′) (8.1)

for all Q ∈ Ptpc. As we have seen before, we argue that summation of B is disjunction, and since
θ1(P1)(a)(Q1) = true, there must exist Q2 ∈ [Q1]R such that θ1(P2)(Q2) = true. Hence, R(Q1,Q2)
and, by Lemma 13, P2

a
−−→ Q2.

If P1
n
{ Q1, for some n > 0, then, by Lemma 13, θ2(P1)(

√
)(Q1) = {n}. From the definition of

FuTS bisimulation we obtain∑
Q′ ∈ [Q]R θ2(P1)(

√
)(Q′) =

∑
Q′ ∈ [Q]R θ2(P2)(

√
)(Q′) (8.2)

for all Q ∈ Ptpc. Note, summation of the semiring 2N is union of sets. So, by picking Q = Q1
we have n ∈

∑
Q′ ∈ [Q1]R θ2(P2)(

√
)(Q′). Thus, for some Q2 ∈ Ptpc with R(Q1,Q2) it holds that

n ∈ θ2(P2)(
√

)(Q2). It follows from Lemma 11b that θ2(P2)(
√

)(Q2) = {n}, and thus, again by
Lemma 13, P2

n
{ Q2.

Now suppose P1 ∼tpc P2, for P1, P2 ∈ Ptpc. Let R ⊆ Ptpc × Ptpc be a timed bisimulation such
that R(P1, P2). We verify that, with respect to P1 and P2, R meets the two summation conditions of
Definition 8 for the case of Stpc, i.e., equations (8.1) and (8.2), for all Q ∈ Ptpc and a ∈ A. We have∑

Q′ ∈ [Q]R θ1(P1)(a)(Q′)
⇔ ∃Q′ ∈ Ptpc : R(Q′,Q) ∧ θ1(P1)(a)(Q′) = true by structure of B

⇔ ∃Q′ ∈ Ptpc : R(Q′,Q) ∧ P1
a
−−→ Q′ by Lemma 13

⇔ ∃Q′′ ∈ Ptpc : R(Q′′,Q) ∧ P2
a
−−→ Q′′ R(P1, P2) and R timed bisimulation

⇔ ∃Q′′ ∈ Ptpc : R(Q′′,Q) ∧ θ1(P2)(a)(Q′′) = true by Lemma 13
⇔

∑
Q′′ ∈ [Q]R θ1(P2)(a)(Q′′) by structure of B

26 LATELLA, MASSINK & DE VINK

and also

n ∈
∑

Q′ ∈ [Q]R θ2(P1)(
√

)(Q′)
⇔ ∃Q′ ∈ Ptpc : R(Q′,Q) ∧ n ∈ θ2(P1)(

√
)(Q′) by structure of 2N

⇔ ∃Q′ ∈ Ptpc : R(Q′,Q) ∧ θ2(P1)(
√

)(Q′) = {n} by Lemma 11
⇔ ∃Q′ ∈ Ptpc : R(Q′,Q) ∧ P1

n
{ Q′ by Lemma 13

⇔ ∃Q′′ ∈ Ptpc : R(Q′′,Q) ∧ P2
n
{ Q′′ R(P1, P2) and R timed bisimulation

⇔ ∃Q′′ ∈ Ptpc : R(Q′′,Q) ∧ θ2(P2)(
√

)(Q′′) = {n} by Lemma 13
⇔ ∃Q′′ ∈ Ptpc : R(Q′′,Q) ∧ n ∈ θ2(P2)(

√
)(Q′′) by Lemma 11

⇔
∑

Q′′ ∈ [Q]R θ2(P2)(
√

)(Q′′) by structure of 2N

Thus, R satisfies the conditions for a FuTS bisimulation for Stpc.

We conclude that also in the setting of a FuTS for discrete time involving the semiring 2N, we
have an example of a correspondence result of FuTS-bisimilarity and bisimilarity based on a stan-
dard SOS definition. It is worth pointing out that in the proof above, the equivalence of n ∈∑

Q′ ∈ [Q]R θ2(P1)(
√

)(Q′) and ∃Q′ ∈ Ptpc : R(Q′,Q)∧n ∈ θ2(P1)(
√

)(Q′), holds because we are work-
ing with a semiring of (finite) sets over N with summation to be interpreted as (finite) union. Was
summation to be interpreted as sum overN, as it would have been the case if we would have used the
semiringN, i.e. using FS(Ptpc,N) instead of FS(Ptpc, 2N), then, from n =

∑
Q′ ∈ [Q]R θ2(P1)(

√
)(Q′)

we would not have been able to conclude ∃Q′ ∈ Ptpc : R(Q′,Q)∧n = θ2(P1)(
√

)(Q′), and vice-versa.

9. Nested FuTS

In this section we extend the applicability of the FuTS framework to more complex models, in par-
ticular those in which different aspects of behaviour are integrated in a non-orthogonal way—as it
is the case for non-deterministic choice of probabilistic distributions over behaviour in probabilis-
tic and Markov automata. We introduce the notion of a nested FuTS, namely a FuTS where the
transition relation involves continuation functions that do not act on the set of states S directly, but
instead on functions acting on S or, in the general case, on functions over the latter and so on. As
mentioned in the introduction, here we restrict our investigation on nested FuTSs with two levels,
namely nested FuTSs where the domain of the continuation functions is a set of functions the do-
main of which is the set S of states. In the following, we give the formal definition of a simple
two-level nested FuTS, i.e. a nested FuTS involving two levels of continuations that has a single
transition relation.

Definition 16. LetL be a set of labels and R1 and R2 be two semirings. A (simple) two-level nested
FuTS S, over L and R1 and R2 is a tuple S = (S , �) with set of states S and transition relation
� ⊆ S × L × FS(FS(S ,R1) ,R2). •

A two-level nested FuTS is called total and deterministic if, for all s ∈ S and ` ∈ L, there exists ex-
actly one ψ ∈ FS(FS(S ,R1) ,R2) such that s

`
� ψ. As before, for a total and deterministic nested

FuTS we use the notation (S , θ) where the function θ has type S → L → FS(FS(S ,R1) ,R2).
Here, for s ∈ S , ` ∈ L, ϕ ∈ FS(S ,R1), y ∈ R2, we have θ(s)(`)(ϕ) = y iff ψ(ϕ) = y for the unique

ψ ∈ FS(FS(S ,R1) ,R2) such that s
`
� ψ.

For a set of states S and a semiring R, an equivalence relation R on S induces an equivalence
relation on FS(S ,R), referred to as the lifting of R to FS(S ,R) and also denoted as R. The induced

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 27

relation R is defined by

R(ϕ1, ϕ2) iff
∑

t′∈[t]R ϕ1(t′) =
∑

t′∈[t]R ϕ2(t′) for all t ∈ S

for ϕ1, ϕ2 ∈ FS(S ,R). It is easy to see that R on FS(S ,R) is indeed an equivalence relation.
Therefore, the notion of a two-level bisimulation for a two-level nested FuTS given below is well-
defined.

Definition 17. Let S = (S , �) be a two-level nested FuTS over the label set L and semirings R1
and R2. An equivalence relation R ⊆ S × S is a two-level bisimulation for S if and only if R(s1, s2)
implies ∑

ϕ′∈[ϕ]R θ (s1)(`)(ϕ′) =
∑

ϕ′∈[ϕ]R θ (s2)(`)(ϕ′) (9.1)

for all ` ∈ L and ϕ ∈ FS(S ,R1). Two elements s1, s2 ∈ S are called bisimilar for S if R(s1, s2) for
some two-level bisimulation R for S. Notation s1 'S s2. •

In Section 10 we will show that, in the setting of Markov Automata, the notion of a two-level
bisimulation for a suitable two-level nested FuTS (having R1 = R>0 and R2 = B) coincides with the
notion of strong bisimulation for Markov Automata.

As is to be expected, a total and deterministic two-level FuTS can be considered as a coalgebra
of a suitable functor on sets.

Definition 18. Let L be a label set and R = 〈R1, R2 〉 be an pair of semirings. The functor
WL

R : Set → Set assigns to a set X the function space FS(FS(X,R1),R2)L of all functions
ψ : L → FS(FS(X,R1),R2) and assigns to a mapping f : X → Y the mapping WL

R (f) :
FS(FS(X,R1),R2)L → FS(FS(Y,R1),R2)L where

WL
R (f)(Φ)(`)(ψ) =

∑
ϕ ∈ FS(f ,R1)−1(ψ) Φ(`)(ϕ)

for all Φ : L → FS(FS(X,R1),R2), ` ∈ L, ψ ∈ FS(Y,R1), where we use the function
FS(f ,R1) : FS(X,R1) → FS(Y,R1) with FS(f ,R1)(ϕ)(y) =

∑
x∈ f −1(y) ϕ(x) for ϕ ∈ FS(X,R1)

and y ∈ Y . •

Note that in the definition above the sums exist since Φ and ϕ have finite support.
For readability we use W as shorthand for WL

R , when the label set L and the pair of semi-
rings R are clear from the context. It is readily checked that eachW is a functor, in fact an acces-
sible one being a composition of accessible functors. Thus, W possesses a final coalgebra. The
associated notion of behavioural equivalence is denoted by ≈W. As before, we have for nested
FuTS a correspondence result as well.

Theorem 15. Let S = (S , θ) be a two-level nested FuTS over the label set L and the semirings R1
and R2. Let the functorW be as in Definition 18. Then s1 'S s2 ⇔ s1 ≈W s2, for all s1, s2 ∈ S .

Proof. Let s1, s2 ∈ S . We first prove s1 'S s2 ⇒ s1 ≈W s2. So, assume s1 'S s2. Let R ⊆ S × S
be a two-level bisimulation with R(s1, s2). We turn the collection of equivalence classes S/R into a
W-coalgebra SR = (S/R, θR) by putting

θR([s]R)(`)(ϕ̄) =
∑

ϕ ∈ FS(εR,R1)−1(ϕ̄) θ(s)(`)(ϕ)

for s ∈ S , ` ∈ L, and ϕ̄ ∈ FS(S/R,R1) and ε : S → S/R the canonical mapping. This is
well-defined since R is a two-level bisimulation and FS(εR,R1)−1(ϕ̄) is an equivalence class of R,
for all ϕ̄ ∈ FS(S/R,R1). For, if ϕ1, ϕ2 ∈ FS(εR,R1)−1(ϕ̄), t ∈ S then FS(εR,R1)(ϕ1)([t]R) =

FS(εR,R1)(ϕ2)([t]R). Thus
∑

t′∈[t]R ϕ1(t′) =
∑

t′∈[t]R ϕ2(t′) for all t ∈ S , hence R(ϕ1, ϕ2). There-
fore, εR : S → S/R is aW-homomorphism: for ` ∈ L and ϕ̄ ∈ FS(S/R,R1), we have

28 LATELLA, MASSINK & DE VINK

W(εR)(θ(s))(`)(ϕ̄)
=

∑
ϕ ∈ FS(εR,R1)−1(ϕ̄) θ(s)(`)(ϕ) by definition ofW

= θR ([s]R)(`)(ϕ̄) by definition of θR

= θR (εR(s))(`)(ϕ̄) by definition of εR

Thus,W(εR) ◦ θ = θR ◦ εR and εR : S → SR is aW-homomorphism as claimed. Now, by unique-
ness of a final morphism, we have [[·]]S

W
= [[·]]SR

W
◦ εR. In particular, with respect to S, this implies

that [[s1]]
W

= [[s2]]
W

since εR(s1) = εR(s2). Thus, s1 ≈W s2 as was to be shown.
For the reverse, s1 ≈W s2 ⇒ s1 'S s2, assume s1 ≈W s2, i.e. [[s1]]

W
= [[s2]]

W
, for s1, s2 ∈

S . Since the map [[·]]
W

: (S , θ) → (Ω, ω) is a W-homomorphism, the equivalence relation RS
given by RS (s′, s′′)⇔ [[s′]]

W
= [[s′′]]

W
is a two-level bisimulation: Suppose RS (s′, s′′), i.e. s′ ≈

W

s′′, for some s′, s′′ ∈ S . Pick ` ∈ L, t ∈ S and assume [[t]]
W

= w ∈ Ω. For W we have
ω ◦ [[·]]

W
= W([[·]]

W
) ◦ θ. Hence, for s ∈ S , ` ∈ L, χ ∈ FS(Ω,R1), it holds that

ω([[s]]
W

)(`)(χ) =W([[·]]
W

)(θ(s))(`)(χ) =
∑

ϕ ∈ FS([[·]]
W
,R1)−1(χ) θ(s)(`)(ϕ) (9.2)

Moreover, we have, for ϕ1, ϕ2 ∈ FS(S ,R1), that

RS (ϕ1, ϕ2) ⇐⇒ FS([[·]]
W
,R1)(ϕ1) = FS([[·]]

W
,R1)(ϕ2)

since we observe that

FS([[·]]
W
,R1)(ϕ1) = FS([[·]]

W
,R1)(ϕ2)

⇔ ∀w ∈ [[S]]
W

: FS([[·]]
W
,R1)(ϕ1)(w) = FS([[·]]

W
,R1)(ϕ2)(w)

since both FS([[·]]
W
,R1)(ϕ1)(w), FS([[·]]

W
,R1)(ϕ2)(w) = 0 if [[·]]

W

−1(w) = ∅

⇔ ∀t ∈ S : FS([[·]]
W
,R1)(ϕ1)([[t]]

W
) = FS([[·]]

W
,R1)(ϕ2)([[t]]

W
)

⇔ ∀t ∈ S :
∑

t′∈[[·]]
W
−1([[t]]

W
) ϕ1(t′) =

∑
t′∈[[·]]

W
−1([[t]]

W
) ϕ2(t′)

by definition of FS(·,R1)
⇔ ∀t ∈ S :

∑
t′∈[t]RS

ϕ1(t′) =
∑

t′∈[t]RS
ϕ2(t′)

since t′ ∈ [t]RS iff [[t′]]
W

= [[t]]
W

⇔ RS(ϕ1, ϕ2)
by definition of RS on FS(S ,R1)

Therefore,

ϕ′ ∈ [ϕ]RS ⇐⇒ ϕ′ ∈ FS([[·]]
W
,R1)−1(χ) for χ = FS([[·]]

W
,R1)(ϕ) (9.3)

Now, let s′, s′′ ∈ S such that RS(s′, s′′), and choose any ` ∈ L and ϕ ∈ FS(S ,R1). Put χ =

FS([[·]]
W
,R1)(ϕ). Then we have∑

ϕ′∈[ϕ]RS
θ (s′)(`)(ϕ′)

=
∑

ϕ′ ∈ FS([[·]]
W
,R1)−1(χ) θ(s′)(`)(ϕ′) by Equation (9.3 and definition χ)

= ω([[s′]]
W

)(`)(χ) by Equation (9.2)
= ω([[s′′]]

W
)(`)(χ) s′ ≈

W
s′′ by assumption

=
∑

ϕ′ ∈ FS([[·]]
W
,R1)−1(χ) θ(s′′)(`)(ϕ′) by Equation (9.2)

=
∑

ϕ′∈[ϕ]RS
θ (s′′)(`)(ϕ′) by Equation (9.3 and definition χ)

Thus, if RS (s′, s′′) then
∑

ϕ′∈[ϕ]RS
θ (s′)(`)(ϕ′) =

∑
ϕ′∈[ϕ]RS

θ (s′′)(`)(ϕ′) for all ` ∈ L and ϕ ∈

FS(S ,R1). Therefore, RS is a two-level bisimulation according to Definition 17. Since [[s1]]
W

=

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 29

[[s2]]
W

, it follows that RS (s1, s2). Thus RS is a two-level bisimulation relating s1 and s2. Conclu-
sion, it holds that s1 'S s2.

Above we introduced the notion of a two-level nested FuTS and an associated notion of bisimu-
lation. Also in the case of such nested FuTS, FuTS-bisimulation and behavioral equivalence of the
corresponding functor coincides. Combination of nested FuTS, or combination of nested and simple
FuTS, over the same set of states, is a straightforward generalization along the lines of Section 6.
We will not pursue unfolding of the details here. In the next section we will encounter an example
of such a construction.

10. FuTS Semantics of a language forMarkov Automata

As a final application of the FuTS approach to modeling quantitative behaviour we consider so-
called Markov automata (MA). A Markov automaton, as proposed in [22, 23, 53], combines non-
deterministic and probabilistic behaviour, on the one hand, with stochastic time behaviour, on the
other hand. Therefore, we need a combination of a nested and a simple FuTS to model the respective
behaviour.

The definition of an MA here follows [53]. We first recall some definitions from [53, 20] with
Distr (S) ⊆ FS(S ,R>0) denoting the class of (finitely supported) probability distributions over S .

The superposition of non-deterministic and probabilistic behaviour is provided in Markov au-
tomata by means of a combination of a standard choice operator ‘ + ’ together with the probabilistic
extension of action prefix a.{ p1 ·P1 � · · ·� ph ·Ph } for a ∈ A, h > 0, and p1, . . . , ph ∈ (0, 1] such
that p1 + · · · + ph = 1. The syntactic construct { p1 ·P1 � · · ·� ph ·Ph } denotes the distribution
µ{ p1 ·P1 �···� ph ·Ph } over processes defined by

µ{ p1 ·P1 �···� ph ·Ph } =
∑ h

i=1 [Pi 7→ pi]

The intuitive meaning is then obvious: process a.{ p1 ·P1 � · · ·� ph ·Ph } performs action a and then
behaves as process P with probability µ{ p1 ·P1 �···� ph ·Ph }(P).

A process language for Markov Automata called MAPA (Markov Automata Process Algebra)
has been proposed in [53, 54, 52]. MAPA includes a rich data system and is equipped with restric-
tions to facilitate state space generation of relatively small models. Below, we consider MAL as
introduced in [18]. MAL constitutes a simplified fragment of MAPA which highlights how nested
non-deterministic and probabilistic behaviour combined with Markovian behaviour can be modeled
in the FuTS framework.

Definition 19. The set Pmal of MA processes is given by the grammar

P ::= nil | a.{ p1 ·P1 � · · ·� ph ·Ph } | λ.P | P + P | P ‖A P | X

where a ranges over the set of actions A, pi over the interval (0, 1], λ over R>0, A over the
set of finite subsets of A and X over the set of constants X. For an probabilistic action-prefix
a.{ p1 ·P1 � · · ·� ph ·Ph } it is required that h > 0 and p1 + · · · + ph = 1. •

We assume the same notation, guardedness requirements and conventions for constant definitions
as in Section 5 for PEPA, IML and TPC.

In the setting of Pmal we use P ,Q to range over FS(FS(Pmal,R>0) ,B) and P,Q to range over
FS(Pmal,R>0). We use µ, ν to range over Distr (Pmal) ⊆ FS(Pmal,R>0). As before, we let P1 +P2

30 LATELLA, MASSINK & DE VINK

(NIL1) a ∈ A
nil

a
�1 []B

(NIL2)
nil

δ
�2 []R>0

(RPF1) a ∈ A
λ.P

a
�1 []B

(RPF2)
λ.P

δ
�2 [P 7→ λ]

(APF1)
a.{ p1 ·P1 � · · ·� ph ·Ph }

a
�1 [µ{ p1 ·P1 �···� ph ·Ph } 7→ true]

(APF2)
b , a

a.{ p1 ·P1 � · · ·� ph ·Ph }
b
�1 []B

(APF3)
a.{ p1 ·P1 � · · ·� ph ·Ph }

δ
�2 []R>0

(CHO1) P
a
�1 P Q

a
�1 Q

P + Q
a
�1 P + Q

(CHO2) P
δ
�2 P Q

δ
�2 Q

P + Q
δ
�2 P + Q

(PAR1) P
a
�1 P Q

a
�1 Q a < A

P ‖A Q
a
�1 (P ‖A DQ) + (DP ‖A Q)

(PAR2) P
a
�1 P Q

a
�1 Q a ∈ A

P ‖A Q
a
�1 P ‖A Q

(PAR3) P
δ
�2 P Q

δ
�2 Q

P ‖A Q
δ
�2 (P ‖A DQ) + (DP ‖A Q)

(CON1) P
a
�1 P X := P

X
a
�1 P

(CON2) P
δ
�2 P X := P

X
δ
�2 P

Figure 8: FuTS Transition Deduction System for MAL.

be the pointwise sum of P1 and P2. (Note, we are adding rates here.) We put DP = [P 7→ 1]
in FS(Pmal,R>0) and define P1 ‖A P2 : Pmal → R>0, for P1,P2 ∈ FS(Pmal,R>0) and A ⊆ A, by

(P1 ‖A P2)(R) =

{
P1(R1) · P2(R2) if R = R1 ‖A R2 for some R1,R2 ∈ Pmal

0 otherwise

Note P1 ‖AP2 ∈ FS(Pmal,R>0). Moreover, if µ1, µ2 ∈ Distr (Pmal) then µ1 ‖A µ2 ∈ Distr (Pmal) too,
since∑

R∈Pmal (µ1 ‖A µ2)(R) =
∑

R1,R2∈Pmal µ1(R1) · µ2(R2) =
(∑

R1∈Pmal µ1(R1)
)
·
(∑

R2∈Pmal µ2(R2)
)

while
∑

R1∈Pmal µ1(R1),
∑

R2∈Pmal µ2(R2) = 1. For P1,P2 ∈ FS(FS(Pmal,R>0) ,B) and A ⊆ A,
we also use constructs P1 +P2 and P1 ‖A P2 where (P1 +P2)(µ) = P1(µ)∨P2(µ) is pointwise
disjunction, and P1 ‖A P2 is defined by∑

µ1,µ2 : P1(µ1)=true∧P2(µ2)=true [µ1 ‖A µ2 7→ true]

Thus (P1 ‖A P2)(µ) = true iff µ = µ1 ‖A µ2, for µ1 such that P1(µ1) = true and µ2 such that
P2(µ2) = true. We overload DP for P ∈ Pmal; with respect to FS(FS(Pmal,R>0) ,B) we have
DP = [[P 7→ 1] 7→ true]. Because of the contexts no confusion arises whether to interpret DP with
respect to FS(FS(Pmal,R>0) ,B) or with respect to FS(Pmal,R>0).

With the operators defined above in place, and a combined treatment of actions and probabilities
vs. stochastic delays, it is straightforward to capture the semantics of MAL with FuTS, cf. [18].

Definition 20. The formal semantics of Pmal is given by the FuTS Smal = (Pmal,�1,�2), a gen-
eral FuTS over the label setsA and ∆ = {δ} and the semirings R>0, B and R>0 again with transition
relations�1 ⊆ Pmal ×A × FS(FS(Pmal,R>0) ,B) and�2 ⊆ Pmal × ∆ × FS(Pmal,R>0) defined
as the least relations satisfying the rules of Figure 8. •

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 31

(ACT)
a.[p1 ·P1 ⊕ · · · ⊕ ph ·Ph]

a
−−→ µ[p1 ·P1⊕···⊕ph ·Ph]

(DELAY)
λ.P

λ
d P

(CHO1) P
a
−−→ µ

P + Q
a
−−→ µ

(CHO2) Q
a
−−→ ν

P + Q
a
−−→ ν

(CHO3) P
λ
d2 P′

P + Q
λ
d2 P′

(CHO4) Q
λ
d2 Q′

P + Q
λ
d2 Q′

(PAR1) P
a
−−→ µ a < A

P ‖A Q
a
−−→ µ ‖A DQ

(PAR2) Q
a
−−→ ν a < A

P ‖A Q
a
−−→ DP ‖A ν

(PAR3) P
a
−−→ µ Q

a
−−→ ν a ∈ A

P ‖A Q
a
−−→ µ ‖A ν

(PAR4) P
λ
d P′

P ‖A Q
λ
d P′ ‖A Q

(PAR5) Q
λ
d Q′

P ‖A Q
λ
d P ‖A Q′

(REC1) P
a
−−→ µ X := P

X
a
−−→ µ

(REC2) P
λ
d P′ X := P

X
λ
d P′

Figure 9: Standard Transition Deduction System for MAL.

By guarded induction we obtain that the finitely supported functions involved in the definition of�1
are indeed probability distributions. Ultimately this relies on the restriction on the extended prefix,
for the process a.{ p1 ·P1 � · · ·� ph ·Ph } the finite sum p1 + · · · + ph must be equal to 1.

Lemma 16. For all P ∈ Pmal, a ∈ A,P ∈ FS(FS(Pmal,R>0) ,B) and P ∈ FS(Pmal,R>0) if
P

a
�1 P and P(P) = true, then P ∈ Distr (Pmal).

It is not difficult either to verify that Smal is a total and deterministic combined FuTS, i.e. for

P ∈ Pmal, a ∈ A we have P
a
�1 P for exactly one P ∈ FS(FS(Pmal,R>0) ,B) and P

δ
�2 P for

exactly one P ∈ FS(Pmal,R>0).

Lemma 17. The general FuTS Smal is total and deterministic.

Below we use Smal = (Pmal, θ1, θ2) with θ1 : Pmal → FS(FS(Pmal,R),B) and θ2 : Pmal →

FS(Pmal,R) induced by �1 and �2, respectively. We write 'mal for the associated notion of
bisimilarity. Recall, for θ1 the relevant definition is Definition 17 on page 27, while for θ2 we of
course refer to Definition 2 of page 7, as shown below, for clarity.

Definition 21. An equivalence relation R ⊆ Pmal × Pmal is an Smal-bisimulation if and only if R is
a nested bisimulation with respect to θ1 and a simple bisimulation with respect to θ2. •

If we unfold the definitions for the two types of FuTS bisimulation we obtain that an equivalence
relation R ⊆ Pmal×Pmal is an Smal-bisimulation, if for all P1, P2 ∈ Pmal such that R(P1, P2), it holds
that

• for all a ∈ A and µ ∈ Distr (Pmal):
∑

µ′∈[µ]R θ1(P1)(a)(µ′) =
∑

µ′∈[µ]R θ1(P2)(a)(µ′), and
• for all Q ∈ Pmal:

∑
Q′∈[Q]R θ2(P1)(δ)(Q′) =

∑
Q′∈[Q]R θ2(P2)(δ)(Q′)

with R on Distr (Pmal) induced by R on Pmal. Recall that, for µ1, µ2 ∈ Distr (Pmal), R(µ1, µ2) if and
only if

∑
Q′∈[Q]R µ1(Q′) =

∑
Q′∈[Q]R µ2(Q′) for all Q ∈ Pmal.

A standard LTS-based operational semantics of MAL is given by the SOS rules of Figure 9. The
semantics is the similar to the one reported in [53, 54]. Here, however, the technical overhead
of decorations on transitions as used in the above mentioned papers is avoided at the expense of
implicit multiplicities, in line with the treatment of PEPA and IML in Sections 5 and 7, respectively.
Note, as MAL extends IML, there are separate rules for interactive transitions (ACT, CHO1–2,

32 LATELLA, MASSINK & DE VINK

PAR1–3 and REC1) captured by the transition relation −→, and for Markovian transitions (DELAY,
CHO3–4, PAR4–5, REC2) captured by the transition relationd.

Definition 22. The semantics of the process language MAL is the four-tuple (Pmal, A, −→, d)
where the probabilistic transition relation −→ ⊆ Pmal ×A × Distr (Pmal) and the standard transition
relationd ⊆ Pmal × R>0 × Pmal are given by the SOS rules of Figure 9. •

Similar to our treatment of Piml in Section 7, we introduce the functions I and M based on the
transition relations −→ andd of Definition 22 for Pmal. Now, for the interactive part of MAL, we
have I : Pmal × A × 2Distr (Pmal) → B given by I(P, a,C) = true if the set { µ ∈ C | P

a
−−→ µ }

is non-empty, for all P ∈ Pmal, a ∈ A and any subset C ⊆ Distr (Pmal). The Markovian part
of MAL is similar to that of IML. We define for MAL the function M : Pmal × Pmal → R>0 by

M(P, P′) =
∑
{| λ | P

λ
d P′ |}. Because of the implicit multiplicities of the SOS of Definition 22, the

comprehension is over the multiset of transitions leading from P to P′ with label λ. We also extend

M, now to Pmal × 2Pmal , by M(P,C) =
∑

P′ ∈C
∑
{| λ | P

λ
d P′ |}, for P ∈ Pmal and C ⊆ Pmal. With

the adapted functions I and M in place, the notion of strong bisimulation for MAL is defined as
follows.

Definition 23. An equivalence relation R ⊆ Pmal ×Pmal is called a strong bisimulation for MAL if,
for all P1, P2 ∈ Pmal such that R(P1, P2), it holds that

• for all a ∈ A and µ ∈ Distr (Pmal) : I(P1, a, [µ]R) ⇐⇒ I(P2, a, [µ]R)
• for all Q ∈ Pmal: M(P1, [Q]R) = M(P2, [Q]R)

with the relation R on Distr (Pmal) induced by the relation R on Pmal. Two processes P1, P2 ∈

Pmal are called strongly bisimilar if it holds that R(P1, P2) for a strong bisimulation R for MAL,
notation P1 ∼ma P2. •

Recall, again, that the relation R ⊆ Pmal × Pmal induces relation R ⊆ Distr (Pmal) × Distr (Pmal)
by R(µ1, µ2) if and only if

∑
Q′∈[Q]R µ1(Q′) =

∑
Q′∈[Q]R µ2(Q′) for all Q ∈ Pmal. In line with what

we have seen in the previous sections, the crux for relating the notion of Smal-bisimulation and the
notion of strong bisimulation of Definition 23 is the following result.

Lemma 18.
(a) Let P ∈ Pmal and a ∈ A. If P

a
�1 P then P

a
−−→ µ ⇐⇒ P(µ) = true.

(b) Let P ∈ Pmal. If P
δ
�2 P then

∑
{| λ | P

λ
d P′ |} = P(P′).

Proof. (a) Guarded induction. Let a ∈ A. We treat the cases a.{ p1 ·P1 � · · ·� ph ·Ph } and P1 ‖A P2
for a ∈ A.

Case a.{ p1 ·P1 � · · ·� ph ·Ph }. a.{ p1 ·P1 � · · ·� ph ·Ph }
a
�1 [µ{ p1 ·P1 �···� ph ·Ph } 7→ true], while

a.{ p1 ·P1 � · · ·� ph ·Ph }
a
−−→ µ{ p1 ·P1 �···� ph ·Ph } is the only transition for a.{ p1 ·P1 � · · ·� ph ·Ph }.

Case P1 ‖A P2, a ∈ A. Assume P1 ‖A P2
a
�1 P . Then P = P1 ‖A P2 for P1,P2 :

FS(Pmal,R>0) → B such that P1
a
�1 P1, P2

a
�1 P2. Suppose P1 ‖A P2

a
−−→ µ. Then there exist

µ1, µ2 ∈ Distr (Pmal) such that P1
a
−−→ µ1, P2

a
−−→ µ2 and µ = µ1 ‖A µ2, since only rule (PAR3)

of Figure 9 applies. By induction hypothesis, P1(µ1) = true and P2(µ2) = true. Hence P(µ) =

(P1 ‖A P2)(µ1 ‖A µ2) = true by definition of ‖A on FS(FS(Pmal,R>0),B). Reversely, suppose
P(µ) = true. Then µ = µ1 ‖A µ2 for µ1, µ2 ∈ Distr (Pmal) such that P1(µ1) = true and P2(µ2) =

true. By induction hypothesis, P1
a
−−→ µ1 and P2

a
−−→ µ2. Hence P1 ‖A P2

a
−−→ µ1 ‖A µ2 by

rule (PAR3), i.e. P1 ‖A P2
a
−−→ µ.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 33

The other cases are left to the reader.

(b) Guarded induction. Compared to the proof of Lemma 9 there is only one new case, viz. for
processes of the form a.{ p1 ·P1 � · · ·� ph ·Ph }. This case is straightforward, since, on the one

hand, a.{ p1 ·P1 � · · ·� ph ·Ph }
δ
�2 []R>0 by definition of

δ
�2 and, on the other hand, we have that

a.{ p1 ·P1 � · · ·� ph ·Ph }
λ
d P′ for no P′ ∈ Pmal by definition ofd.

The remaining cases are similar to the proof for the corresponding lemma for IML and left to
the reader.

We are now in a position to relate the notions of FuTS bisimilarity 'mal and standard strong bisimi-
larity ∼ma for MAL.

Theorem 19. For any two processes P1, P2 ∈ Pmal it holds that P1 'mal P2 iff P1 ∼ma P2.

Proof. Let R be an equivalence relation on Pmal. Pick P ∈ Pmal, a ∈ A and choose any P ∈

FS(FS(Pmal,R>0),B). Suppose P
a
�1 P . Thus θ1(P)(a) = P . Then we have, for any µ ∈

Distr (Pmal),

I(P, a, [µ]R) ⇔ ∃ µ′ ∈ [µ]R : P
a
−−→ µ′ by definition of I

⇔ ∃ µ′ ∈ [µ]R : P(µ′) = true by Lemma 18a
⇔

∑
µ′ ∈ [µ]R θ1(P)(a)(µ′) by definition of θ1

Note, summation in B is disjunction. Likewise, on the Markovian side, we have, for any Q ∈ Pmal,

M(P, [Q]R) =
∑

Q′ ∈ [Q]R

∑
{| λ | P

λ
d Q′ |} by definition of M

=
∑

Q′ ∈ [Q]R P(Q′) by Lemma 18b
=

∑
Q′ ∈ [Q]R θ2(P)(δ)(Q) by definition of θ2

Comparing the equations following Definition 21 and the equations of Definition 23, we conclude
that a strong bisimulation for MAL is also an Smal-bisimulation for the FuTS Smal, and vice versa.
From this the theorem follows.

As a corollary of the theorem we obtain that also for MAL the concrete notion of strong bisimilarity
∼ma is coalgebraically underpinned, as it coincides, with the behavioral equivalence 'mal that comes
with the corresponding FuTS Smal.

11. Concluding remarks

Total and deterministic state-to-function labeled transition systems, FuTSs, are a convenient instru-
ment to express the operational semantics of both qualitative and quantitative process languages.
In this paper we have discussed the notion of bisimilarity that arises from a FuTS, possibly involv-
ing multiple transition relations, from a coalgebraic perspective. For FuTS models of prominent
process languages based on prominent stochastic process algebras we related the induced notion
of bisimulation to the standard equivalences, thus providing these equivalence with a coalgebraic
underpinning. The main technical contributions of our paper include correspondence results, viz.
Theorem 2, Theorem 7 and Theorem 15, that relate in the simple, combined and the new nested
case, bisimilarity of a FuTS S to behavioural equivalence of the functor associated with S. The
result extends to general FuTS as well.

34 LATELLA, MASSINK & DE VINK

It is noted in [10], in the context of weighted automata, that in general the type of func-
tors FS(·,R) may not preserve weak pullbacks and, therefore, the notions of coalgebraic bisim-
ilarity and of behavioural equivalence may not coincide. A counter example is provided, cf. [10,
Section 2.2]. Essential for the construction of the counter-example, in their setting, is the fact that
the sum of non-zero weights may add to weight 0. The same phenomenon prevents a general proof,
along the lines of [56], for coalgebraic bisimilarity and FuTS bisimilarity to coincide. In the con-
struction of a mediating morphism, going from FuTS bisimulation to coalgebraic bisimulation a
denominator may be zero, hence a division undefined, in case the sum over an equivalence class
cancels out. In the concrete case for [35], although no detailed proof is provided there, this will not
happen with R>0 as underlying semiring. In [25, Theorem 5.13] for FS(·,M), withM a monoid, a
characterization is given for weak preservation of pullbacks:M should be positive and refinable, i.e.
(i) m1 +m2 = 0 iff m1,m2 = 0, and (ii) if m1 +m2 = n1 +n2 there exist pi j such that pi1 + pi2 = mi and
p1 j + p2 j = n j for 1 6 i, j 6 2. The latter condition is also referred to as the row-column property
for 2 × 2 matrices overM, a property going back to [43]. In [39] we propose to consider semirings
which admit a (right) multiplicative inverse for non-zero elements, and satisfy the so-called zero-
sum property, stating that for a sum x = x1 + · · · + xn it holds that x = 0 iff xi = 0 for all i = 1 . . . n.
The proof follows the set-up of [56], hence is different from [26]; we see that zero-sum coincides
with positivity, while the existence of multiplicative inverses guarantees refinability. Thus, for semi-
rings involved enjoying these properties, pullbacks are weakly preserved by FS(·,R). Therefore,
coalgebraic bisimilarity and behavioural equivalence are the same. As a consequence, under con-
ditions which are met by the SPCs discussed in the preceding, we have that concrete bisimulation,
FuTS-bisimilarity, behavioural equivalence and coalgebraic bisimilarity coincide.

For typical stochastic process languages based on PEPA and IMC we have shown that the
notion of strong equivalence and strong bisimilarity associated with these calculi, coincides with
the notion of bisimilarity of the corresponding FuTS. Using these FuTS as a stepping stone, the
correspondence results bridge between the concrete notion of bisimulation for PEPA and IML, and
the associated coalgebraic notions of behavioural equivalence. Hence, from this perspective, the
concrete notions are seen as the natural strong equivalence to consider. Obviously, classical strong
bisimilarity [42, 44] and bisimilarity for FuTS over B coincide (see [35] or [39] for details). Also,
strong bisimulation of [31], an alternative to Hillston’s notion of strong equivalence covered here,
involving apart from the usual transfer conditions the comparison of state information, viz. the
apparent rates, can be treated with FuTS. Again the two notions of equivalence coincide. Finally,
we gave an account of how languages based on discrete deterministic time, TPC, as well as those
where stochastic time is integrated with discrete probability and with non-determinism, MAL, can
be treated in the FuTS framework. A similar mediating role for FuTS applies to these calculi too:
the concrete notion of bisimulation coincides with FuTS bisimulation, hence coincides with the
corresponding behavioral equivalence.

As mentioned in Section 1, related work in the area of systematic approaches to frameworks
for the semantics of SPC—and quantitative extensions of process calculi in general—includes the
study of abstract quantitative GSOS, with its application to Weighted Transition Systems (WTS)
[35, 34, 41]. Stochastic GSOS (SGSOS) and Weighted GSOS appear to be a special case of Miculan
and Peressotti’s weight function GSOS. In [35, 41] a treatment is given for PEPA, in line with
Section 5 of the present paper. The formats mentioned above arise from the abstract theory of SOS.
A noteworthy result, shown in [35], is that stochastic bisimilarity of SPC defined using the SGSOS
format is guaranteed to be a congruence. The result is generalized to WTS in [34]. We did not
address the issue of congruences for FuTS in the present paper. Nevertheless, we note that Rated
Transition Systems—the semantic model used in [35]—are very similar to RTS of Latella, Massink

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 35

et al. [15, 17, 16], which are the instantiation of simple FuTS on non-negative real numbers, and
that WTS are very similar to simple FuTS. Thus, it is to be expected that simple FuTS can be
represented as WTS using the SGSOS, which would extend the congruence result to FuTS. The
issue of the relationship with WTS remains, though, for the richer class of combined, nested, and
general FuTS, which we leave for further study.

Acknowledgments The authors are grateful to Rocco De Nicola, Fabio Gadducci, Daniel Gebler,
Michele Loreti, Jan Rutten, and Ana Sokolova for fruitful discussions on the subject and useful
suggestions. The constructive comments by the reviewers have been of help and are much appre-
ciated. DL and MM acknowledge support by EU Project n. 600708 A Quantitative Approach to
Management and Design of Collective and Adaptive Behaviours (QUANTICOL). This research has
been partially conducted while EV was spending a sabbatical leave at the CNR/ISTI. EV gratefully
acknowledges the hospitality and support during his stay in Pisa.

References

[1] J. Adámek, S. Milius, and L.S. Moss. Initial algebras and terminal coalgebras: a survey. Preliminary version, 2010.
[2] J. Adámek and H.-E. Porst. On tree coalgebras and coalgebra presentations. Theoretical Computer Science,

311:257–283, 2004.
[3] A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to Software Architecture design. Springer,

2010.
[4] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.
[5] C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors. Validation of Stochastic Systems – A

Guide to Current Research. LNCS 2925, 2004.
[6] M. Bernardo. A survey of Markovian behavioral equivalences. In M. Bernardo and J. Hillston, editors, SFM 2007

Advanced Lectures, pages 180–219. LNCS 4486, 2007.
[7] M. Bernardo, R. De Nicola, and M. Loreti. A uniform framework for modeling nondeterministic, probabilistic,

stochastic, or mixed processes and their behavioral equivalences. Information and Computation, 225(0):29 – 82,
2013.

[8] M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory of concurrent processes with non-determinism, priorities,
probabilities and time. Theoretical Computer Science, 202(1–2):1–54, 1998.

[9] H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A compositional modeling formal-
ism for hard and softly timed systems. IEEE Transactions on Software Engineering, 32(10):812–830, 2006.

[10] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic perspective on linear weighted au-
tomata. Information and Computation, 211:77–105, 2012.

[11] M. Boreale. Weighted bisimulation in linear algebraic form. In M. Bravetti and G. Zavattaro, editors, Proc. CON-
CUR 2009, pages 163–177. LNCS 5710, 2009.

[12] M. Boreale and F. Gadducci. Processes as formal power series: A coinductive approach to denotational semantics.
Theoretical Computer Science, 360(1–3):440–458, 2006.

[13] M. Bozga, A. David, A. Hartmanns, H. Hermanns, K.G. Larsen, A. Legay, and J. Tretmans. State-of-the-art tools
and techniques for quantitative modeling and analysis of embedded systems. In W. Rosenstiel and L. Thiele, editors,
Proc. DATE 2012, pages 370–375. IEEE, 2012.

[14] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. The MIT Press, 1996.
[15] R. De Nicola, D. Latella, M. Loreti, and M. Massink. Marcaspis: a markovian extension of a calculus for services.

Electr. Notes Theor. Comput. Sci., 229(4):11–26, 2009. Proceedings of SOS 2008, the 5th Workshop on Structural
Operational Semantics, affiliated of ICALP 2008.

[16] R. De Nicola, D. Latella, M. Loreti, and M. Massink. On a uniform framework for the definition of stochastic process
languages. In M. Alpuente, B. Cook, and C. Joubert, editors, Formal Methods for Industrial Critical Systems, 14th
International Workshop, FMICS 2009, Eindhoven, The Netherlands, November 2-3, 2009. Proceedings, volume
5825 of Lecture Notes in Computer Science, pages 9–25. Springer, 2009.

[17] R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based transition systems for stochastic process calculi.
In S. Albers et al., editor, Proc. ICALP 2009, Part II, pages 435–446. LNCS 5556, 2009.

36 LATELLA, MASSINK & DE VINK

[18] R. De Nicola, D. Latella, M. Loreti, and M. Massink. A Uniform Definition of Stochastic Process Calculi. ACM
Computing Surveys, 46(1):5:1–5:35, 2013. DOI 10.1145/2522968.2522973.

[19] R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitative analysis of Klaim-based mobile
systems. In H. Haddad et al., editor, Proc. SAC 2005, pages 428–435. ACM, 2005.

[20] Yuxin Deng and M. Hennessy. On the semantics of Markov automata. Information and Computation, 222:139–168,
2013.

[21] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in Theoretical Computer Sci-
ence. Springer, 2009.

[22] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency and composition in a stochastic world. In P. Gastin and
F. Laroussinie, editors, Proc. CONCUR 2010, pages 21–39. LNCS 6269, 2010.

[23] C. Eisentraut, H. Hermanns, and Lijun Zhang. On probabilistic automata in continuous time. In Proc. LICS, Edin-
burgh, pages 342–351. IEEE Computer Society, 2010.

[24] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic pro-
cesses. Information and Computation, 121(1):59–80, 1995.

[25] H.P. Gumm and T. Schröder. Monoid-labeled transition systems. Electronic Notes in Theoretical Computer Science,
44(1):185–204, 2001.

[26] H.P. Gumm and T. Schröder. Products of coalgebras. Algebra Universalis, 46:163–185, 2001.
[27] H. Hermanns. Interactive Markov Chains. LNCS 2428, 2002.
[28] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation. Theoretical Computer

Science, 274(1–2):43–87, 2002.
[29] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras – between LOTOS and Markov chains.

Computer Networks and ISDN Systems, 30:901–924, 1998.
[30] H. Hermanns and J.-P. Katoen. The how and why of Interactive Markov Chains. In F.S. de Boer, M.M. Bonsangue,

S. Hallerstede, and M. Leuschel, editors, Proc. FMCO 2009, pages 311–337. LNCS 6286, 2010.
[31] J. Hillston. A Compositional Approach to Performance Modelling, volume 12 of Distinguished Dissertations in

Computer Science. Cambridge University Press, 1996.
[32] J. Hillston. Process algebras for quantitative analysis. In Proc. LICS, Chicago, pages 239–248. IEEE, 2005.
[33] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[34] B. Klin. Structural operational semantics for weighted transition systems. In J. Palsberg, editor, Semantics and

Algebraic Specification, pages 121–139. LNCS 5700, 2009.
[35] B. Klin and V. Sassone. Structural operational semantics for stochastic process calculi. In R.M. Amadio, editor,

Proc. FoSSaCS 2008, pages 428–442. LNCS 4962, 2008.
[36] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency semantics. Theoretical Computer Science,

76:179–222, 1990.
[37] A. Kurz. Logics for coalgebras and applications to computer science. PhD thesis, LMU München, 2000.
[38] D. Latella, M. Massink, and E.P. de Vink. Bisimulation of labeled state-to-function transition systems of stochastic

process languages. In T. Soboll and U. Golas, editors, Proc. ACCAT 2012, Tallin, pages 23–43. EPTCS 93, 2012.
[39] D. Latella, M. Massink, and E.P. de Vink. Coalgebraic Bisimulation of FuTS. Technical Report 09, ASCENS–

Autonomic Service-Component Ensembles (EU Project 257414), 2013.
[40] D. Latella, M. Massink, and E.P. de Vink. A definition scheme for quantitative bisimulation. In N. Bertrand and

M. Tribastone, editors, Proc. QAPL 2015, pages 63–78. EPTCS 194, 2015.
[41] M. Miculan and M. Peressotti. GSOS for non-deterministic processes with quantitative aspects. In N. Bertrand and

L. Bortolussi, editors, Proc. QAPL 2014, pages 17–33. EPTCS 154, 2014.
[42] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
[43] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.
[44] D. Park. Concurrency and automata on infinite sequences. In Proc. GI-Conference 1981, Karlsruhe, pages 167–183.

LNCS 104, 1981.
[45] C. Priami. Stochastic π-calculus. The Computer Journal, 38(7):578–589, 1995.
[46] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–80, 2000.
[47] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata, and power series.

Theoretical Computer Science, 308(1–3):1–53, 2003.
[48] A. Silva. Kleene Coalgebra. PhD thesis, Radboud University Nijmegen, 2010.
[49] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Quantitative Kleene coalgebras. Information and Computation,

209(5):822–846, 2011.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 37

[50] A. Sokolova. Probabilistic systems coalgebraically: a survey. Theoretical Computer Science, 412(38):5095–5110,
2011.

[51] S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer Science, 7:1–21, 2011.
[52] M. Timmer. Efficient Modelling, Generation and Analysis of Markov Automata. PhD thesis, University of Twente,

2013.
[53] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. Efficient modelling and generation of Markov automata.

In M. Koutny and I. Ulidowski, editors, Proc. CONCUR 2012, pages 364–379. LNCS 7454, 2012.
[54] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. Efficient modelling and generation of Markov automata

(extended version). Technical Report TR-CTIT 12-16, CTIT, Universiteit Twente, 2012.
[55] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS 1997, Warsaw, pages 280–

291. IEEE, 1997.
[56] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic approach. Theo-

retical Computer Science, 221:271–293, 1999.
[57] U. Wolter. CSP, partial automata, and coalgebras. Theoretical Computer Science, 280:3–34, 2002.

	1. Introduction
	2. Preliminaries
	3. Simple State-to-Function Labelled Transition Systems
	4. Simple FuTS coalgebraically
	5. FuTS Semantics of PEPA
	6. Combined FuTS
	7. FuTS Semantics of IML
	8. FuTS Semantics of TPC
	9. Nested FuTS
	10. FuTS Semantics of a language for Markov Automata
	11. Concluding remarks
	References

