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Abstract

We consider two elementary forms of string rewriting called guided in-
sertion/deletion and guided rewriting. The original strings are modified
depending on the match with a given set of auxiliary strings, called
guides. Guided insertion/deletion considers matching of a string and
a guide with respect to a specific correspondence of strings. Guided
rewriting considers matching of a string and a guide with respect to
an equivalence relation on the alphabet. Guided insertion/deletion is
inspired by RNA-editing, a biological process by which the original ge-
netic information stored in DNA is modified before its final expression.
The formalism here allows for simultaneous insertion and deletion of
string elements. Guided rewriting, based on a letter-to-letter relation,
is technically more appealing than guided insertion/deletion. We prove
that guided rewriting preserves regularity: for every regular language
its closure under guided rewriting is regular too. In the proof we
will rely on the auxiliary notion of a slice sequence. We establish a
correspondence of slice sequences and guide rewrite sequences. Because
of their left-to-right nature, slice sequences are more convenient to deal
with than guided rewrite sequences in the construction of the finite
automata that we encounter in the proofs of regularity. Based on the
result for guided rewriting we establish that guided insertion/deletion
preserves regularity as well.
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1 Introduction

RNA editing is a biological mechanism that modifies the original “text” of
the genetic information of a living organism after it is copied (transcribed)
from the DNA. In this paper, we investigate two elementary formalisms of
string transformation which are inspired by RNA editing. We consider guided
insertion/deletion, which is close to an editing mechanism as encountered
in the living cell, and guided rewriting, based on an adjustment relation,
which lends itself more easily to formal analysis. In both forms of string
rewriting a substring of the original string is adapted when it matches a
string from a specific set, called the set of guides. The set G of guides is
fixed and finite. In guided insertion/deletion the guide and the part of the
string that is rewritten are not required to be of the same length, but they
need to be equal up to occurrences of a distinguished dummy symbol. In
guided rewriting the guide and substring are equivalent symbol-by-symbol
according to the adjustment relation, a chosen and fixed equivalence relation.

Both flavors of rewriting preserve the finiteness of the initial set of
strings. Assuming a finite set of guides G, in both cases only a finite set of
strings can be obtained by repeatedly rewriting a given string. In this work
we show that also regularity of the initial string set is preserved for both
cases. Starting from a language L, we consider the extension Li/d of the
language with all the rewrites obtained by guided insertion/deletion and the
extension LG of the language obtained by adding all the adjustment-based
guided rewrites. The main results of the paper state that regularity of L
implies regularity of Li/d and regularity of LG.

The motivation of this work is rooted in one of the basic processes of
life which concerns the flow of genetic information. Initially, the original
information stored in DNA molecules is faithfully copied to RNA by the
process of transcription. In eukaryote cells, i.e., cells that have a nucleus,
the RNA which is finally translated to proteins, does not carry an exact
copy of the original information stored in the DNA part. Instead, the RNA
string, which transmits the genetic information further on the chain, is a
modification obtained by post-processing. On an abstract level an RNA
molecule can be regarded as string over the alphabet {C,G,A,U}. The
modification consists of insertion and deletion of these letters, also called
nucleotides, on multiple locations in the original string. The class of the
underlying adaptation mechanisms is collectively called RNA-editing.

The computational power of insertion-deletion systems for RNA-editing
is studied in [20]: After abstracting away the biological details, an insertion
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step is the replacement of a string uv by the string uαv taken from a
particular finite set of triples u, α, v. Similarly, a deletion step replaces
uαv by uv for another finite set of triples u, α, v. In [14] the restriction
is considered where u and v are both empty. This mechanism claims full
computational power, that is, all recursively enumerable languages can be
generated in this way.

Inspired by DNA recombination, Head proposes in [9] the notion of
splicing. The DNA molecules (strings) are modified by so-called splicing
rules. Each splicing rule is a tuple r = (u1, v1;u2, v2). Given two words w1 =
x1u1v1y1 and w2 = x2u2v2y2 the rule r produces the word w = x1u1v2y2.
So, the word w1 is split in between u1 and v1, the word w2 in between u2
and v2 and the resulting subwords x1u1 and v2y2 are recombined into the
word w. For splicing a closure result, reminiscent to the one for guided
insertion/deletion and guided rewriting considered in this paper, has been
established. Casted in our terminology, if L is a regular language and S is a
finite set of splicing rules, then LS is regular too, cf. [12, 15]. Here, LS is
the least language containing L and closed under the splicing rules of S.

Compared to the above described formal systems, natural RNA-editing
mechanisms are very often quite limited. In most of the natural RNA-editing
instances only the symbol U is inserted and deleted, instead of arbitrary
strings α, see e.g. [1]. Motivated by this observation, we investigate guided
insertion/deletion focusing on the special role of a distinguished symbol 0, a
formal analog of the RNA letter U . A similar scheme, but which prohibited
simultaneous insertion and deletion of the special symbol, we considered
in [21]. To prove that under the present scheme regularity is preserved we
need the stepping stone of guided rewriting based on an abstract adjustment
relation. In particular, we prove the regularity preservation theorem for
guided insertion/deletion by using the analogous result for guided rewriting
based on adjustment.

The regularity result for the adjustment-based rewriting is proved
by constructing a finite automaton that accepts the language LG. The
construction procedure takes as input the set of guides G and a given finite
automaton accepting the language L. A crucial point in the proof is the
translation of the guided rewrite sequences into so-called slice sequences.
The point is that, since guides may overlap, each guided rewrite step adds
a ‘layer’ on top of the previous string. In this sense guided rewriting is
vertically oriented. E.g., Figure 2 in Section 5 shows six rewrite steps of the
string ebcfa yielding the string fbcfb involving eight layers in total. However,
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in reasoning about recognition by a finite automaton a horizontal orientation
is more natural. One would like to sweep from left to right, so to speak.
Again referring to Figure 2, five slices can be distinguished, viz. a slice for
each symbol of the string ebcfa. The technical machinery developed in this
paper allows for a transition between the two orientations.

In order to obtain a regularity result for guided insertion/deletion
we apply a string transformation: for the language L and finite set of
guides G over the alphabet Σ ∪ {0} let N be a bound on the number of
consecutive 0’s in G. We adapt the alphabet Σ∪{0} to Σ∪Θ by introducing
N+1 new symbols representing strings of 0’s up to length N and a new
symbol representing all strings of 0’s larger than N . The transformation we
consider replaces in a string u over the alphabet Σ ∪ {0} all its maximal
substrings of 0’s by the corresponding symbol of Θ, obtaining a string u over
the alphabet Σ ∪Θ. In this way we obtain the transformed language L and
guide setG over Σ ∪Θ. We establish that the closure of a language L over
Σ ∪ {0} under guided insertion/deletion with respect to the set of guides G
is regular iffL under guided rewriting with respect toG is regular.

Paper layout. Section 2 provides the biological background of RNA-
editing. The theorem on the preservation of regularity for guided insertion-
deletion is presented in Section 3. The notion of guided rewriting based on
an adjustment relation is introduced in Section 4; a corresponding theorem
on the preservation of regularity for guided rewriting is formulated here too.
To pave the way for the proof of the latter theorem, Section 5 introduces
the notions of a rewrite sequence and of a slice sequence and establishes
their relationship. Rewrite sequences record the subsequent guided rewrites
that take place, slice sequences represent the cumulative effect of all rewrites
at a particular position of the string being adjusted. Section 6 describes a
construction of a finite automaton accepting the extended language LG for
a fixed set of guides G and a finite automaton accepting the language L.
In Section 7 the proof is given that regularity of L implies the regularity
of Li/d. Section 8 wraps up with related work and concluding remarks.

2 Biological Motivation

In this section we briefly describe the biological aspects of the RNA-editing
mechanisms and provide the corresponding abstractions.

In the living cell there are different kinds of RNA editing that vary in
the type of edited RNA and the set of editing operations. In this paper we
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focus on an editing which is quite extensively studied from a biological point
of view and which involves simultaneous insertion and deletion of uracil in
messenger RNA (mRNA) [3]. (Some other types of RNA editing involve also
letter substitution, cf. e.g. [17].) Uracil is represented by the letter U . The
three other types of nucleotides for RNA, viz. adenine, guanine and cytosine,
are represented by the letters A, G and C, respectively.

The type of U -insertion/deletion editing we are dealing with occurs
in the mitochondrial genes of kinetoplastid protozoa [19]. Kinetoplastids
are single cell organisms that include parasites like Trypanosoma brucei
and Crithidia fasciculata and that can cause serious diseases in humans
and/or animals. Although the mitochondrial genes contain a relatively small
amount of information, they are of utmost importance for the organism as a
whole [5]. Apart from being interesting from a fundamental point of view,
understanding of the RNA-editing mechanisms can be crucial in developing
medicines for the corresponding diseases.

Modifications of kinetoplastid mRNA are usually made within the
coding regions. These are the parts that are translated into proteins, which
are the building blocks of the cells. The coded information of the original
gene can be altered and therefore expressed, i.e. translated into proteins, in
a varying number of ways, depending on the environment in the cell. This
provides additional flexibility as well as potential specialization of different
parts of the organisms for particular functions.

In the sequel we describe an idealized version of the mechanism for the
insertion and deletion of U . More details can be found, for instance, in [19,
1, 6, 18]. For simplicity we assume that only identical letters match with
one another. In reality, the matching is based on complementarity, usually
assuming the so-called Crick-Watson pairs: A matches with U and G matches
with C.

A single step in the mRNA editing involves two strands of RNA, a
strand of (pre-edited) mRNA and a strand of guide RNA (gRNA), the latter
typically referred to as the guide. We explain the mechanism for the insertion
of uracil on the example given in Figure 1. We consider the mRNA fragment
u = N1N2N3N4N5 and the guide g = N2N3UUUN4, where Ni can be an
arbitrary nucleotide A, G or C, but not U . Obviously, there is some match
between u and g involving the letters N2, N3, and N4, which is partially
‘spoiled’ by the UUU sequence. Guide g attaches to u at positions where
the letters match. The matching substrings N2N3 and N4 serve as anchors
(Fig. 1a).
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Figure 1: Various stages of guided U -insertion

By means of enzyme machinery, i.e., a special complex of proteins-
enzymes called editosome [2], u is split open between N3 and N4 (Fig. 1b
and 1c). Then the editosome fills the gap between the anchors using the
guide as a template. (Actually, different enzymes of the editosome complex
are responsible for cutting the mRNA strand at the first mismatch position
and adding the Us, however here we can safely disregard these details.) For
each letter U in the guide the editosome adds a U in the gap. As a result
the mRNA string u is transformed into N1N2N3UUUN4N5 (Fig. 1d). In
general, one can have more than two anchors (involving only non-U letters)
in which the guide and the mRNA strand match. In that case the mRNA is
opened between each pair of anchors and all gaps between these anchors are
filled with U such that the number of Us in the guide is matched.

The deletion of Us from a strand of mRNA is implemented by a sym-
metrical biochemical mechanism. We illustrate the deletion process too
on an example. Assume the mRNA strand u = N1N2N3UUN4N5 and the
guide g = N2N3N4. Like in the insertion case, g initiates the editing by
attaching itself to u at the matching positions N2,N3, and N4. Only now
the enzymatic complex removes the mismatching UU substring between N3

and N4 to ensure a perfect match between the substring and the guide. As
a result the edited string N1N2N3N4N5 is obtained. In general, we can have
several anchoring positions on the same string. In that case, all Us between
each two matching positions are removed from the mRNA.

Simultaneous insertions and deletions of U are also possible.
For instance the guide N2N3UUUN4 can induce parallel editing
of the string N1UN2UN3UN4UN5UN6 which results in the string
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N1UN2N3UUUN4UN5UN6, where the U between N2 and N3 has been
deleted and two U ’s between N3 and N4 have been inserted. This is done by
the same biochemical mechanisms that are involved in separate insertions
and deletions. Like in the other cases described above, we can have multiple
insertions and deletions induced by the same guide on the original pre-edited
sequence.

Abstracting from the biochemical details, for all three cases considered
above it is common that a strand u = xyz, such that y equals g up to
occurrences of U , is modified by the insertion and deletion mechanism and
becomes a string v = xgz. The rewriting system that we describe in the
sequel also applies to another case with the same effect. For example, consider
a guide g = N2N3UUUN4 and a pre-edited mRNA u = N1N2N3UUN4N5N6.
Now, to obtain the match of the guide g and a substring y of u, a U is inserted
in u, resulting in the string v = N1N2N3UUUN4N5N6. If the U subsequence
in y was longer though, like in the case for u′ = N1N2N3UUUN4N5N6 and
g′ = N2N3UUN4, then we have that the extra U in u′ is removed resulting
in v′ = N1N2N3UUN4N5N6.

For our purposes, the mRNA editing mechanism underlying U -insertion
and deletion boils down to symbolic manipulations of strings. The common
denominator of the above described editing mechanisms is that in a single
step some substring y is replaced by a guide g for which y and g match
modulo occurrences of the symbol U . In the rest of the paper the analog of
the nucleotide U will be denoted by 0.

3 Guided insertion / deletion

Inspired by the biological scheme of editing of mRNA as discussed in the
previous section, we study more abstract notions of guided insertion and
deletion and guided rewriting based on an adjustment relation in the remain-
der of this paper. In this section we address guided insertion and deletion,
turning to guided rewriting in Section 4.

More precisely, fix an alphabet Σ and distinguish 0 /∈ Σ. Put Σ0 =
Σ ∪ {0}. Choose a finite set G ⊆ Σ∗0, with elements g also referred to as
guides. Reflecting the biological mechanism, we assume that each g ∈ G is
not equal to the empty string ε and that the first and last letter of each
g ∈ G is not equal to 0. Hence, G ⊆ Σ ∪ Σ·Σ∗0·Σ, or, more particularly,
G ⊆ Σ·( 0∗·Σ )∗. Now a guided insertion/deletion step ⇒i/d with respect
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to G is given by

u⇒i/d v ⇐⇒ u = xyz ∧ v = xgz ∧ g ∈ G ∧ π(y) = π(g)

where y ∈ Σ·Σ∗0·Σ, and π(y) and π(g) are obtained from y and g, respectively,
by removing their 0s. Thus, π : Σ∗0 → Σ∗ is the homomorphism such that
π(ε) = ε, π(0) = ε and π(a) = a for a ∈ Σ. So, intuitively, g is anchored on
the substring y of u and sequences of 0s are adjusted as prescribed by the
guide g, in effect replacing the substring y by the guide g while maintaining
the prefix x and suffix z.

As a simple example of a single guided insertion/deletion step, for G =
{g} with g = bcb000ab0c and u = a00bc00babcc00a00b, we have u ⇒i/d v
for v = a00bcb000ab0cc00a00b. Here we have u = a00 · bc00babc · c00a00b,
π(bc00babc) = bcbabc = π(bcb000ab0c) and v = a00 · bcb000ab0c · c00a00b.
Note, for the string v, being the result of a rewrite with guide g itself with
only one possible anchoring, only trivial steps can be taken further. So,
the operation of guided insertion/deletion with the same guide g at the
same position in a string is idempotent. However, anchoring may overlap.
Consider the set of guides G = { aa0a, a0aa }, for example. Then the string
aaa yields an infinite rewrite sequence

aaa⇒i/d aa0a⇒i/d a0aa⇒i/d aa0a⇒i/d a0aa · · ·

Still, from aaa only finitely many different rewrites can be obtained by
insertion/deletion steps guided by this G, viz. { aaa, aa0a, a0aa }.

The restrictions put on G exclude arbitrary deletions (possible if ε would
be allowed as guide) and infinite pumping (if guides need not be delimited by
symbols from Σ). As an illustration of the latter case, starting from the string
abc and ‘guide’ 0ab, the infinite sequence abc ⇒i/d 0abc ⇒i/d 00abc ⇒i/d

000abc . . . would be obtained. The restriction on the substring y prevents to
make changes outside the scope of the guide g and forbids a0b000c⇒i/d ab0c
by way of the guide ab.

As a first observation we show that the set Lui/d = { v ∈ Σ∗0 | u ⇒∗i/d
v }, for any finite set of guides G and any string u, is finite. Write u =
a00

i1a1 . . . an−10
inan where ak ∈ Σ, k = 0, . . . , n, and ik > 0, k = 1, . . . , n,

for some n > 0. In effect, a guided insertion/deletion step only modifies
the substrings 0ik or leaves them as is. Therefore, after one or more guided
insertion/deletion steps the substrings 0ik are strings taken from the set

Zu
i/d = { 0ik | 1 6 k 6 n } ∪ { 0` | xa · 0`bz ∈ G, x, z ∈ Σ∗0, a, b ∈ Σ, ` > 0 }
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Thus, if u ⇒∗i/d v then v ∈ L̂ui/d = { a0z1a1 . . . an−1znan | zk ∈ Zu
i/d, 1 6

k 6 n }, i.e. Lui/d ⊆ L̂ui/d. Since the set of guides G is finite, it follows that

Zu
i/d is finite, that L̂ui/d is finite and that Lui/d is finite as well.

More generally, given a set of guides G, we define the extension by
insertion/deletion Li/d of a language L over Σ0 by putting Li/d = { v ∈ Σ∗0 |
∃u ∈ L : u⇒∗i/d v }. Casted to the biological setting of Section 2, L are the
strands of messenger RNA, G are strands of guide RNA. Next, we consider
the question whether regularity of the language L is inherited by the induced
language Li/d. Note, despite the finiteness of the insertion/deletion scheme
for a single string, it is not obvious that such a statement would hold.

With the machinery of rewrite sequences and slice sequences developed
in the sequel of the paper, we will be able to prove the following for guided
insertion/deletion.

Theorem 1. If L is a regular language, then the language Li/d is regular
too.

We will prove Theorem 1 by applying a more general result on guided
rewriting, viz. Theorem 2 formulated in the next section and ultimately
proven in Section 6. As in the notion of guided rewriting as developed in
the sequel, symbols are only replaced by single symbols by which lengths
of strings are always preserved, a transformation is required to be able to
apply Theorem 2.

Before moving to guided rewriting we relate our results to those of [21].
There a relation similar to ⇒i/d was introduced, with the only difference
that in a single step either 0’s are deleted or inserted, but not both at the
some time. The consequence of this small difference is significant: the main
conclusion of [21] is that in that setting regularity is not preserved, which is
the opposite of Theorem 1 in the present setting.

4 Guided rewriting

The idea of guided rewriting is that a symbol is replaced by an equivalent
symbol, equivalence taken with respect to some adjustment relation ∼.
The resulting one-one correspondence of the symbols of the string u and its
guided rewrite v, enjoyed by this notion of reduction, will turn out technically
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convenient in the sequel. Intuitively, the equivalent symbols abstract from
sequences of 0’s.

Let Σ be a finite alphabet and ∼ an equivalence relation on Σ, called
the adjustment relation. If a∼ b we say that a can be adjusted to b. For a
string u ∈ Σ∗ we write #u for its length, use u[i] to denote its i-th element,
i = 1, . . . ,#u, and let u[p, q] stand for the substring u[p]u[p+1] · · ·u[q]. The
relation ∼ is lifted to Σ∗ by putting

u∼ v iff #u = #v ∧ ∀i = 1, . . . ,#u : u[i]∼ v[i]

Next we define the notion of guided rewriting that involves an adjustment
relation.

Definition 1. We fix a finite subset G ⊆ Σ∗, called the set of guides.

(a) For u, v ∈ Σ∗, g ∈ G, p > 0, we define u⇒g,p v, stating that v is the
rewrite of u with guide g at position p, by

u⇒g,p v iff ∃x, y, z ∈ Σ∗ : u = x y z ∧ #x = p ∧ y∼g ∧ v = x g z

(b) We write u⇒ v if u⇒g,p v for some g ∈ G and p > 0. We use ⇒∗ to
denote the reflexive transitive closure of ⇒. A sequence u1 ⇒ u2 ⇒
· · · ⇒ un is called a reduction.

(c) For a language L over Σ and a set of guides G we write

LG = { v ∈ Σ∗ | ∃u ∈ L : u⇒∗ v }

So, a ⇒-step adjusts a substring to a guide in G element-wise, and LG
consists of all strings that can be obtained from a string from L by any
number of such adjustments. Clearly, if u⇒ v then also u∼ v.

As an example, if Σ = {a, b, c}, G = {bb} and a∼ b but not a∼ c, then
by a ⇒-step two consecutive symbols not equal to c are replaced by two
consecutive b’s. In particular, aaacaa→bb,1 abbcaa and abbcaa→bb,0 bbbcaa.
We have

{aaacaa}G = { aaacaa, bbacaa, abbcaa,
aaacbb, bbbcaa, abbcbb, bbacbb, bbbcbb }

Next, we state the main result of this paper regarding guided rewriting.
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Theorem 2. Let an equivalence relation ∼ on Σ and a finite set of guides G
be given. Suppose L is a regular language. Then LG is regular too.

Before going to the proof, we first show that both finiteness of G and the
requirement of ∼ being an equivalence relation are essential.

To see that finiteness of G is essential for Theorem 2 to hold, let
G = { c akc bkc | k > 1 } and L = L(c a∗c a∗c). Let ∼ satisfy a∼ b but not
a∼ c. Then all elements of L on which an adjustment is applicable are of
the shape cakcakc, where the result of the adjustment is cakcbkc, which can
not be changed by any further adjustment because of the presence of b. So

LG ∩ L(c a∗c b∗c) = { c akc bkc | k > 1 }

is not regular. Since regularity is closed under intersection we conclude
that LG cannot be regular itself. However, note that in this example the
set of guides is not finite, but not regular either. (We revisit this issue in
Section 8.)

Also equivalence properties of ∼ are essential for Theorem 2. For
G = { ab } and ∼ = { (a, b), (b, a) } the only possible ⇒-steps are replacing
the pattern ba by ab. Note that here ∼ is neither reflexive nor transitive.
Since ba may be replaced by ab, bubble sort on a’s and b’s can be mimicked
by ⇒∗, while on the other hand ⇒∗ preserves both the number of a’s and
the number of b’s. Hence

L((ab)∗)G ∩ L(a∗b∗) = { akbk | k > 0 }

which proves that L((ab)∗)G is not regular, again since regularity is closed
under intersection.

5 Rewrite sequences and slice sequences

This section introduces an auxiliary notion, viz. the notion of a slice sequence,
that can be considered as a ‘vertical’ version of the ‘horizontal’ notion of a
rewrite sequence. We will establish a correspondence between these notions,
which provides the basis of our proof of Theorem 2 in Section 6.

Fix an alphabet Σ, an adjustment relation ∼, and a set of guides G.

Definition 2. A sequence % = (gk, pk)
r
k=1 of guide-position pairs is called

a guided rewrite sequence for a string u ∈ Σ∗ if it holds that (i) gk ∈ G,
(ii) 0 6 pk 6 #u−#gk, and (iii) u[pk+1, pk+#gk]∼ gk, for all k = 1, . . . , r.
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A guide-position pair (g, p) indicates an intended guided rewrite with g of the
string u at position p. For the rewrite to fit we must have p+ #g 6 #u. The
first p symbols of u, i.e. the substring u[1, p], are not affected by the rewrite,
as are the last #u− p+ #g symbols of u, i.e. the substring u[p+#g+1,#u].

The sequence % induces a sequence of strings (uk)
r
k=0 by putting u0 =

u and uk such that uk−1 ⇒gk,pk uk for k = 1, . . . , r. To conclude that
uk−1 ⇒gk,pk uk is indeed a proper guided rewrite step, in particular that we
have uk−1[pk+1, pk+#gk]∼gk, we use the assumption u[pk+1, pk+#gk]∼gk
and the fact that if u ⇒g,p v then u[p + 1, p + #g] ∼ v[p + 1, p + #g]
and u ∼ v. Therefore, by induction u ⇒∗ uk−1 and u[pk+1, pk+#gk] ∼
uk−1[pk+1, pk+#gk]

The final string ur of the guided rewrite sequence is referred to as the
yield of % for u, notation yield(%). Conversely, every specific reduction from u
to v gives rise to a corresponding guided rewrite sequence for u.

A guided rewrite sequence % = (gk, pk)rk=1 is said to be repetition-free all
its guide-position pairs are different, i.e. for 1 6 k1, k2 6 r, gk1 = gk2 ∧ pk1 =
pk2 implies k1 = k2.

Definition 3. Let a ∈ Σ. A sequence s` = (gi, qi)i∈I of guide-offset pairs,
for I ⊆ N a finite index set, is called a slice for a and G if it holds that
(i) gi ∈ G, (ii) 1 6 qi 6 #gi, and (iii) a∼ gi[qi], for all i ∈ I. The slice s`
is called a slice for a string u ∈ Σ∗ at position n, 1 6 n 6 #u, if it is a slice
of u[n].

A position p refers to the symbol u[p] of a string u. In contrast, in a guide-
offset pair (g, q) of a slice sequence, the offset q is relative to the guide g.
Since we require 1 6 q 6 #g for such a pair, the symbol g[q] is well-defined.
We will reserve the use of q for offsets, indices within a guide, and the use
of p for positions after which a rewrite may take place, i.e. for lengths of
proper substrings of a given string.

The goal of the notion of slice is to summarize the effect of a number
of guided rewrites local to a specific position within a string. The symbol
generated by the last rewrite that affected the position, i.e. the particular
symbol of the last element of the slice sequence, is part of the overall
outcome of the total rewrite. This symbol is called the yield of the slice.
More precisely, if I 6= ∅, the yield of a slice s` for a symbol a is defined
as yield(s`) = gimax [qimax ] where imax = max(I). In case I = ∅, we put
yield(s`) = a. Occasionally we write a∼ s`, as for a slice s` for a symbol a
it always holds that a∼ yield(s`).
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A slice s` = (gi, qi)i∈I is said to be repetition-free if, for i1, i2 ∈ I,
gi1 = gi2 ∧ qi1 = qi2 implies i1 = i2. If we have I = ∅, the slice s` is called
the empty slice.

Next we consider sequences of slices, and investigate the relationship between
slices on two consecutive positions in a guided rewrite sequence.

Definition 4. A sequence σ = (s`n)#un=1 is called a slice sequence for a
string u if the following holds:

• s`n is a slice for u at position n, for n = 1, . . . ,#u;

• for n = 1, . . . ,#u−1, putting s`n = (gi, qi)i∈I and s`n+1 = (g′i, q
′
i)i∈J ,

there exists a monotone partial injection γn : I → J such that, for all
i ∈ I and j ∈ J ,

(i) i /∈ dom(γn) =⇒ qi = #gi

(ii) γn(i) = j ⇐⇒ gi = g′j ∧ qi + 1 = q′j

(iii) j /∈ rng(γn) =⇒ q′j = 1

• the slices s`1 and s`#u, say s`1 = (gi, qi)i∈I and s`#u = (g′j , q
′
j)j∈J ,

satisfy qi = 1, for all i ∈ I, and q′j = #g′j, for all j ∈ J , respectively.

For the slices s`n and s`n+1 the mapping γn : I → J is called the cut for s`n
and s`n+1. It witnesses that s`n and s`n+1 match in the sense that a rewrite
(i) may end at position n, (ii) may continue for its next offset at position n+1,
and (iii) may start at position n+1. Note, for arbitrary pairs of slices the cut
may not exist. In fact, the requirements of Definition 4 completely determine
the cut between two slices. Since a cut γ is an order-preserving bijection
from dom(γ) to rng(γ), and dom(γ) and rng(γ) are finite, it follows that for
two slices s`, s`′ the cut for s` and s`′ is unique. We write s`; s`′. A slice
s` = (gi, qi)i∈I is called a start slice if qi = 1 for all i ∈ I. Similarly, s` is
called an end slice if qi = #gi for all i ∈ I. A start slice is generally, but not
necessarily, associated with the first position of the string that is rewritten,
an end slice with the last position. Note, a start slice as well as an end slice
are allowed to be empty. The yield of the slice sequence σ is the sequence of
the yield of its slices, i.e. we define yield(σ) = yield(s`1) · · · yield(s`#u).

Example 1. Let ∼ be the adjustment relation with equivalence classes
{a, b}, {c, d}, {e, f} and let the set of guides G be given by G = { g1, g2, g3 }
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In (gi, qi)i∈In

s`1 2, 4 2 7→ (g1, 1), 4 7→ (g1, 1)

s`2 2, 3, 4 2 7→ (g1, 2), 3 7→ (g2, 1), 4 7→ (g1, 2)

s`3 1, 3 1 7→ (g3, 1), 3 7→ (g2, 2)

s`4 3, 5, 6 3 7→ (g2, 3), 5 7→ (g1, 1), 6 7→ (g1, 1)

s`5 5, 6 5 7→ (g1, 2), 6 7→ (g1, 2)

Table 1: slice sequence of Example 1

where g1 = fb, g2 = ace and g3 = d. For the string u = ebcfa we consider the
guided rewrite sequence % = ( (g3, 2), (g1, 0), (g2, 1), (g1, 0), (g1, 3), (g1, 3) ).
The associated reduction looks like

ebcfa ⇒g3,2 ebdfa ⇒g1,0 fbdfa ⇒g2,1

facea ⇒g1,0 fbcea ⇒g1,3 fbcfb ⇒g1,3 fbcfb
(1)

Recording what happens at all of the five positions of the string u yields, for
this example, the slice sequence σ = (s`n)5n=1 given in Table 1. The slice
sequence is visualized in Figure 2.

For the particular choice of I1, . . . , I5, the monotone partial injection
γn, n = 1 . . . 4, maps every number to itself. It is easily checked that all
requirements of a slice sequence hold. The ovals covering guide-offset pairs
reflect the cuts as mappings between to adjacent slices. However, they also
comprise complete guides across a varying number of slices. Note, s`1 is a
start slice, s`5 is an end slice. We have for the slice sequence σ = (s`n)5i=1

that yield(σ) = yield(s`1) · · · · · yield(s`5) = fbcfb. Indeed, this coincides with
the yield of the guided rewrite sequence % of (1).

The rest of this section is devoted to proving that the above holds in general:
Given a string and a set of guides, for every guided rewrite sequence there
exists a slice sequence and for every slice sequence there exists a guided
rewrite sequence. Moreover, the yield of the guided rewrite sequence and
slice sequence are the same.

Theorem 3. Let % = (gk, pk)rk=1 be a guided rewrite sequence for a string u.

Then there exists a slice sequence σ = (s`n)#un=1 for u such that yield(σ) =
yield(%).

Proof. Induction on r. If % is the empty rewrite sequence, we take for σ the
slice sequence of n empty slices. Then we have yield(%) = u and yield(σ) = u.
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Figure 2: slice sequence of Example 1

Suppose % is non-empty. Let (uk)rk=0 be the sequence of strings induced
by %. By induction hypothesis there exists a slice sequence σ′ for the first
r−1 steps of %. Suppose ur−1 ⇒gr,pr ur. The slice sequence σ is obtained
by extending the slices of σ′ from position pr+1 to pr+#gr with the pairs
(gr, n−pr). Then,

yield(σ) = yield(σ′[1, pr]) · gr[1,#gr] · yield(σ′[pr+#gr+1,#u])

= ur−1[1, pr] · gr · ur−1[pr+#gr+1,#ur−1] = ur = yield(%)

Verification of σ being a slice sequence for u requires transitivity of ∼.

In order to show the reverse of Theorem 3 we proceed in a number of stages.
First we need to relate individual guide-offset pairs in neighboring slices. For
this purpose we introduce the ordering 4 on so-called chunks.

Definition 5. Let σ = (s`n)#un=1 be a slice sequence for u. Assume we have
s`n = ( gn,i, qn,i )i∈In , for n = 1, . . . ,#u. Let γn : In → In+1 be the cut for s`n
and s`n+1, 1 6 n < #u. Define X = { ( gn,i, qn,i, i, n ) | 1 6 n 6 #u, i ∈ In }
to be the set of chunks of σ and define the ordering 4 on X by putting
( g, q, i, n ) 4 ( g′, q ′, i′, n′ ) iff
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• either n′ > n and there exist indexes `0, h0, . . . , `n′−n, hn′−n such that

– `k, hk ∈ In+k and `k 6 hk, 0 6 k 6 n′ − n
– hk ∈ dom(γn+k) and γn+k(hk) = `k+1, 0 6 k < n′ − n
– `0 = i and hn′−n = i′

• or n′ 6 n and there exist indexes `0, h0, . . . , `n−n′ , hn−n′ such that

– `k, hk ∈ In′+k and `k 6 hk, 0 6 k 6 n− n′

– `k ∈ dom(γn′+k) and γn′+k(`k) = hk+1, 0 6 k < n− n′

– h0 = i′ and `n−n′ = i

Note, for indices `k, hk ∈ In+k as above, we have `k 6 hk, so `k is the lower
index, hk is the higher index. In the above setting with n′ > n, we say
that the sequence `0, h0, `1, h1, . . ., `n′−n, hn′−n is leading from i ∈ In up to
i′ ∈ In′ . Likewise for the case where n′ 6 n.

For example, for the slice sequence (s`i)
r
i=1 of Figure 2, to identify the

guide belonging to the guide-offset pair (g2, 1) of slice s`2, the pair is more
precisely represented by the chunk (g2, 1, 3, 2), for the pair is associated
with index 3 ∈ I2 of slice s`2. Since for the cuts γ 2 : I2 → I3 and γ 3 :
I3 → I4 we have γ 2(3) and γ 3(3) = 3, we have (g2, 1, 3, 2) 4 (g2, 2, 3, 3) 4
(g2, 3, 3, 4) via the sequence 3, 3, 3, 3 connects (g2, 1) and (g2, 2), and 3, 3, 3, 3
connecting (g2, 2) and (g2, 3). (Hence the combination of these sequences
is 3, 3, 3, 3, 3, 3 which connects (g2, 1) and (g2, 3) directly.) As no jumps
from a low index ` to a high index h need to be taken, we also have
(g2, 1, 3, 2) < (g2, 2, 3, 3) < (g2, 3, 3, 4). Thus (g2, 1, 3, 2) ≡ (g2, 2, 3, 3) ≡
(g2, 3, 3, 4) }. In fact, { (g2, 1, 3, 2), (g2, 2, 3, 3), (g2, 3, 3, 4) } is an equivalence
class for X corresponding to the guide g2 (cf. Lemma 1). Differently, we
have (g2, 1, 3, 2) 4 (g1, 2, 6, 5) relating g2 to the fourth occurrence of g1 via
the sequence 3, 3, 3, 3, 3, 5, 5, 5, for example. Since there is a jump here
from `2 = 3 to h2 = 5, we do not have (g2, 1, 3, 2) < (g1, 2, 6, 5). The
ordering (g2, 1, 3, 2) 4 (g1, 2, 6, 5) reflects that apparently the rewrite with
this occurrence of g1 is on top of part of the rewrite using g2 as guide.

Given a slice sequence σ, the ordering 4 on the chunks of σ in X gives rise
to a partial ordering on the set X/≡ of equivalence classes of chunks. As we
will argue, the equivalence classes correspond to guides and their ordering
corresponds to the relative order in which the guides occur in a rewrite
sequence % having the same yield as the slice sequence σ.
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Lemma 1. (a) The relation 4 on X is reflexive and transitive.

(b) The relation ≡ on X such that x ≡ y ⇐⇒ x 4 y ∧ y 4 x is an
equivalence relation.

(c) The ordering 4 on X/≡ induced by 4 on X by [x] 4 [y] ⇐⇒ ∃x′ ∈
[x]∃y′ ∈ [y] : x′ 4 y′, makes X/≡ a partial order.

Proof. We only prove part (a); parts (b) and (c) are straightforward. As to
verify reflexivity of 4, let (g, q, i, n) ∈ X . Choose `0 = i and h0 = i. Then
`0, h0 ∈ In, `0 6 h0, and, obviously, `0 = i and h0 = i. So, (g, q, i, n) 4
(g, q, i, n).

As to verify transitivity of 4, assume (g1, q1, i1, n1) 4 (g2, q2, i2, n2) and
(g2, q2, i2, n2) 4 (g3, q3, i3, n3). We check that (g1, q1, i1, n1) 4 (g3, q3, i3, n3)
for the case n3 6 n1 6 n2, leaving the other cases, which are similar or
easier, to the reader. Pick `k, hk ∈ In1+k, for 0 6 k 6 n2−n1, meeting
the first set of requirements of Definition 5, and pick `′j , h

′
j ∈ In3+j , for

0 6 j 6 n2−n3 meeting the second set of requirements. Consider the
sequence of indices `′0, h

′
0, . . . , `0, h

′
n1−n3

which is the initial part of the
sequence from i2 ∈ In2 up to i3 ∈ In3 , viz. the first n1−n3 out of n2−n3
pairs of indices, except that `′n1−n3

has been replaced by `0. We check that
the second set of requirements of Definition 5 holds for this sequence, making
it a sequence leading from i1 ∈ In1 up to i3 ∈ In3 . It is straightforward to
check that the requirements are being met, except for `0 6 h′n1−n3

. This
follows from the fact that `0 = i1 is related to hn2−n1 = i2 by a sequence
of indices respecting the ordering on the index sets In1+k or related by an
order-preserving mapping γn1+k, and h′n3−n1

∈ In1 is related to h′n2−n3
= i2

by a sequence of indices respecting the ordering on the index sets In3+j or
related by an order-preserving mapping γn3+j too, n1−n3 6 j 6 n2−n3.
Therefore, we have `0 ‘6’ hn2−n1 = i2 = `′n3−n2

‘6’ h′n1−n3
. (A more precise

and detailed statement can be proven by induction on n2−n1, but is omitted
here.)

The next lemma describes the form of the equivalence class holding
a chunk x = (g, q, i, n). Using the cuts, equivalent chunks can be
found backwards up to position n−q+1 and forward up to position
n−q+#g. These chunks together, (g, 1, in−q+1, n−q+1), . . . , (g, q, in, n),
. . . , (g,#g, in−q+#g, n−q + #g) span the guide g that is to be applied, in
the rewrite sequence to be constructed.



18 E.P. de Vink, H. Zantema, D. Bošnački

Lemma 2. Let σ = (s`n)#un=1 be a slice sequence for a string u. Let X =
{ ( gn,i, qn,i, i, n ) | 1 6 n 6 #u, i ∈ In } be the set of chunks and choose
x ∈ X , say x = (g, q, i, n). Put p = n−q. Then there exist j1 ∈ Ip+1, . . . ,
j#g ∈ Ip+#g such that [x] = { (g, s, js, p+ s) | 1 6 s 6 #g }.

Proof. It holds that (g, q, i, n−1) ≡ (g′, q′, i′, n) iff g = g′, q = q′−1,
and i = γ−1n−1(i

′) where γn−1 : In−1 → In is the cut for s`n−1 and s`n,
while (g, q, i, n) ≡ (g′, q′, i′, n+1) iff g = g′, q+1 = q′, and γn(i) = i′,
where γn : In → In+1 is the cut for s`n and s`n+1. So, choose js =
( γ−1n−q+s ◦ · · · ◦ γ−1n−1 )(i) for 1 6 s 6 q, and js = ( γn+s ◦ · · · ◦ γn )(i) for
q 6 s 6 #g.

We are now in a position to prove the reverse of Theorem 3.

Theorem 4. Let σ be a slice sequence for a string u. Then there exists a
guided rewrite sequence % for u such that yield(%) = yield(σ).

Proof. Suppose σ = ( s`n )#un=1, s`n = ( gi,n, qi,n )i∈In , for n = 1, . . . ,#u, and
let X = { ( gn,i, qn,i, i, n ) | 1 6 n 6 #u, i ∈ In } be the corresponding set of
chunks. We proceed by induction on #X . Basis, #X = 0: In this case every
slice is empty and yield(σ) = yield( s`1 ) · · · yield( s`#u ) = u[1] · · ··u[#u] = u
and the empty guided rewrite sequence for u has also yield u.

Induction step, #X > 0: Clearly, X/≡ is finite and therefore we can
choose, by Lemma 1, x ∈ X such that [x] is maximal in X/≡. By Lemma 2
we can assume [x] = {(g, s, is, p+s) | 1 6 s 6 #g} for suitable p and indexes
is ∈ Ip+s, for s = 1, . . . ,#g. Note, by maximality of [x], the indexes is must
be the maximum of Ip+s. In particular, yield(σ )[p+s] = yield( s`p+s ) = g[s],
for s = 1, . . . ,#g.

Now, consider the slice sequence σ′ = ( s`′n )#un=1 where

s`′n =

{
s`n for n = 1, . . . , p and n = p+#g+1, . . . ,#u
( gi,n, qi,n )i∈In\{in−p} for n = p+1, . . . , p+#g

So, the slice sequence σ′ is obtained from the slice sequence σ by leaving out
the guide-offset pairs related to the particular occurrence of g.

Let X ′ be the set of chunks of σ′. Then #X ′<#X . By induction
hypothesis we can find a guided rewrite sequence %′ = ( g′k, p

′
k )rk=1 for u

such that yield( %′ ) = yield(σ′ ). Define the guided rewrite sequence ρ =
( gk, pk )r+1

k=1 by gk = g′k, pk = p′k for k = 1, . . . , r and gr+1 = g, pr+1 = p.
We have 0 6 p 6 #u−#g and u[p+1, p+#g]∼ g since s`p+1, . . . , s`p+#g are
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slices for u[p+1], . . . , u[p+#g], respectively. So, % is a well-defined guided
rewrite sequence for u.

It holds that yield( %′ )⇒g,p yield( % ) as % extends %′ with the pair (g, p).
Therefore,

yield(%)[n] =

{
yield(%′)[n] for n = 1, . . . , p and n = p+#g+1, . . . , p+#g
g[n−p] for n = p+1, . . . , p+#g

From this it follows, for any index n, 1 6 n 6 p or p+#g+1 6 n 6 #u,
that yield( % )[n] = yield( %′ )[n] = yield(σ′ )[n] = yield(σ )[n], and for any
index n, p+1 6 n 6 p+#g, that yield( % )[n] = g[n−p] = yield(σ )[n]. As
#yield( % ) = #yield(σ ) = #u, we obtain yield( % ) = yield(σ ), as was to
be shown.

For the slice sequence (s`i)
5
i=1 of Figure 2 we have the following equivalence

classes of chunks:

G3 = { (g3, 1, 1, 3) } G2 = { (g2, 1, 3, 2), (g2, 2, 3, 3), (g2, 3, 3, 4) }
G 1

1 = { (g1, 1, 2, 1), (g1, 2, 2, 2) } G 3
1 = { (g1, 1, 5, 4), (g1, 2, 5, 5) }

G 2
1 = { (g1, 1, 4, 1), (g1, 2, 4, 2) } G 4

1 = { (g1, 1, 6, 4), (g1, 2, 6, 5) }

Moreover, G3 4 G 1
1 4 G2, G2 4 G 2

1 and G2 4 G 3
1 4 G 4

1 . A possible
linearization is G3 4 G 1

1 4 G2 4 G 3
1 4 G 4

1 4 G 2
1 . This corresponds to the

rewrite sequence

ebcfa ⇒g3,2 ebdfa ⇒g1,0 fbdfa ⇒g2,1 facea ⇒g1,3 facfb ⇒g1,3 facfb ⇒g1,0 fbcfb

Note that the yield fbcfb of this rewrite sequence is the same as the yield of
the sequence (1) of Example 1. However, here the second rewrite with g1
of (1) has been moved to the end now. This does not effect the end result as
the particular rewrites do not overlap.

6 Guided rewriting preserves regularity

Given a language L and a set of guides G, according to Definition 1, the
language LG is given as the set { v ∈ Σ∗ | ∃u ∈ L : u ⇒∗ v }. Theorem 2
formulated in Section 4, states that if L is regular than LG is regular too. We
will prove the theorem by constructing a non-deterministic finite automaton
accepting LG from a deterministic finite automaton accepting L. The proof
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exploits the correspondence of rewrite sequences and slice sequences, as
captured by Theorem 3 and Theorem 4. First we need an auxiliary result to
assure finiteness of the automaton for LG.

Lemma 3. Let G be a finite set of guides. Let Z = { s` |
∃a ∈ Σ: s` repetition-free slice for a with respect to G }. Then Z is finite.
Moreover, for every string u and every rewrite sequence % for u, there
exists a slice sequence σ for u consisting of slices from Z only such that
yield(σ) = yield(%).

Proof. Recall, a slice s` = (gi, qi)i∈I is repetition-free if, for i1, i2 ∈ I,
gi1 = gi2 ∧ qi1 = qi2 implies i1 = i2. Therefore, finiteness of Z is immediate:
there are finitely many guide-offset pairs (g, q), hence finitely many repetition-
free finite sequences of them. Thus, there are only finitely many repetition-
free slices.

Now, let % be a rewrite sequence for a string u. By Theorem 3 we
can choose a slice sequence σ′ such that yield(σ′) = yield(%). Suppose

σ′ = (s`n)#un=1 and s`n = (gi,n, qi,n)i∈In for n = 1, . . . ,#u. By Lemma 2 it
follows that given a repeated guide-offset pair (g, q), say (g, q) = (gi,n, qi,n)
and (g, q) = (gj,n, qj,n) for indexes i < j in In, we can delete the complete
equivalence class of (gi, qi, i, n) from slices s`n−q+1 to s`n−q+#g, while re-
taining a slice sequence. (In fact, we are removing the ‘lower’ occurrence
of the guide g.) Moreover, the resulting slice sequence has the same yield
as for all slices the topmost guide-offset pair remains untouched. The ex-
istence of a repetition-free slice sequence σ such that yield(σ) = yield(σ′),
hence yield(σ) = yield(%), then follows by induction on the number of
repetitions.

As a corollary we obtain that every rewrite sequence % has a repetition-free
equivalent %′.

We are now prepared to prove that guided rewriting preserves regularity.

Proof of Theorem 2. Without loss of generality ε /∈ L. Let M =
(Σ, Q,→, q0, F ) be a DFA accepting L. We define the NFA M ′ =
(Σ, Q′,→′, q0, F ′) as follows: Let qF be a fresh state. Put Q′ = Q∪ (Q×Z)∪
{qF } with Z as given by Lemma 3, F ′ = {qF } and

q0
ε−→ ′ q0 × ζ if ζ is a start slice

q × ζ b→ ′ q ′ × ζ ′ if q
a→ q ′, a∼ ζ, yield(ζ) = b, ζ ; ζ ′

q × ζ b→ ′ qF if ∃q ′ : q a→ q ′ ∈ F , a∼ ζ, yield(ζ) = b, ζ is an end slice
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Note, by Lemma 3, Q′ is a finite set of states. The automaton M ′ has
only one final state, viz. qF . In the second type of transition, say with
ζ = (gi, qi)i∈I and ζ ′ = (g′j , q

′
j)j∈J , the requirement ζ ; ζ ′ implies the

existence of a cut γ : I → J in the sense of Definition 4. Thus in a way, the
slice ζ ′ is a follow-up of the slice ζ.

Suppose v ∈ LG. Then there exist u = a1 · · · as ∈ L, a rewrite sequence
% = (gk, pk)

r
k=1 and strings u0, u1, . . . , ur such that u = u0, uk−1 ⇒gk,pk uk

for k = 1, . . . , r, and v = ur. By Theorem 3 there exists an slice sequence
that is equivalent to %. Therefore, by Lemma 3, we can assume that a slice
sequence σ for u exists with repetition-free slices and such that yield(σ) =
yield(%). Say σ = (s`n)sn=1 and s`n = (gi,n, qi,n)i∈In for n = 1, . . . , s. Let

q0
a1−→ q1 · · ·

as−→ qs ∈ F be an accepting computation of M for u. Then

q0
ε−→ ′ q0×s`1

b1−→ ′ · · · qs−1×s`s
bs−→ ′ qF is an accepting computation of M ′,

where bn = yield(s`n), 1 6 n 6 s. Since we have b1 · · · bs = yield(s`1) · · ·
yield(s`s) = yield(σ) = v, it follows that v ∈ L(M ′). So, LG ⊆ L(M ′).

Let v = b1 · · · bs be a string in L(M ′). Given the definition of the
transition relation on M ′, we can find states q0, q1, . . . , qs−1, repetition-
free slices s`1, . . . s`s such that s`n ; s`n+1 for n = 1, . . . , s−1, and a

computation q0
ε−→ ′ q0×s`1

b1−→ ′ · · · qs−1×s`s
bs−→ ′ qF . Thus, there exist a

final state qs and a computation q0
a1−→ q1 · · · qs−1

as−→ qs ∈ F such that
an ∼ s`s for n = 1, . . . , s, i.e. s`n is a slice for an. Put u = a1 · · · as. Then
u ∈ L, (s`n)#un=1 is a slice sequence for u and yield(σ) = v. By Theorem 4
we can find a rewrite sequence % for u such that yield(%) = yield(σ) = v.
It follows that u⇒∗ v and v ∈ LG. Thus, L(M ′) ⊆ LG. We conclude that
LG = L(M ′) and regularity of LG follows.

As a soundness check, observe L ⊆ LG the automaton M ′ should accept any
word a1 . . . as ∈ L, s > 0. This can be verified as follows. Let ζ i be the empty
slice yielding ai, i = 1, . . . , s. Then ai ∼ ζ i, i.e. ai = yield(ζ i), which holds
by definition. Moreover, ζ 1 is a start slice, ζ i ; ζ i+1 for i = 1, . . . , s−1,
and ζ s is an end slice. It follows that we can turn an accepting computation
of M , say q0

a1−→ q1
a2−→ · · · as−→ qs ∈ F into an accepting computation of M ′:

q0
ε−→ ′ q0 × ζ 1

a1−→ ′ q1 × ζ 2
a2−→ ′ · · · as−1−−−→ ′ qs−1 × ζ s

as−→ ′ qF .

7 Insertion-deletion preserves regularity

This section provides the proof of Theorem 1, regularity of L implies regularity
of Li/d, exploiting Theorem 2, regularity of L implies regularity of LG. For
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the latter theorem to apply we need a preparatory transformation. The
point is, in the setting of guided insertion/deletion of 3 strings are allowed
to grow or shrink while guided insertions and deletions are being applied,
whereas in the setting of guided rewriting of 4 the strings do not change
length.

The key idea of the transformation is that every group of 0’s is com-
pressed to a single symbol. So, let us fix for the remainder of this section a
regular language L over Σ0 = Σ∪ {0} and a set of guides G ⊆ Σ∪Σ ·Σ∗0 ·Σ.
Let N be the maximum number of consecutive 0’s occurring in the elements
of G. Then we introduce N + 2 fresh symbols 00, 01, . . . , 0N , 0+ and put
Θ = { 00, 01, . . . , 0N , 0+ }.

For a string u over Σ0 we define the string ū over the alphabet Σ = Σ ∪Θ.
The string u is obtained from u by replacing every maximal pattern 0i

by the single symbol 0i, in case i 6 N , and by 0+ in case i > N . More
precisely, if a1, . . . , an ∈ Σ and u = 0k0a10

k1a2 · · · an0kn with ki > 0 for
i = 0, . . . , n, then u = 0p0a10p1a2 · · · an0pn where pi = ki if 0 6 ki 6 N and
pi = + if ki > N , for i = 0, . . . , n. For such u = 0k0a10

k1a2 · · · an0kn we
write zeros(u, i) = ki for i = 0, . . . , n. For a set V of strings over Σ0, we put
V = { v̄ | v ∈ V }.

Lemma 4. If L ⊆ Σ∗0 is regular, thenL⊆ Σ
∗

is regular as well.

Proof. LetM = (Q,Σ0, δ, q0, F ) be an NFA accepting L. Obtain the NFAM ′

from M by putting M ′ = (Q,Σ ∪Θ, δ′, q0, F ) where

δ′(q, α) = δ(q, α) for α ∈ Σ ∪ {ε}
δ′(q, 0i) = { q′ ∈ Q | q 0 i

==⇒ q′ } for 0 6 i 6 N

δ′(q, 0+) = { q′ ∈ Q | ∃i > N : q
0 i

==⇒ q′ }

In particular, we have q
00−−→′ q for all q ∈ Q. We claim L = L(M ′) ∩

Θ ·(Σ ·Θ)∗.
Pick u ∈ L. Suppose u = 0k0a10

k1 . . . an0kn ∈ L with 0 6 ki for
i = 0, . . . , n. Then we have u = 0p0a10p1 . . . an0pn for suitable indices
pi ∈ { 0, . . . , N,+ }. Let

q0
0k0
==⇒ q′1

a1−→ q1
0k1
==⇒ · · · q′n

an−→ qn
0kn

==⇒ q′n+1 ∈ F

be an accepting computation of M for u. Then

q0
0p0−−−→′ q′1

a1−−→′ q1
0p1−−−→′ · · · q′n

an−−→′ qn
0pn−−−→′ q′n+1 ∈ F
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Figure 3: Example automaton construction as used in Lemma 4, with N = 2

is an accepting computation of M ′ for u. So u ∈ L(M ′). Clearly, u ∈
Θ ·(Σ ·Θ)∗. ThusL⊆ L(M ′) ∩Θ ·(Σ ·Θ)∗.

Conversely, pick v ∈ L(M ′)∩Θ ·(Σ ·Θ)∗. Say v = 0p0a10p1 · · · an0pn for
some n > 0, p0, . . . , pn ∈ {0, . . . , N,+} and a1, . . . , an ∈ Σ. Since v ∈ L(M ′)
there exists an accepting computation

q0
0p0−−−→′ q′1

a1−−→′ q1
0p1−−−→′ · · · q′n

an−−→′ qn
0pn−−−→′ q′n+1 ∈ F

of M ′ for v. Then, by construction of M ′, there also exists an accepting
computation

q0
0k0
==⇒ q′1

a1−→ q1
0k1
==⇒ · · · q′n

an−→ qn
0kn

==⇒ q′n+1 ∈ F

of M for suitable indices k0, . . . , kn such that ki = pi if pi ∈ { 0, . . . , N },
and ki > N if pi = +, for i = 0, . . . , n. Therefore, u = 0k0a10

k1 · · · an0kn ∈
L(M), i.e. u ∈ L. Moreover, by the correspondence of k0, . . . , kn and
p0, . . . , pn, respectively, it holds that u = v, hence v ∈ L. Thus L(M ′) ∩
Θ ·(Σ ·Θ)∗ ⊆L.

Conclusion: L = L(M ′) ∩Θ ·(Σ ·Θ)∗ andL is regular, being the inter-
section of two regular languages.

The construction from the proof is illustrated in Figure 3.

We consider the adjustment relation ∼0 on Σ defined by

a∼0 b ⇐⇒ a = b ∨ (a ∈ Θ ∧ b ∈ Θ)
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and guided rewriting ⇒ on Σ with respect to ∼0 and the set of guides G.
However, for elements of G the leading and trailing 00’s are removed, so

G = { a10k1a2 · · · 0kn−1an | a10k1a2 · · · 0kn−1an ∈ G }

Note, the correspondence of the index ki in 0ki and the index ki in 0ki is
literally, since always 0 6 ki 6 N . Moreover, if, for u, v ∈ Σ∗0, we have
u∼0 v, then also π(u) = π(v).

Lemma 5. Let u, v ∈ Σ∗0.

(a) If u⇒i/d v then ū⇒ v̄.

(b) Conversely, if u ⇒ v, and zeros(v, i) > N implies zeros(v, i) =
zeros(u, i), for all i, then u⇒i/d v.

Proof. (a) By definition, if u ⇒i/d v with respect to G, then there exist
strings x, z ∈ Σ∗0, y ∈ Σ ·Σ∗0 ·Σ, and g ∈ G such that π(y) = π(g), u = xyz
and v = xgz. Say

x = 0k0a10
k1 · · · as0ks , y = b10

`1 · · · 0`r−1br ,

z = 0m0c10
m1 · · · cq0mq , and g = b10

`′1 · · · 0`′r−1br

for s, q > 0, r > 1, 0 6 k0, . . . , ks, `1, . . . , `r−1, m0, . . . ,mq and
a1, . . . , as, b1, . . . , br, c1, . . . , cq ∈ Σ. Then we have

x = 0pk0
a10pk1

· · · as0pks
, y = b10p`1 · · · 0p`r−1

br ,

z = 0pm0
c10pm1

· · · cq0pmq
, and ḡ = b10p`′1 · · · 0p`′r−1

br

for suitable indices pk i, p`j , p`
′
j , pmk ∈ { 0, . . . , N,+ }. By definition of ∼0

we have 0p`j ∼0 0p`′j for 1 6 j 6 r. Hence y ∼0 g and u = x y z ∼0 x ḡ z = v.

(b) Suppose

u = 0k0a10
k1 . . . an0kn and v = 0`0b10

`1 . . . bm0`m

for n,m > 0, k0, . . . , kn, `0, . . . , `m > 0 and a1, . . . , an, b1, . . . , bm ∈ Σ. Then

u = 0pk0
a10pk1

. . . an0pkn
and v = 0p`0b10p`1 . . . bm0p`m
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for suitable pki , p`j ∈ { 0, . . . , N,+ }, i = 0, . . . , n, j = 0, . . . ,m. Assuming
u⇒ v with respect to ∼0, we have n = m, ai = bi for 1 6 i 6 n. Moreover,
there exist indices r and s, 1 6 r < s 6 n such that

0pk0
a10pk1

. . . ar−10pkr−1
= 0p`0a10p`1 . . . ar−10p`r−1

ar0pkr
. . . 0pks−1

as ∼0 ar0p`r . . . 0p`s−1
as

ar0p`r . . . 0p`s−1
as ∈ G

0pks
as+1 . . . an0pkn

= 0p`sas+1 . . . an0p`n

It follows that pk i = p`i for 1 6 i < r and pk j = p`j for s 6 j 6 n.
If pk i 6= + or pk j 6= + this implies ki = `i and kj = `j . If view of the
additional assumption that zeros(v, i) > N implies zeros(v, i) = zeros(u, i)
for 1 6 i 6 n, it follows that ki = `i for all 1 6 i < r and kj = `j for all
s 6 j 6 n. Now, put

x = 0k0a10
k1 . . . ar−10

kr−1 , y = ar0
kr . . . 0ks−1as ,

and z = 0ksas+1 . . . an0kn

Choose g ∈ G such that ḡ = 00ar0p`r . . . 0p`s−1
as00. Say g =

ar0
`′r . . . 0`

′
s−1as. Since p`r, . . . , p`s−1 6= + it holds that `i = p`i = `′i

for r 6 i < s, i.e. g = ar0
`r . . . 0`s−1as. Thus we have u = xyz, v = xgz and

π(y) = π(g). Hence u⇒i/d v with respect to G.

Lemma 6. It holds that

Li/d = { v ∈ Σ∗0 | ∃u ∈ L : u⇒∗ v ∧
∀i : (zeros(v, i) > N → zeros(v, i) = zeros(u, i)) }

where ⇒ is the guided rewriting relation with respect to G.

Proof. (⊆). Let v ∈ Li/d. Thus, there exists u ∈ L such that u ⇒∗i/d v.
Using the first claim of Lemma 5 we obtain u⇒∗ v. From u ∈ L we conclude
u ∈L and therefore v ∈LG. Furthermore, if zeros(v, i) > N then in u⇒∗i/d v
the corresponding group of zeros(v, i) many consecutive 0’s is not touched,
so zeros(v, i) = zeros(u, i). This concludes (⊆).

(⊇). Let u ∈ L satisfy ū⇒n v̄ and ∀i : (zeros(v, i) > N → zeros(v, i) =
zeros(u, i)), for n > 0. We will prove u ⇒n

i/d v by induction on n. For the

base case n = 0 this follows from ū = v̄, the definition of the mapping −̄
and the assumption (zeros(v, i) > N → zeros(v, i) = zeros(u, i)). For the
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induction step, n > 0, suppose u ⇒n−1 w ⇒ v. For every i, observe if
zeros(w, i) > N then zeros(u, i) > N . Now choose w′ such that w ′ = w
and, for all i, if zeros(w, i) > N then zeros(w′, i) = zeros(u, i), otherwise
zeros(w′, i) = zeros(w, i). Applying the induction hypothesis on u⇒n−1 w ′

yields u ⇒n−1
i/d w′, and applying Lemma 5 to w ′ ⇒ v yields w′ ⇒i/d v, so

u⇒n
i/d v.

A direct consequence of Lemma 6 is the following corollary.

Corollary 1. In the setting above, let v = 0m0a10m1 · · · an0mn ∈ Σ∗0, where
ai ∈ Σ for i = 1, . . . , n. Then v ∈ Li/d iff v = 0p0a10p1 · · · an0pn ∈ LG and

u = 0k0a10k1 · · · an0kn ∈ L exists such that ki = pi if pi ∈ {0, . . . , N} and
ki = mi if pi = +, for i = 0, . . . , n.

Now we are ready to construct, given an NFA M for the language L over Σ0,
an NFA Mi/d exactly accepting the language Li/d.

Suppose M = (Σ0, Q,→, q0, F ). According to Lemma 4 we have that
L is regular. By Theorem 2 we obtain that LG is regular. So, let M =
(Σ, Q, →, q0, F ) be an NFA accepting LG. According to Lemma 6, Li/d
consists of strings v such that v ∈LG, thus for some u ∈ L we have u⇒∗ v .
By mapping v to v every maximal group of k 0’s with k > N is mapped to
0+; the extra requirement for being in Li/d is that the size of such a group
coincides with the size of the corresponding group in the original string
u ∈ L. This leads to the following construction of the NFA Mi/d for Li/d.

Definition 6. Suppose M = (Σ0, Q,→, q0, F ) and M = (Σ, Q, →, q0, F )
are NFA’s for the languages L andLG, respectively. Then, the NFA Mi/d is
defined as follows:

• the set of states of Mi/d is Q×Q× { 0, . . . , N }

• the transition relation of Mi/d is given by

1. if q
a−→ r and q

a−→ r then (q, q, 0)
a−→ (r, r, 0), for a∈Σ, q, r∈Q, q, r∈Q

2. if q
0∗

==⇒ r (zero or more 0-steps) and q
0k−→ r then (q, q, 0)

0k
==⇒ (r, r, 0),

for q, r ∈ Q, q, r ∈Q, k ∈ { 0, . . . , N }. More specifically, for k = 0 we
have a transition (q, q, 0)

ε−→ (r, r, 0), for k = 1 we have a transition
(q, q, 0)

0−→(r, r, 0), and for k > 1 we create k−1 fresh states and a path
consisting of k 0-steps along these fresh states from (q, q, 0) to (r, r, 0).
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3. if q
0−→ r and q

0+−→ r then (q, q̄, 0)
0−→ (r, r̄, N), for q, r ∈ Q, q, r ∈Q

4. if q
0−→ r then (q, r,N)

0−→ (r, r,N) and (q, r, i)
0−→ (r, r, i−1) for q, r ∈

Q, r̄ ∈Q and i = 1, . . . , N

• the initial state of Mi/d is (q0, q̄0, 0)

• the set of final states of Mi/d is F ×F × {0}.

The idea of this NFA Mi/d is that as long as 0+ does not come into play, it

exactly mimics the NFAM executing an a-step, based on rule 1, or replacing
every 0k by k separate 0-steps, based on rule 2. When it has to simulate
a 0+-step ofM , it performs a number of 0-steps as following the NFA M .
However, it has to be guaranteed that this latter number is indeed more
than N . The third component of states of Mi/d serves this purpose. When
Mi/d takes a transition based on rule 3 above executing a 0-step, the third
component is set to it maximal value N . Next, based on the two types of
transitions covered by rule 4, either the value N is maintained to cater for a
sequence of more than N+1 zeros, or it is counted down to 0 taking exactly
N steps, yielding N + 1 zeros at least. We illustrate the behaviour of Mi/d

by an example.

The language L = L( (1(00)∗2)∗) is accepted by the NFA M :

Let G = {201}. Then we have N = 1, andL= L( 00(1(00 + 0+)200)
∗). For

closure underG every substring of the shape 2001 of a string in L may be
replaced by 2011, yielding the following NFA M accepting LG:



28 E.P. de Vink, H. Zantema, D. Bošnački

The automaton Mi/d that is constructed as a product of the automata M

andM is depicted in Figure 4.

For example, the transition (q0, q0, 0)
ε−→(q0, q1, 0) of Mi/d is based on

the transition q0
ε

=⇒q0 of M and the transition q0
00−→q1 ofM using rule 2,

while the transition (q0, q1, 0)
1−→(q1, q2, 0) of Mi/d is based on the transition

q0
1−→q1 and q1

1−→q2 ofM using rule 1. The two transitions leaving (q1, q2, 0)
in Mi/d correspond to the two transitions for q2 inM , one labeled with 00
and one labeled with 0+. The former induces the transition ε-transition to
state (q1, q3, 0) based on rule 2, the latter however induces the 0-transition
to state (q2, q3, 1) where the counter in the third component is set to N = 1.
This indicates that at least one more zero needs to be matched. In Mi/d

this can be done in two ways, either by looping via state (q1, q3, 1) or by
going to state (q1, q3, 0) directly. Here, the transitions are based on rule 4 of
Definition 6. Note that state (q0, q3, 0) is a deadlock state. Finally, in state
(q0, q4, 0) two transitions are possible again. This reflects that at this point
an insertion/deletion step may take place or not. If so, the computation
continues via state (q0, q5, 0). If not, the computation proceeds with an
ε-transition to state (q0, q1, 0).

More concretely, consider the string 10000212 ∈ L. It admits an
insertion/deletion step with the guide 201 to the string 100002012. So,
100002012 ∈ Li/d. For accepting 100002012 by Mi/d it is essential to rely for

processing the part 100002 on M , since with respect to Σ every group of more
than one consecutive 0’s is compressed to 0+, by which inM the information
is lost that we should have an even number of 0’s. This is handled in the
(q2, q3, 1)–(q1, q3, 1) loop. For the rest of the string the automatonM should
be followed, since in M the information that 21 was allowed to be replaced
by 201 is not available. The 0-transition leaving of state (q0, q4, 0) makes
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Figure 4: Automaton Mi/d

this possible. The resulting accepting transition sequence in Mi/d reads:

(q0, q̄0, 0)
ε−→ (q0, q̄1, 0)

1−→ (q1, q̄2, 0)
0−→ (q2, q̄3, 1)

0−→ (q1, q̄3, 1)
0−→

(q2, q̄3, 1)
0−→ (q1, q̄3, 0)

2−→ (q0, q̄4, 0)
0−→ (q0, q̄5, 0)

1−→

(q1, q̄2, 0)
ε−→ (q1, q̄3, 0)

2−→ (q0, q̄4, 0)
ε−→ (q0, q̄1, 0)

Since (q0, q1, 0) is a final state in Mi/d, this shows that 100002012 ∈ L(Mi/d).

For a formal proof that Li/d = L(Mi/d) we need the following lemma.

Lemma 7. Suppose q
0+−→ r for q, r ∈Q. Then q

0
=⇒k r in M iff ∃q′ ∈ Q:

(q, q, 0)
0−→ (q′, r,N)

0
=⇒k−1 (r, r, 0) in Mi/d, for all q, r ∈ Q and k > N .

Proof. Suppose q
0

=⇒k r in M . Then there exists q′, r′ ∈ Q such that

q
0−→ q′

0
=⇒k−N−1 r′

0
=⇒N r

and since q
0+−→ r one has (q, q, 0)

0−→ (q′, r,N). Next we get

(q′, r̄, N)
0

=⇒k−N−1 (r′, r̄, N)
0

=⇒N (r, r̄, 0)

in which in each of the last N steps the third argument decreases by 1. Since
1 + (k−N−1) +N = k, this proves the implication from right to left.
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Conversely, suppose (q, q, 0)
0−→ (q′, r,N)

0
=⇒ k−1 (r, r̄, 0) Then, by

definition of Mi/d, we then have q
0−→ q′

0
=⇒k−1 r in M .

Now we are in a position to provide a proof of Theorem 1.

Proof of Theorem 1. We show that, in the above setting, Li/d = L(Mi/d).
Suppose v = 0m0a10m1 · · · an0mn ∈ Li/d where ai ∈ Σ for i = 1, . . . , n and
mi > 0 for i = 0, . . . , n. Write v = 0p0a10p1 · · · an0pn with pi ∈ {0, . . . , N,+}
corresponding to mi, for i = 0, . . . n. Then by Corollary 1 we have v ∈LG and
for some u = 0k0a10k1 · · · an0kn ∈ L we have that ki = pi if pi ∈ {0, . . . , N}
and ki = mi and ki > N if pi = +, for i = 0, . . . , n. Thus, u ∈ L is accepted
by M and v ∈LG is accepted byM . So, next to the initial states q0 of M and
q0 ofM , there exist q1, . . . , qn, r0, . . . , rn ∈ Q and q1, . . . , qn, r̄0, . . . , rn ∈Q
such that

qi
0

=⇒ki ri in M and qi
0pi−−→ ri inM , for i = 0, . . . , n

ri−1
ai−→ qi in M and ri−1

ai−→ qi inM , for i = 1, . . . , n

rn ∈ F and rn ∈F

We observe: (i) (qi, qi, 0)
0

=⇒mi (ri, ri, 0), for i = 0, . . . , n. In case pi ∈
{0, . . . , N} this follows from mi = ki = pi and second transition type
of Definition 6 for Mi/d. In case pi = + this follows from Lemma 7.

(ii) (ri−1, ri−1, 0)
ai−→ (qi, qi, 0), for i = 1, . . . , n based on the first type of

transition for Mi/d. Thus, v = 0m0a10m1 · · · an0mn ∈ L(Mi/d).

Conversely, pick v = 0m0a10m1 · · · an0mn ∈ L(Mi/d). Then there are

states q1, . . . , qn, r0, . . . , rn ∈ Q and q1, . . . , qn, r0, . . . , rn ∈ Q such that

rn ∈ F and rn ∈ F and (qi, qi, 0)
0

=⇒mi (ri, ri, 0) for i = 0, . . . , n, and

(ri−1, ri−1, 0)
ai−→ (qi, qi, 0) for i = 1, . . . , n, using that ai-steps in Mi/d are

only possible from and to states having 0 as their third coordinate. From
(ri−1, ri−1, 0)

ai−→ (qi, qi, 0) we conclude ri−1
ai−→ qi in M , and ri−1

ai−→ qi
inM , for i = 1, . . . , n.

Using L(M ) = LG ⊆ L( Θ·(Σ·Θ )∗), we may assume without loss of
generality that every q ∈Q only has either only outgoing Θ transitions and
incoming Σ transitions inM , or vice versa. Here, the states qi are of the
first type and the states ri are of the second type. Moreover, without loss
of generality, we may assume that for every two states q, r ∈Q there is at
most one Θ-transition from q to r in M . Now, by the form of the rules
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in Definition 6, from (qi, qi, 0)
0mi

===⇒ (ri, ri, 0) we conclude qi
0ki

===⇒ ri and

qi
0pi−−→ r̄i for pi ∈ {0, . . . , N,+}, for some ki > 0, for i = 0, . . . , n. So,

q0
0k0

===⇒ r0
a1−→ q1 · · · rn−1

an−→ qn
0kn

===⇒ rn ∈ F

q0
0p0−−−→ r0

a1−→ q1 · · · rn−1
an−→ qn

0pn−−−→ rn ∈F

Therefore, u = 0k0a10k1 · · · an0kn ∈ L and v = 0p0a10p1 · · · an0pn ∈ LG.
If pi ∈ {0, . . . , N}, then by the assumptions on the transitions inM and
uniqueness of Θ steps, we conclude mi = pi. If pi = +, then from Lemma 7
we conclude that mi = ki. Since, by construction, from a state with its
third coordinate of value N it takes at least N steps to get down at 0, we
conclude ki > N . This holds for all i = 0, . . . , n. Therefore, by Corollary 1
we conclude that v = 0m0a10m1 · · · an0mn ∈ Li/d.

8 Related work and concluding remarks

In this paper we discussed specific concepts of string rewriting: a more flexible
notion focusing on insertions and deletions of a dummy symbol, another
more strict notion based on an equivalence relation. Given a language L
we considered the extended languages Li/d and LG comprising the closure
of L for the two types of guided rewriting with guides from a finite set G.
In particular, as our main results we proved that these closures preserve
regularity. For doing so we investigated the local effect of guided rewriting
on two consecutive string positions, leading to a novel notion of a slice
sequence. Finally, the theorem for adjustment-based rewriting was proved
by an automaton construction exploiting a slice sequence characterization of
guided rewriting. Via a compression scheme for strings of dummy symbols,
the theorem for guided insertion/deletion followed.

Preservation of regularity by closing a language with respect to a given
notion of rewriting arises as a natural question. In Section 3 we observed
that by closing the regular language L( (ab)∗ ) under rewriting with respect
to the single rewrite rule ba→ ab the resulting language is not regular. So,
by arbitrary string rewriting regularity is not necessarily preserved. A couple
of specific rewrite formats have been proposed in the literature. In [10] it
was proved that regularity is preserved by deleting string rewriting, where a
string rewriting system is called deleting if there exists a partial ordering
on its alphabet such that each letter in the right-hand side of a rule is less
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than some letter in the corresponding left-hand side. In [13] it was proved
that regularity is preserved by so-called period expanding or period reducing
string rewriting. When translated to the setting of [21], as also touched
upon in Section 3, our present notion of guided insertions and deletions
allows for simultaneous insertion and deletion of the dummy symbol. A
phenomenon also supported by biological findings. Remarkably, the more
liberal guided insertion/deletion approach preserves regularity, whereas in
the more restricted mechanism of [21], not mixing insertions and deletions
per rewrite step, regularity is not preserved.

Another crucial difference with the mechanism of [21] is the following:
for that format it was shown that strings u, v of length n exist satisfying
u⇒∗ v, but the length of such a reduction is at least exponential in n. In our
present format this is not the case: we expect that our slice characterization
of guided rewriting serves to prove that if u ⇒∗ v then there is always a
corresponding reduction of length linear in n. Details have not yet been
worked out.

As mentioned in the introduction, the computational power of a variant
of insertion-deletion systems was studied in [20]. There deletion means that
a string uαv is replaced by uv for a predefined finite set of triples u, α, v,
while by insertion a string uv is replaced by uαv for another predefined finite
set of triples u, α, v. This notion of insertion-deletion is quite different from
ours, and seems less related to biological RNA editing. In the same vein are
the guided insertion/deletion systems of [4]. There a hierarchy of classes
of insertion/deletion systems and related closure properties are studied.
Additionally, a non-mixing insertion/deletion system that models part of
the RNA-editing for kinetoplastids is given. A rather different application
of term rewriting in the setting of RNA is reported in [8], where the rewrite
engine of Maude is exploited to predict the occurrence of specific patterns
in the spatial formation of RNA, with competitive precision compared to
techniques that are more frequently used in bioinformatics.

Possible future work includes the investigation of preservation of context-
freedom and of lifting the bound on the number of consecutive 0’s in Theorem
1. More specifically, for a context-free language L, does it hold, for a
finite set of guides G, that LG is context-free too? Considering the set
of guides, a generalization to regular sets G is worthwhile studying. Note
that the counter-example given in Section 4 involves a non-regular set of
guides. So, if L is regular and G is regular, do we have that LG is regular?
Similarly for L context-free. H.J. Hoogeboom suggested to us [11] to consider
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cones of languages in the sense of Nivat [16], exploiting the closedness
under finite state transductions. Shortly before the submission of the final
version of this paper, along these lines a partial result restricting to guided
rewriting only has been established by J. van Engelen [7]. Generalizing
guided insertion/deletion, we also plan to consider guided rewriting based
on other types of adjustment relations. In particular, rather than comparing
strings symbol-by-symbol, one can consider two strings compatible if they
map to the same string for a chosen string homomorphism. A prime example
would be the erasing of the dummy 0 in the context of Section 3 for which
we conjecture a variant of Theorem 2 to hold.
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