
To appear in EPTCS.

Combining Insertion and Deletion in RNA-editing
Preserves Regularity

E.P. de Vink∗

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven
Centrum Wiskunde en Informatica, Amsterdam

H. Zantema
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven

Institute for Computing and Information Sciences, Radboud University Nijmegen

D. Bošnački
Department of Biomedical Engineering, Technische Universiteit Eindhoven

Abstract Inspired by RNA-editing as occurs in transcriptional processes in the living cell, we in-
troduce an abstract notion of string adjustment, called guided rewriting. This formalism allows si-
multaneously inserting and deleting elements. We prove that guided rewriting preserves regularity:
for every regular language its closure under guided rewriting is regular too. This contrasts an earlier
abstraction of RNA-editing separating insertion and deletion for which it was proved that regularity
is not preserved. The particular automaton construction here relies on an auxiliary notion of slice
sequence which enables to sweep from left to right through a completed rewrite sequence.

1 Introduction

We study an elementary biologically inspired formalism of string replacement referred to as guided
rewriting. Given a fixed and finite set G of strings, also called guides, a rewriting step amounts to adapting
a substring towards a guide. We consider two versions of guided rewriting: guided insertion/deletion,
which is close to an editing mechanism as encountered in the living cell, and general guided rewriting
based on an adjustment relation, which is mathematically more amenable. For guided insertion/deletion
the guide and the part of the string that is rewritten do not need to be of the same length. They are
required to be equal up to occurrences of a distinguished dummy symbol. For general guided rewriting
the correspondence of the guide and the substring that is rewritten is element-wise. The guide and
substring are equivalent symbol-by-symbol according to a fixed equivalence relation called adjustment.

In both cases, for a finite set of guides G, only a finite set of strings can be obtained by repeatedly
rewriting a given string. Starting from a language L, we may consider the extension Li/d of the language
with all the rewrites obtained by guided insertion/deletion and the extension LG of the language obtained
by adding all the adjustment-based guided rewrites. We address the question if regularity of L implies
regularity of Li/d and of LG. The results of the paper state that in the case of guided insertion/deletion
regularity is preserved if the strings of dummy symbols involved are bounded and that guided rewriting
based on adjustment always preserves regularity.

The motivation for this work stems from transcriptional biology. RNA can be seen as strings over the
alphabet {C,G,A,U}. Replication of the encoded information is one of the most essential mechanisms in

∗Corresponding author, evink@win.tue.nl

50 Combining Insertion and Deletion in RNA-editing Preserves Regularity

life: strands of RNA are faithfully copied by the well-known processes of RNA-transcription. However,
typical for eukaryotic cells, the synthesis of RNA does not yield an exact copy of part of the DNA,
but a modification obtained by post-processing. The class of the underlying adjustment mechanisms is
collectively called RNA-editing.

Abstracting away from biological details, the computational power of insertion-deletion systems for
RNA-editing is studied in [14]: an insertion step is the replacement of a string uv by the string uαv taken
from a particular finite set of triples u,α,v. Similarly, a deletion step replaces uαv by uv for another finite
set of triples u,α,v. In [10] the restriction is considered where u and v are both empty. The approach
claims full computational power, that is, they generate all recursively enumerable languages.

In the RNA-editing mechanisms occurring in nature, however, only very limited instances of these
formats apply. Often only the symbol U is inserted and deleted, instead of arbitrary strings α , see
e.g. [1]. Therefore, following [15], we investigate guided insertion/deletion focusing on the special role
of the distinguished symbol 0, the counterpart of the RNA-base U . However, in order to prove that
under this scheme regularity is preserved we extend our investigations to guided rewriting based on an
abstraction adjustment relation. In fact, we prove the theorem for guided insertion/deletion by appealing
to the result for guided rewriting based on adjustment.

The proof of the latter result relies on reorganizing sequences of guided rewrites into sequences of
so-called slices. The point is that, since guides may overlap, each guided rewrite step adds a ‘layer’
on top of the previous string. In this sense guided rewriting is vertically oriented. E.g., Figure 2 in
Section 5 shows six rewrite steps of the string ebcfa yielding the string fbcfb involving eight layers in
total. However, in reasoning about recognition by a finite automaton a horizontal orientation is more
natural. One would like to sweep from left to right, so to speak. Again referring to Figure 2, five slices
can be distinguished, viz. a slice for each symbol of the string ebcfa. The technical machinery developed
in this paper allows for a transition between the two orientations.

The organization of this paper is as follows. The biological background of RNA-editing is provided in
Section 2. Section 3 presents the theorem on preservation of regularity for guided insertion-deletion. The
notion of guided rewriting based on an adjustment relation is introduced in Section 4 and a corresponding
theorem on preservation of regularity is presented. To pave the way for its proof, Section 5 introduces
the notions of a rewrite sequence and of a slice sequence and establishes their relationship. Rewrite
sequences record the subsequent guided rewrites that take place, slice sequences represent the cumulative
effect of all rewrites at a particular position of the string being adjusted. In Section 6 we provide, given a
finite automaton accepting a language L, the construction of an automaton for the extended language LG

with respect to a set of guides G. Section 7 wraps up with related work and concluding remarks.

Acknowledgment We acknowledge fruitful feedback from Peter van der Gulik and detailed comment
from the reviewers of the MeCBIC 2012 workshop.

E.P. de Vink, H. Zantema and D. Bošnački 51

2 Biological motivation

This section provides a description of RNA editing from a biological perspective. In this paper we
focus on the insertion and deletion of uracil in messenger RNA (mRNA) and provide abstractions of
the underlying mechanism in the sequel. However, in the living cell there are different kinds of RNA
editing that vary in the type of RNA that is edited and the type of editing operations. Uracil is represented
by the letter U . The three other types of nucleotides for RNA, viz. adenine, guanine and cytosine are
represented by the letters A, G and C, respectively.

U-insertion/deletion editing is widely studied in the mitochondrial genes of kinetoplastid proto-
zoa [13]. Kinetoplastids are single cell organisms that include parasites like Trypanosoma brucei and Cri-
thidia fasciculata, that can cause serious diseases in humans and/or animals. Modifications of kineto-
plastid mRNA are usually made within the coding regions. These are the parts that are translated into
proteins, which are the building blocks of the cells. This way coded information of the original gene can
be altered and therefore expressed, i.e. translated into proteins, in a varying number of ways, depending
on the environment in the cell. This provides additional flexibility as well as potential specialization of
different parts of the organisms for particular functions.

Here we describe a somewhat simplified version of the mechanism for the insertion and deletion of U .
More details can be found, for instance, in [13, 1, 3, 12]. For simplicity we assume that only identical
letters match with one another. In reality, the matching is based on complementarity, usually assuming
the so-called Crick-Watson pairs: A matches with U and G matches with C.

In general, a single step in the editing of mRNA involves two strands of RNA, a strand of messenger
RNA and a strand of guide RNA, the latter typically referred to as the guide. To explain the mechanism
for the insertion of uracil, let us consider an example. See Figure 1. Assume that we start of with
an mRNA fragment: u = N1N2N3N4N5 and the guide g = N2N3UUUN4, where Ni can be an arbitrary
nucleotide A, G or C, but not U . Obviously, there is some match between u and g involving the letters
N2, N3, and N4, which is partially ‘spoiled’ by the UUU sequence. By pairing of letters we have that g
attaches to u; the matching substrings N2N3 and N4 serve as anchors.

Figure 1: Various stages of guided U-insertion

By chemical reactions involving special enzymes u is split open between N3 and N4. The gap between
the anchors is then filled by the enzyme mechanism using the guide as a template. For each letter U in the
guide a U is added also in the gap. As a result the mRNA string u is transformed into N1N2N3UUUN4N5.

52 Combining Insertion and Deletion in RNA-editing Preserves Regularity

In general, one can have more than two anchors (involving only non-U letters) in which the guide and the
mRNA strand match. In that case mRNA is opened between each pair of anchors and all gaps between
these anchors are filled with U such that the number of Us in the guide is matched.

A similar biochemical mechanism implements the deletion of Us from a strand of mRNA. We
illustrate the deletion process on the following example. Let us assume that we have the mRNA strand
u = N1N2N3UUN4N5 and the guide g = N2N3N4. Like in the insertion case, g initiates the editing by
attaching itself to u at the matching positions N2,N3, and N4. Only now the enzymatic complex removes
the mismatching UU substring between N3 and N4 to ensure the perfect match between the substring
and the guide. As a result the edited string N1N2N3N4N5 is obtained. In general, we can have several
anchoring positions on the same string. In that case, all Us between each two matching positions are
removed from the mRNA.

A guide can also induce both insertions and deletions of U simultaneously. For instance the guide
N2N3UUUN4 can induce editing in parallel of the string N1UN2UN3UN4UN5UN6 which results in the
string N1UN2N3UUUN4UN5UN6, where the U between N2 and N3 has been deleted and two U’s between
N3 and N4 have been inserted. This is done by the same biochemical mechanisms that are involved in
separate insertions and deletions. Analogously as above, we can have multiple insertions and deletions
induced by the same guide on the original pre-edited sequence.

The net effect of all three cases considered above is that a strand u = xyz, such that y equals g
up to occurrences of U , is modified by the insertion and deletion mechanism and becomes a string
v = xgz. It is noteworthy that the rewriting system that we describe in the sequel also applies to another
case with the same effect. For example, consider a guide g = N2N3UUUN4 and a pre-edited mRNA
u = N1N2N3UUN4N5N6. Now, to obtain the match of the guide g and a substring y of u, a U is inserted
in u, resulting in the string v = N1N2N3UUUN4N5N6. If the U subsequence in y was longer though, like
in the case for u′ = N1N2N3UUUN4N5N6 and g′ = N2N3UUN4, then we have that the extra U in u′ is
removed resulting in v′ = N1N2N3UUN4N5N6.

To summarize, the mRNA editing mechanism underlying U-insertion/deletion can be interpreted as
symbolic manipulations of strings. In the sequel symbol U will be denoted by 0 and obviously plays a
special role. The crucial point is that in a single step some substring y is replaced by a guide g for which
y and g coincide except for the symbol 0.

3 Guided insertion / deletion

Inspired by the biological scheme of editing of mRNA as discussed in the previous section, we study
the more abstract notion of guided insertion and deletion and guided rewriting based on an adjustment
relation in the remainder of this paper. In this section we address guided insertion and deletion, turning
to guided rewriting in Section 4.

More precisely, fix an alphabet Σ0 and distinguish 0 /∈ Σ0. Put Σ = Σ0 ∪{0}. Choose a finite set
G⊆ Σ∗, with elements g also referred to as guides. Reflecting the biological mechanism, we assume that
each g ∈G has at least two letters and that the first and last letter of each g ∈G are not equal to 0. Hence,
G⊆ Σ0·Σ∗·Σ0. Now a guided insertion/deletion step⇒i/d with respect to G is given by

u⇒i/d v ⇐⇒ u = xyz ∧ v = xgz ∧ g ∈ G ∧ π(y) = π(g)

where y ∈ Σ0·Σ∗·Σ0, and π(y) and π(g) are obtained from y and g, respectively, by removing their 0s.
Thus, π : Σ∗ → Σ∗0 is the homomorphism such that π(ε) = ε , π(0) = ε and π(a) = a for a ∈ Σ0. So,

E.P. de Vink, H. Zantema and D. Bošnački 53

intuitively, g is anchored on the substring y of u and sequences of 0s are adjusted as prescribed by the
guide g, in effect replacing the substring y by the guide g while maintaining the prefix x and suffix z.

As a simple example of a single guided insertion/deletion step, for G = {g} with g = bcb000ab0c
and u = a00bc00babcc00a00b we have u⇒i/d v for v = a00bcb000ab0cc00a00b. Here it holds that u =
a00 ·bc00babc ·c00a00b, π(bc00babc) = bcbabc = π(bcb000ab0c) and v = a00 ·bcb000ab0c ·c00a00b.
Note, for the string v, being the result of a rewrite with guide g itself with only one possible anchoring,
only trivial steps can be taken further. So, the operation of guided insertion/deletion with the same
guide g at the same position in a string is idempotent. However, anchoring may overlap. Consider the
set of guides G = {aa0a, a0aa}, for example. Then the string aaa yields an infinite rewrite sequence

aaa⇒i/d aa0a⇒i/d a0aa⇒i/d aa0a⇒i/d a0aa · · ·

Still, from aaa only finitely many different rewrites can be obtained by insertion/deletion steps guided
by this G, viz. {aaa, aa0a, a0aa}.

The restrictions put on G exclude arbitrary deletions (possible if ε would be allowed as guide) and
infinite pumping (if guides need not be delimited by symbols from Σ0). As an illustration of the latter
case, starting from the string abc and ‘guide’ 0ab, the infinite sequence abc⇒i/d 0abc⇒i/d 00abc⇒i/d
000abc . . . would be obtained. The restriction on the substring y prevents to make changes outside the
scope of the guide g and forbids a0b000c⇒i/d ab0c by way of the guide ab.

As a first observation we show that the set Lu
i/d = { v ∈ Σ∗ | u⇒∗i/d v}, for any finite set of guides G

and any string u, is finite. Write u = a00i1a1 . . .an10inan where ai ∈ Σ0, ik > 0, for some n> 0. In effect,
a guided insertion/deletion step only modifies the substrings 0ik or leaves them as is. Therefore, after one
or more guided insertion/deletion steps the substrings 0ik are strings taken from the set

Zu
i/d = {0ik | 16 k 6 n}∪{0` | xa ·0`bz ∈ G, a,b ∈ Σ0, `> 0}

Thus, if u⇒∗i/d v then v ∈ L̂u
i/d , where L̂u

i/d = {a0z1a1 . . .an1 znan | zk ∈ Zu
i/d , 16 k 6 n}, i.e. Lu

i/d ⊆ L̂u
i/d .

Since the set G is finite, it follows that Zu
i/d is finite, that L̂u

i/d is finite and that Lu
i/d is finite as well.

More generally, given a set of guides G, we define the extension by insertion/deletion Li/d of a
language L over Σ by putting Li/d = { v ∈ Σ∗ | ∃u ∈ L : u⇒∗i/d v }. Casted to the biological setting of
Section 2, L are the strands of messenger RNA, G are strands of guide RNA. Next, we consider the
question whether regularity of the language L is inherited by the induced language Li/d . Note, despite
the finiteness of the insertion/deletion scheme for a single string, it is not obvious that such would hold.

For example, consider the language corresponding to the regular expression (ab)∗ together with
the operation sort which maps a string w over the alphabet {a,b} to the string anbm where n = #a(w),
m = #b(w). Thus sort(w) is a sorted version of w with the a’s preceding the b’s. Note, for w ∈ (ab)∗

there is only one string sort(w), as sorting is a deterministic, hence finitary operation. However, despite
L ((ab)∗), the language associated by the regular expression, is regular, the language

sort((ab)∗) = { sort(w) | w ∈ (ab)∗ }= {anbn | n> 0}

is not regular. Also, if we define the rewrite operation ba→R ab, then { v ∈ {a,b}∗ | u→∗R v } contains
shuffles of the string u, i.e. all strings over {a,b} having the same number of a’s and b’s but are smaller
lexicographically. Thus, the set { v ∈ {a,b}∗ | u→∗R v} is finite for each string u. However, the language
L̂ = { v ∈ {a,b}∗ | ∃u ∈ L : u→∗R v } cannot be regular: intersection with the language of a∗b∗ does
not yield a regular language. More specifically, L̂∩L (a∗b∗) = { anbn | n > 0 }. We conclude that the
question of Li/d being regular, given regularity of the language L, is not straightforward.

54 Combining Insertion and Deletion in RNA-editing Preserves Regularity

With the machinery of rewrite sequences and slice sequences developed in the sequel of the paper,
we will be able to prove the following for guided insertion/deletion.

Theorem 1. In the setting above, if L is a regular language and for some number k > 0 it holds that no
string of L or G contains k (or more) consecutive 0’s, then the language Li/d is regular too.

We will prove Theorem 1 by applying a more general result on guided rewriting, viz. Theorem 3 for-
mulated in the next section and ultimately proven in Section 6. As in the notion of guided rewriting as
developed in the sequel, symbols are only replaced by single symbols by which lengths of strings are
always preserved, a transformation is required to be able to apply Theorem 3.

Before doing so we relate our results to those of [15]. There a relation similar to⇒i/d was introduced,
with the only difference that in a single step either 0’s are deleted or inserted, but not simultaneously.
One of the conclusions of [15] is that in that setting regularity is not preserved, so the opposite of the
main result in the present setting.

4 Guided rewriting

The idea of guided rewriting is that symbols are replaced by equivalent symbols with respect to some ad-
justment relation ∼. The one-one correspondence of the symbols of the string u and its guided rewrite v,
enjoyed by this notion of reduction, will turn out technically convenient in the sequel.

Let Σ be a finite alphabet and ∼ an equivalence relation on Σ, called the adjustment relation. If a∼b
we say that a can be adjusted to b. For a string u ∈ Σ∗ we write #u for its length, use u[i] to denote its i-th
element, i = 1, . . . ,#u, and let u[p,q] stand for the substring u[p]u[p+1] · · ·u[q]. The relation ∼ is lifted
to Σ∗ by putting

u∼ v iff #u = #v ∧ ∀i = 1, . . . ,#u : u[i]∼ v[i]

Next we define a notion of guided rewriting that involves an adjustment relation.
Definition 2. We fix a finite subset G⊆ Σ∗, called the set of guides.

(a) For u,v ∈ Σ∗, g ∈ G, p > 0, we define u⇒g,p v, stating that v is the rewrite of u with guide g at
position p, by

u⇒g,p v iff ∃x,y,z ∈ Σ
∗ : u = xyz ∧ #x = p ∧ y∼ g ∧ v = xgz

(b) We write u⇒ v if u⇒g,p v for some g ∈G and p> 0. We use⇒∗ to denote the reflexive transitive
closure of⇒. A sequence u1⇒ u2⇒ ·· · ⇒ un is called a reduction.

(c) For a language L over Σ and a set of guides G we write

LG = { v ∈ Σ
∗ | ∃u ∈ L : u⇒∗ v}

So, a ⇒-step adjusts a substring to a guide in G element-wise, and LG consists of all strings that can
be obtained from a string from L by any number of such adjustments. For example, if Σ = {a,b,c},
G = {bb} and a∼ b but not a∼ c, then by a⇒-step two consecutive symbols not equal to c are replaced
by two consecutive b’s. In particular, aaacaa→bb,1 abbcaa and abbcaa→bb,0 bbbcaa. We have

{aaacaa}G = {aaacaa, bbacaa, abbcaa, aaacbb, bbbcaa, abbcbb, bbacbb,bbbcbb}

Next, we state the main result of this paper regarding guided rewriting as given by Definition 2.

E.P. de Vink, H. Zantema and D. Bošnački 55

Theorem 3. Given an equivalence relation∼ on Σ, let G be a finite set of guides. Suppose L is a regular
language. Then LG is regular too.

Before going to the proof, we first show that both finiteness of G and the requirement of ∼ being an
equivalence relation are essential. Below, for a regular expression r we write L (r) for its corresponding
language.

To see that finiteness of G is essential for Theorem 3 to hold, let G = { cakcbkc | k > 0 } and
L = L (ca∗ca∗c). Let ∼ satisfy a ∼ b but not a ∼ c. Then all elements of L on which an adjustment
is applicable are of the shape cakcakc, where the result of the adjustment is cakcbkc, which can not be
changed by any further adjustment. So

LG ∩ L (ca∗cb∗c) = { cakc bkc | k > 0}

is not regular. Since regularity is closed under intersection we conclude that LG cannot be regular itself.
Also equivalence properties of∼ are essential for Theorem 3. For G = {ab} and∼= {(a,b),(b,a)}

the only possible ⇒-steps are replacing the pattern ba by ab. Note that here ∼ is neither reflexive nor
transitive. Since ba may be replaced by ab, bubble sort on a’s and b’s can be mimicked by⇒∗, while on
the other hand⇒∗ preserves both the number of a’s and the number of b’s. Hence

L ((ab)∗)G ∩ L (a∗b∗) = {akbk | k > 0}

which proves that L ((ab)∗)G is not regular, again since regularity is closed under intersection.

5 Rewrite sequences and slice sequences

Fix an alphabet Σ, an adjustment relation ∼, and a set of guides G.

Definition 4. A sequence ρ = (gk, pk)r
k=1 of guide-position pairs is called a guided rewrite sequence

for a string u ∈ Σ∗ if it holds that (i) gk ∈ G, (ii) 0 6 pk 6 #u−#gk, and (iii) u[pk+1, pk+#gk]∼gk, for
all k = 1, . . . ,r.

A guide-position pair (g, p) indicates a redex for a guided rewrite with g of the string u. The position p
is relative to u. For the rewrite to fit we must have p + #g 6 #u. The first p symbols of u, i.e. the
substring u[1, p], are not affected by the rewrite, as are the last #u− p+#g symbols of u, i.e. the substring
u[p+#g+1,#u].

The sequence ρ induces a sequence of strings (uk)r
k=0 by putting u0 = u and uk such that uk−1⇒gk,pk

uk for k = 1, . . . ,r. To conclude that uk−1⇒gk,pk uk is indeed a proper guided rewrite step, in particular that
we have uk−1[pk+1, pk+#gk], we use the assumption u[pk+1, pk+#gk]∼gk and the fact that if u⇒g,p v
then u[p + 1, p + #g]∼ v[p + 1, p + #g]. So we obtain u⇒∗ ur by construction. The string ur is referred
to as the yield of ρ for u, notation yield(ρ). Conversely, every specific reduction from u to v gives rise to
a corresponding guided rewrite sequence for u.

Definition 5. Let a ∈ Σ. A sequence s` = (gi,qi)i∈I of guide-offset pairs, for I ⊆ N a finite index set, is
called a slice for a and G if it holds that (i) gi ∈ G, (ii) 16 qi 6 #gi, and (iii) a∼gi[qi], for all i ∈ I. The
slice s` is called a slice for a string u ∈ Σ∗ at position n, 16 n6 #u, if it is a slice of u[n].

Note that in a guide-offset pair (g,q) of a slice sequence, the offset q is relative to the guide g. Since
we require 1 6 q 6 #g for such a pair, the symbol g[q] is well-defined. We will reserve the use of q for
offsets, indices within a guide, and the use of p for positions after which a rewrite may take place, i.e.
for lengths of proper prefixes of a given string.

56 Combining Insertion and Deletion in RNA-editing Preserves Regularity

The goal of the notion of slice is to summarize the effect of a number of guided rewrites local to a
specific position within a string. The symbol generated by the last rewrite that affected the position, i.e.
the particular symbol of the last element of the slice sequence, is part of the overall outcome of the total
rewrite. This symbol is called the yield of the slice. More precisely, if I 6= /0, the yield of a slice s` for a
symbol a is defined as yield(s`) = gimax [qimax] where imax = max(I). In case I = /0, we put yield(s`) = a.
Occasionally we write a∼ s`, as for a slice s` for a symbol a it always holds that a∼ yield(s`).

A slice s` is said to be repetition-free if gi = g j ∧qi = q j implies i = j. If we have I = /0, the slice s`
is called the empty slice.

Next we consider sequences of slices, and investigate the relationship between slices on two consecutive
positions in a guided rewrite sequence.
Definition 6. A sequence σ = (s`n)#u

n=1 is called a slice sequence for a string u if the following holds:
• s`n is a slice for u at position n, for n = 1, . . . ,#u;

• for n = 1, . . . ,#u−1, putting s`n = (gi,qi)i∈I and s`n+1 = (g′i,q
′
i)i∈J , there exists a monotone partial

injection γn : I→ J such that, for all i ∈ I and j ∈ J,
– i /∈ dom(γn) =⇒ qi = #gi

– γn(i) = j ⇐⇒ gi = g′j ∧qi +1 = q′j
– j /∈ rng(γn) =⇒ q′j = 1

• the slices s`1 and s`#u, say s`1 = (gi,qi)i∈I and s`#u = (g′j,q
′
j) j∈J , satisfy qi = 1, for all i ∈ I, and

q′j = #g′j, for all j ∈ J, respectively.
For the slices s`n and s`n+1 the mapping γn : I→ J is called the cut for s`n and s`n+1. It witnesses that
s`n and s`n+1 match in the sense that a rewrite may end at position n, may continue for its next offset at
position n+1, and may start at position n+1. Since a cut γ is an order-preserving bijection from dom(γ)
to rng(γ), and dom(γ) and rng(γ) are finite, it follows that for two slices s`,s`′ the cut s`→ s`′ is unique.
We write s` s`′. A slice s` = (gi,qi)i∈I is called a start slice if qi = 1 for all i ∈ I. Similarly, s` is
called an end slice if qi = #gi for all i ∈ I. A start slice is generally associated with the first position of
the string that is rewritten, an end slice with the last position. Note, a start slice as well as an end slice
are allowed to be empty. The yield of the slice sequence σ is the sequence of the yield of its slices, i.e.
we define yield(σ) = yield(s`1) · · ·yield(s`#u).

Example 7. Let ∼ be the adjustment relation with equivalence classes {a,b},{c,d},{e, f} and let the
set of guides G be given by G = { g1, g2, g3 } where g1 = fb, g2 = ace and g3 = d. For the string
u = ebcfa we consider the guided rewrite sequence ρ = ((g3,2), (g1,0), (g2,1), (g1,0), (g1,3), (g1,3)).
The associated reduction looks like

ebcfa ⇒g3,2 ebdfa ⇒g1,0 fbdfa ⇒g2,1 facea ⇒g1,0 fbcea ⇒g1,3 fbcfb ⇒g1,3 fbcfb (1)

Recording what happens at all of the five positions of the string u yields, for this example, the slice
sequence σ = (s`n)5

n=1 given in the table at the left-hand side of Figure 2, where the slice sequence is
visualized too.

For the choice of I1, . . . , I5, the monotone partial injection γn, n = 1 . . .4, maps every number to itself.
It is easily checked that all requirements of a slice sequence hold. The ovals covering guide-offset pairs
reflect the cuts as mappings between to adjacent slices. However, they also comprise, in this situation
derived from a guided rewrite sequence, complete guides. Note, s`1 is a start slice, s`5 is an end slice.
We have for the slice sequence σ = (s`n)5

i=1 that yield(σ) = yield(s`1) · · · · · yield(s`5) = fbcfb. Indeed,
this coincides with the yield of the guided rewrite sequence ρ of (1).

E.P. de Vink, H. Zantema and D. Bošnački 57

In (gi,qi)i∈In

s`1 2,4 2 7→ (g1,1), 4 7→ (g1,1)
s`2 2,3,4 2 7→ (g1,2), 3 7→ (g2,1), 4 7→ (g1,2)
s`3 1,3 1 7→ (g3,1), 3 7→ (g2,2)
s`4 3,5,6 3 7→ (g2,3), 5 7→ (g1,1), 6 7→ (g1,1)
s`5 5,6 5 7→ (g1,2), 6 7→ (g1,2)

Figure 2: An example slice sequence

The rest of this section is devoted to proving that the above holds in general: Given a string and a set of
guides, for every guided rewrite sequence there exists a slice sequence and for every slice sequence there
exists a guided rewrite sequence. Moreover, the yield of the guided rewrite sequence and slice sequence
are the same.

Theorem 8. Let ρ = (gk, pk)r
k=1 be a guided rewrite sequence for a string u. Then there exists a slice

sequence σ = (s`n)#u
n=1 for u such that yield(σ) = yield(ρ).

Proof sketch. Induction on r. If ρ is the empty rewrite sequence, we take for σ the slice sequence of
n empty slices. Suppose ρ is non-empty. Let (uk)r

k=0 be the sequence of strings induced by ρ . By
induction hypothesis there exists a slice sequence σ ′ for the first r−1 steps of ρ . Suppose ur−1⇒gr,pr ur.
The slice sequence σ is obtained by extending the slices of σ ′ from position pr+1 to pr+#gr with the
pairs (gr,n−pr). Then,

yield(σ) = yield(σ ′[1, pr]) ·gr[1,#gr] · yield(σ ′[pr+#gr+1,#u])
= ur−1[1, pr] ·gr ·ur−1[pr+#gr+1,#ur−1] = ur = yield(ρ)

Verification of σ being a slice sequence for u requires transitivity of ∼.

In order to show the reverse of Theorem 8 we proceed in a number of stages. First we need to relate
individual guide-offset pairs in neighboring slices. For this purpose we introduce the ordering 4 on
so-called chunks.

Definition 9. Let σ = (s`n)#u
n=1 be a slice sequence for u. Assume we have s`n = (gn,i,qn,i)i∈In , for n =

1, . . . ,#u. Let γn : In→ In+1 be the cut for s`n and s`n+1, 16 n < #u. Let X = { (gn,i,qn,i, i,n) | 16 n6
#u, i∈ In} be the set of chunks of σ and define the ordering4 on X by putting (g,q, i,n)4 (g′,q′, i′,n′)
iff

• either n′ > n and there exist indexes `0,h0, . . . , `n′−n,hn′−n such that

– `k,hk ∈ In+k and `k 6 hk, 06 k 6 n′−n
– hk ∈ dom(γn+k) and γn+k(hk) = `k+1, 06 k < n′−n
– `0 = i and hn′−n = i′

• or n′ 6 n and there exist indexes `0,h0, . . . , `n−n′ ,hn−n′ such that

58 Combining Insertion and Deletion in RNA-editing Preserves Regularity

– `k,hk ∈ In′+k and `k 6 hk, 06 k 6 n−n′

– `k ∈ dom(γn′+k) and γn′+k(`k) = hk+1, 06 k < n−n′

– h0 = i′ and `n−n′ = i

In the above setting with n′ > n, we say that the sequence `0,h0, `1,h1, . . ., `n′−n,hn′−n is leading from
i ∈ In up to i′ ∈ In′ . Likewise for the case where n′ 6 n.

For example, for the slice sequence (s`i)r
i=1 of Figure 2, to identify the guide belonging to the guide-

offset pair (g2,1) of slice s`2, the pair is more precisely represented by the chunk (g2,1,3,2), for the
pair is associated with index 3 ∈ I2 of slice s`2. Since for the cuts γ2 : I2→ I3 and γ3 : I3→ I4 we have
γ2(3) and γ3(3) = 3, we have (g2,1,3,2)4 (g2,2,3,3)4 (g2,3,3,4) via the sequence 3,3,3,3 connects
(g2,1) and (g2,2), and 3,3,3,3 connecting (g2,2) and (g2,3). (Hence the combination of sequences
3,3,3,3,3,3 connects (g2,1) and (g2,3) directly.) As no jumps from a low index ` to a high index h
needs to be taken, we also have (g2,1,3,2)< (g2,2,3,3)< (g2,3,3,4). Thus (g2,1,3,2)≡ (g2,2,3,3)≡
(g2,3,3,4)}. In fact, {(g2,1,3,2), (g2,2,3,3), (g2,3,3,4)} is an equivalence class for X corresponding
to the guide g2 (cf. Lemma 10). Differently, we have (g2,1,3,2) 4 (g1,2,6,5) relating g2 to the fourth
occurrence of g1 via the sequence 3,3,3,3,3,5,5,5, for example. Since there is a jump here from `2 = 3
to h2 = 5, we do not have (g2,1,3,2) < (g1,2,6,5). This reflects that apparently the rewrite with this
occurrence of g1 is on top of part of the rewrite using g2 as guide.

Given a slice sequence σ , the ordering 4 on the chunks of σ in X gives rise to a partial ordering on
the set X /≡ of equivalence classes of chunks. As we will argue, the equivalence classes correspond
to guides and their ordering corresponds to the relative order in which the guides occur in a rewrite
sequence ρ having the same yield as the slice sequence σ .

Lemma 10. (a) The relation 4 on X is reflexive and transitive.

(b) The relation ≡ on X such that x≡ y ⇐⇒ x4 y∧ y4 x is an equivalence relation.

(c) The ordering 4 on X /≡ induced by 4 on X by [x] 4 [y] ⇐⇒ ∃x′ ∈ [x]∃y′ ∈ [y] : x′ 4 y′, makes
X /≡ a partial order.

The next lemma describes the form of the equivalence class holding a chunk x = (g,q, i,n). Using
the cuts, equivalent chunks can be found backwards up to position n−q+1 and forward up to position
n−q+#g. These chunks together, (g,1, in−q+1,n−q+1), . . ., (g,q, in,n), . . ., (g,#g, in−q+#g,n−q + #g)
span the guide g that is to be applied, in the rewrite sequence to be constructed.

Lemma 11. Let σ = (s`n)#u
n=1 be a slice sequence for a string u. Let X = { (gn,i,qn,i, i,n) | 1 6 n 6

#u, i ∈ In } be the set of chunks and choose x ∈X , say x = (g,q, i,n). Put p = n−q. Then there exist
j1 ∈ Ip+1, . . . , j#g ∈ Ip+#g such that [x] = { (g,s, js, p+ s) | 16 s6 #g}.
We are now in a position to prove the reverse of Theorem 8.

Theorem 12. Let σ be a slice sequence for a string u. Then there exists a guided rewrite sequence ρ

for u such that yield(ρ) = yield(σ).

Proof. Suppose σ = (s`n)#u
n=1, s`n = (gi,n,qi,n)i∈In , for n = 1, . . . ,#u, and let X = { (gn,i,qn,i, i,n) | 16

n 6 #u, i ∈ In } be the corresponding set of chunks. We proceed by induction on #X . Basis, #X = 0:
In this case every slice is empty and yield(σ) = yield(s`1) · · ·yield(s`#u) = u[1] · · · · u[#u] = u and the
empty guided rewrite sequence for u has also yield u.

Induction step, #X > 0: Clearly, X /≡ is finite and therefore we can choose, by Lemma 10, x ∈X
such that [x] is maximal in X /≡ with respect to4. By Lemma 11 we can assume [x] = { (g,s, is, p+ s) |

E.P. de Vink, H. Zantema and D. Bošnački 59

1 6 s 6 #g } for suitable p and indexes is ∈ Ip+s, for s = 1, . . . ,#g. Note, by maximality of [x], the
indexes is must be the maximum of Ip+s. In particular, yield(σ)[p + s] = yield(s`p+s) = g[s], for s =
1, . . . ,#g.

Now, consider the slice sequence σ ′ = (s`′n)#u
n=1 where

s`′n =
{

s`n for n = 1, . . . , p and n = p+#g+1, . . . ,#u
(gi,n,qi,n)i∈In\{in−p} for n = p+1, . . . , p+#g

So, the slice sequence σ ′ is obtained from the slice sequence σ by leaving out the guide-offset pairs
related to the particular occurrence of g.

Let X ′ be the set of chunks of σ ′. Then #X ′< #X . By induction hypothesis we can find a
guided rewrite sequence ρ ′ = (g′k, p′k)r

k=1 for u such that yield(ρ ′) = yield(σ ′). Define the guided
rewrite sequence ρ = (gk, pk)r+1

k=1 by gk = g′k, pk = p′k for k = 1, . . . ,r and gr+1 = g, pr+1 = p. We
have 0 6 p 6 #u−#g and u[p+1, p+#g]∼ g since s`p+1, . . . ,s`p+#g are slices for u[p+1], . . . ,u[p+#g],
respectively. So, ρ is a well-defined guided rewrite sequence for u.

It holds that yield(ρ ′)⇒g,p yield(ρ) as ρ extends ρ ′ with the pair (g, p). Therefore,

yield(ρ)[n] =
{

yield(ρ ′)[n] for n = 1, . . . , p and n = p+#g+1, . . . , p+#g
g[n−p] for n = p+1, . . . , p+#g

From this it follows, for any index n, 16 n6 p or p+#g+16 n6 #u, that yield(ρ)[n] = yield(ρ ′)[n] =
yield(σ ′)[n] = yield(σ)[n], and for any index n, p+1 6 n 6 p+#g, that yield(ρ)[n] = g[n−p] =
yield(σ)[n]. As #yield(ρ) = #yield(σ) = #u, we obtain yield(ρ) = yield(σ), as was to be shown.

For the slice sequence (s`i)5
i=1 of Figure 2 we have the following equivalence classes of chunks:

G3 = { (g3,1,1,3)} G2 = { (g2,1,3,2), (g2,2,3,3), (g2,3,3,4)}
G1

1 = { (g1,1,2,1), (g1,2,2,2)} G3
1 = { (g1,1,5,4), (g1,2,5,5)}

G2
1 = { (g1,1,4,1), (g1,2,4,2)} G4

1 = { (g1,1,6,4), (g1,2,6,5)}

Moreover, G3 4 G1
1 4 G2, G2 4 G2

1 and G2 4 G3
1 4 G4

1. A possible linearization is G3 4 G1
1 4 G2 4

G3
1 4 G4

1 4 G2
1. This corresponds to the rewrite sequence

ebcfa⇒g3,2 ebdfa⇒g1,0 fbdfa⇒g2,1 facea⇒g1,3 facfb⇒g1,3 facfb⇒g1,0 fbcfb

Note that the yield fbcfb of this rewrite sequence is the same as the yield of the sequence (1) of Example 7.
However, here the second rewrite with g1 of (1) has been moved to the end. This does not effect the end
result as the particular rewrites do not overlap.

6 Guided rewriting preserves regularity

Given a language L and a set of guides G, the language LG is given as the set {v ∈ Σ∗ | ∃u ∈ L : u⇒∗ v}.
One of the main results of this paper, Theorem 3 formulated in Section 4, states that if L is regular
than LG is regular too. We will prove the theorem by constructing a non-deterministic finite automaton
accepting LG from a deterministic finite automaton accepting L. The proof exploits the correspondence
of rewrite sequences and slice sequences, Theorem 8 and Theorem 12. First we need an auxiliary result
to assure finiteness of the automaton for LG.

60 Combining Insertion and Deletion in RNA-editing Preserves Regularity

Lemma 13. Let G be a finite set of guides. Let Z = { s` | s` repetition-free slice for a and G, a ∈ Σ }.
Then Z is finite. Moreover, for every string u and every rewrite sequence ρ for u, there exists a slice
sequence σ for u consisting of slices from Z only such that yield(σ) = yield(ρ).

Proof sketch. Finiteness of Z is immediate: there are finitely many guide-offset pairs (g,q), hence finitely
many repetition-free finite sequences of them. Thus, there are only finitely many repetition-free slices.

Now, let ρ be a rewrite sequence for a string u. By Theorem 8 we can choose a slice sequence σ ′ such
that yield(σ ′) = yield(ρ). Suppose σ ′= (s`n)#u

n=1 and s`n = (gi,n,qi,n)i∈In for n = 1, . . . ,#u. By Lemma 11
it follows that given a repeated guide-offset pair (g,q), say (g,q) = (gi,n,qi,n) and (g,q) = (g j,n,q j,n) for
indexes i < j in In, we can delete the complete equivalence class of (gi,qi, i,n) from slices s`n−q+1
to s`n−q+#g, while retaining a slice sequence. In fact, we are removing the ‘lower’ occurrence of the
guide g. Moreover, the resulting slice sequence has the same yield as for all slices the topmost guide-
offset pair remains untouched. The existence of a repetition-free slice sequence σ such that yield(σ) =
yield(σ ′), hence yield(σ) = yield(ρ), then follows by induction on the number of repetitions.

As a corollary we obtain that every rewrite sequence has a repetition-free equivalent, an intuitive result
which requires some technicalities though to obtain directly.

We are now prepared to prove that guided rewriting preserves regularity.

Proof of Theorem 3. Without loss of generality ε /∈ L. Let M = (Σ,Q,→,qo,F) be a DFA accepting L.
We define the NFA M′ = (Σ,Q′,→′,q0,F ′) as follows: Let qF be a fresh state. Put Q′ = Q∪ (Q×Z)∪
{qF} with Z as given by Lemma 13, F ′ = {qF} and

q0
ε−→′ q0×ζ if ζ is a start slice

q×ζ
b→′ q′×ζ ′ if q a→ q′, a∼ζ , yield(ζ) = b, ζ ζ ′

q×ζ
b→′ qF if ∃q′ : q a→ q′ ∈ F , a∼ζ , yield(ζ) = b, ζ is an end slice

Note, by Lemma 13, Q′ is a finite set of states. The automaton M′ has only one final state, viz. qF .
Suppose v ∈ LG. Then there exist u = a1 · · ·as ∈ L, a rewrite sequence ρ = (gk, pk)r

k=1 and strings
u0,u1, . . . ,ur such that u = u0, uk−1 ⇒gk,pk uk for k = 1, . . . ,r, and v = ur. Let, by Theorem 8 and
Lemma 13, σ be a slice sequence for u of repetition-free slices with yield(σ) = yield(ρ). Say σ =
(s`n)#u

n=1 and s`n = (gi,n,qi,n)i∈In for n = 1, . . . ,#u. Let q0
a1−→ q1 · · ·

as−→ qs ∈F be an accepting computation

of M for u. Then q0
ε−→′ q0×s`1

b1−→′ · · ·qs−1×s`s
bs−→′ qF is an accepting computation of M′. Since we

have b1 · · ·bs = yield(s`1) · · · yield(s`s) = yield(σ) = v, it follows that v ∈L (M′). So, LG ⊆L (M′).
Let v = b1 · · ·bs be a string in L (M′). Given the definition of the transition relation on M′, we can

find states q0,q1, . . . ,qs−1, repetition-free slices s`1, . . .s`s such that s`n s`n+1 for n = 1, . . . ,s−1, and
a computation q0

ε−→′ q0×s`1
b1−→′ · · ·qs−1×s`s

bs−→′ qF . Thus, there exist a final state qs and a computation
q0

a1−→ q1 · · ·qs−1
as−→ qs ∈ F such that an∼ s`s for n = 1, . . . ,s, i.e. s`n is a slice for an. Put u = a1 · · ·as.

Then u ∈ L, (s`n)#u
n=1 is a slice sequence for u and yield(σ) = v. By Theorem 12 we can find a rewrite

sequence ρ for u such that yield(ρ) = yield(σ) = v. It follows that u⇒∗ v and v ∈ LG. Thus, L (M′)⊆
LG. We conclude that LG = L (M′) and regularity of LG follows.

Since L ⊆ LG the automaton M′ should accept any word a1 . . .as ∈ L, s > 0. This can be verified as
follows. Let ζ i be the empty slice for ai, i = 1 . . .s. Then ai∼ ζ i, i.e. ai = yield(ζ i), which holds by
definition. Moreover, ζ1 is a start slice, ζ i ζ i+1 for i = 1 . . .s−1, and ζs is an end slice. It follows that
we can turn an accepting computation of M, say q0

a1−→ q1
a2−→ ·· · as−→ qs ∈F into an accepting computation

of M′: q0
ε−→′q0×ζ1

a1−→′q1×ζ2
a2−→′ · · · as−1−−→′qs−1×ζs

as−→′qF .

E.P. de Vink, H. Zantema and D. Bošnački 61

We now return to a proof of Theorem 1 formulated in Section 3 for which we want to apply Theorem 3.
For the latter theorem to apply we need a preparatory transformation. The point is, in the setting of
guided insertion/deletion, strings are allowed to grow or shrink while guided insertions and deletions are
being applied, whereas in the setting of guided rewriting the strings do not change length.

The key idea of the transformation is that every group of 0’s is compressed to a single symbol. Let
a language L over Σ and a number k be given by Theorem 1. So, L does not contain strings with k or
more 0s. We introduce k fresh symbols 00,01, . . . ,0k−1. Put Θ = { 00, 01, . . . , 0k−1 }. For any string u
over Σ not containing the substring 0k, i.e. not containing k or more zeros, we define the string ū over the
alphabet Σ = (Σ\{0})∪{00,01, . . . ,0k−1} that is obtained from u by replacing every maximal pattern 0i

by the single symbol 0i. Note, between two consecutive non-zero letters ab the symbol 00 is interspersed.
For instance, for k > 3, 10023 = 1022003. Also note, that the compression scheme constitutes a 1–1
correspondence of Σ∗∩{w | w has no substring 0k } and

(
Θ ·Σ0

)∗ ·Θ.
Next, we show that the above operation of compressing groups of 0s preserves regularity using basic

closure properties of the class of regular languages, cf. [7, Section 3].

Lemma 14. Let L be a language without strings containing 0k and let L = {ū | u ∈ L}. Then L is regular
if and only if L is regular.

Proof. The language L is the homomorphic image of L for h : Σ
∗ → Σ∗ with h(0i) = 0 i and h(a) = a

otherwise. So, if L is regular, so is L. Reversely, L = (Θ ·Σ)∗ ·Θ∩ h−1(L). Hence, if L is regular, so
is L.

With the above lemma in place we can give a proof of the preservation of regularity by guided inser-
tion/deletion.

Proof of Theorem 1. Let k be as given by the statement of the theorem. Obtain L by applying the com-
pression of strings 0i, for i < k, changing from the alphabet Σ to Σ, as introduced above. By Lemma 14
we then have that L is regular. Let G be obtained from G, again by compression of strings 0i, for i < k.
Then G is a finite set of guides with respect to Σ. Now let the adjustment relation ∼ be the equivalence
relation on Σ generated by 0i ∼ 0 j, 06 i, j < k. By Theorem 3 we obtain that LG is regular.

Next we note that if u⇒i/d v with respect to Σ, then ū⇒ v̄ with respect to Σ. Vice versa, if ū⇒ v̄ and
there exist (unique) u and v such that u,v map to ū, v̄ under compression, then u⇒i/d v. It follows that
LG and Li/d coincide. Finally, by another application of Lemma 14, we conclude that Li/d is regular.

7 Related work and concluding remarks

In this paper we have discussed abstract concepts of guided rewriting: a more flexible notion focusing on
insertions and deletions of a dummy symbol, another more strict notion based on an equivalence relation.
Given a language L we considered the extended languages Li/d and LG comprising the closure of L for
the two types of guided rewriting with guides from a finite set G. In particular, as our main result we
proved that these closures preserve regularity. For doing so we investigated the local effect of guided
rewriting on two consecutive string positions, leading to a novel notion of a slice sequence. Finally,
the theorem for adjustment-based rewriting was proved by an automaton construction exploiting a slice
sequence characterization of guided rewriting. Via a compression scheme for strings of dummy symbols,
the theorem for guided insertion/deletion followed.

62 Combining Insertion and Deletion in RNA-editing Preserves Regularity

Preservation of regularity by closing a language with respect to a given notion of rewriting arises as a
natural question. In Section 3 we observed that by closing the regular language L ((ab)∗) under rewrit-
ing with respect to the single rewrite rule ba→ ab the resulting language is not regular. So, by arbitrary
string rewriting regularity is not necessarily preserved. A couple of specific rewrite formats have been
proposed in the literature. In [6] it was proved that regularity is preserved by deleting string rewriting,
where a string rewriting system is called deleting if there exists a partial ordering on its alphabet such
that each letter in the right-hand side of a rule is less than some letter in the corresponding left-hand
side. In [9] it was proved that regularity is preserved by so-called period expanding or period reducing
string rewriting. When translated to the setting of [15], as also touched upon in Section 3, our present
notion of guided insertions and deletions allows for simultaneous insertion and deletion of the dummy
symbol. A phenomenon also supported by biological findings. Remarkably, the more liberal guided
insertion/deletion approach preserves regularity, whereas in the more restricted mechanism of [15], not
mixing insertions and deletions per rewrite step, regularity is not preserved. As another striking differ-
ence with the mechanism of [15], for that format it was shown that strings u,v of length n exist satisfying
u⇒∗ v, but the length of the reduction is at least exponential in n. In our present format this is not the
case: we expect that our slice characterization of guided rewriting serves to prove, that if u⇒∗ v then
there is always a corresponding reduction of length linear in the length of u and v. Details have not been
worked out yet.

The notion of splicing, inspired by DNA recombination, has been proposed by Head in [5]. A so-
called splicing rule is a tuple r = (u1,v1;u2,v2). Given two words w1 = x1u1v1y1 and w2 = x2u2v2y2
the rule r produces the word w = x1u1v2y2. So, the word w1 is split in between u1 and v1, the word w2
in between u2 and v2 and the resulting subwords x1u1 and v2y2 are recombined into the word w. For
splicing a closure result, reminiscent to the one for guided rewriting considered in this paper, has been
established. Casted in our terminology, if L is a regular language and S is a finite set of splicing rules,
then LS is regular too, cf. [8, 11]. Here, LS is the least language containing L and closed under the splicing
rules of S.

The computational power of a variant of insertion-deletion systems was studied in [14]. There dele-
tion means that a string uαv is replaced by uv for a predefined finite set of triples u,α,v, while by insertion
a string uv is replaced by uαv for another predefined finite set of triples u,α,v. This notion of insertion-
deletion is quite different from ours, and seems less related to biological RNA editing. In the same
vein are the guided insertion/deletion systems of [2]. There a hierarchy of classes of insertion/deletion
systems and related closure properties are studied. Additionally, a non-mixing insertion/deletion system
that models part of the RNA-editing for kinetoplastids is given. A rather different application of term
rewriting in the setting of RNA is reported in [4], where the rewrite engine of Maude is exploited to
predict the occurrence of specific patterns in the spatial formation of RNA, with competitive precision
compared to techniques that are more frequently used in bioinformatics.

Possible future work includes investigation of preservation of context-freedom and of lifting the
bound on the number of consecutive 0’s in Theorem 1. More specifically, for a context-free language L,
does it hold, for a finite set of guides G, that LG is context-free too? Considering the set of guides, a
generalization to regular sets G is worthwhile studying. Note that the counter-example given in Section 4
involves a non-regular set of guides. So, if L is regular and G is regular, do we have that LG is regular?
Similarly for L context-free. We also plan to consider guided rewriting based on other types of adjustment
relations. In particular, rather than comparing strings symbol-by-symbol, one can consider two strings
compatible if they map to the same string for a chosen string homomorphism. A prime example would
be the erasing of the dummy 0 in the context of Section 3 for which we conjecture a variant of Theorem 3
to hold.

E.P. de Vink, H. Zantema and D. Bošnački 63

References
[1] J.D. Alfonzo, O. Thiemann & L. Simpson (1997): The Mechanism of Insertion/Deletion RNA Editing in

Kinetoplastid Mitochondria. Nucleic Acids Research 25(19), pp. 3751–3759, doi:10.1093/nar/25.19.3571.
[2] F. Biegler, M.J. Burrell & M. Daley (2007): Regulated RNA Rewriting: Modelling RNA Editing with Guided

Insertion. Theoretical Computer Science 387(2), pp. 103–112, doi:10.1016/j.tcs.2007.07.030.
[3] B. Blum, N. Bakalara & L. Simpson (1990): A Model for RNA Editing in Kinetoplastid Mitochondria:

RNA Molecules Transcribed From Maxicircle DNA Provide the Edited Information. Cell 60, pp. 189–198,
doi:10.1016/0092-8674(90)90735-W.

[4] Xuezheng Fu, Hao Wang, W. Harrison & R. Harrison (2005): RNA Pseudoknot Prediction using Term Rewrit-
ing. In: Proc. BIBE’05, Minneapolis, IEEE Computer Society, pp. 169–176, doi:10.1109/BIBE.2005.50.

[5] T. Head (1987): Formal Language Theory and DNA: An Analysis of the Generative Capacity of Spe-
cific Recombinant Behaviors. Bulletin of Mathematical Biology 49(6), pp. 737–759, doi:10.1016/S0092-
8240(87)90018-8.

[6] D. Hofbauer & J. Waldmann (2004): Deleting String Rewriting Systems Preserve Regularity. Theoretical
Computer Science 327, pp. 301–317, doi:10.1016/j.tcs.2004.04.009.

[7] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

[8] K. Cullik II & T. Harju (1991): Splicing Semigroups and Dominoes and DNA. Discrete Applied Mathematics
31(3), pp. 261–271, doi:10.1016/0166-218X(91)90054-Z.

[9] P. Leupold (2008): On Regularity-Preservation by String-Rewriting Systems. In C. Martı́n-Vide, F. Otto &
H. Fernau, editors: Proc. LATA 2008, LNCS 5196, pp. 345–356, doi:10.1007/978-3-540-88282-4 32.

[10] M. Margenstern, G. Paun, Y. Rogozhin & S. Verlan (2005): Context-free Insertion-deletion Systems. Theo-
retical Computer Science 330, pp. 339–348, doi:10.1016/j.tcs.2004.06.031.

[11] D. Pixton (1996): Regularity of Splicing Languages. Discrete Applied Mathematics 70(1), pp. 57–79,
doi:10.1016/0166-218X(95)00079-7.

[12] H. van der Spek, G.J. Arts, R.R. Zwaal, J. van den Burg, P. Sloof & R. Benne (1991): Conserved Genes
Encode Guide RNAs in Mitochondria of Crithidia Fasciculata. The EMBO Journal 10(5), pp. 1217–1224.

[13] K. Stuart, T.E. Allen, S. Heidmann & S.D. Seiwert (1997): RNA editing in kinteoplastid protozoa. Micor-
biology and Molecular Biology Reviews 61(1), pp. 105–120.

[14] A. Takahara & T. Yokomori (2003): On the Computational Power of Insertion-Deletion Systems. Natural
Computing 2(4), pp. 321–336, doi:10.1023/B:NACO.0000006769.27984.23.

[15] H. Zantema (2010): Complexity of Guided Insertion-Deletion in RNA-Editing. In A.-H. Dediu, H. Fernau &
C. Martı́n-Vide, editors: Proc. LATA 2010, LNCS 6031, pp. 608–619, doi:10.1007/978-3-642-13089-2 51.

http://dx.doi.org/10.1093/nar/25.19.3571
http://dx.doi.org/10.1016/j.tcs.2007.07.030
http://dx.doi.org/10.1016/0092-8674(90)90735-W
http://dx.doi.org/10.1109/BIBE.2005.50
http://dx.doi.org/10.1016/S0092-8240(87)90018-8
http://dx.doi.org/10.1016/S0092-8240(87)90018-8
http://dx.doi.org/10.1016/j.tcs.2004.04.009
http://dx.doi.org/10.1016/0166-218X(91)90054-Z
http://dx.doi.org/10.1007/978-3-540-88282-4_32
http://dx.doi.org/10.1016/j.tcs.2004.06.031
http://dx.doi.org/10.1016/0166-218X(95)00079-7
http://dx.doi.org/10.1023/B:NACO.0000006769.27984.23
http://dx.doi.org/10.1007/978-3-642-13089-2_51

	Introduction
	Biological motivation
	Guided insertion/deletion
	Guided rewriting
	Rewrite sequences and slice sequences
	Guided rewriting preserves regularity
	Related work and concluding remarks

