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Abstract—Reo is a graphical channel-based coordination lan-
guage that enables the modeling of complex behavioral pro-
tocols using a small set of channel types with well-defined
behavior. Reo has been developed for the coordination of stand-
alone components and services, which makes it suitable for
the modeling of service-based business processes. The formal
semantic models for Reo lay the grounds for computer-aided
analysis of different aspects of Reo diagrams, including their
animation, simulation and verification of control flow and data
flow by means of model checking techniques. In this paper, we
discuss the verification of data aware Reo process models using
the mCRL2 model checking toolset including time analysis. We
also show how behavior abstraction can be used to minimize
Reo process models and generate smaller mCRL2 specifications.
A detailed auction example illustrates our approach to time-
aware modeling and verification of data-centric service models.

Keywords—formal methods for service-oriented computing;
model checking; coordination languages

I. INTRODUCTION

An essential feature of a process modeling notation is a clear
definition of its execution semantics, supported by efficient
tools for the validation, verification and performance analy-
sis of resulting process models. In the past decades, various
modeling notations and tools for workflow and services
have been proposed [1], [2]. They vary at different levels,
ranging from the particular graphical syntax for process
model definitions to the expressiveness and extensibility of
functional and organizational aspects of the model. However,
general formalisms for verifiable process design, such as
process algebras or finite-state machines, are typically too
low level. Therefore, encoding high-level modeling notations
such as BPMN and UML Activity Diagrams into these for-
malisms usually yields a complex and hardly understandable
description of the original system. Moreover the analysis
results are hard to trace back into the original model. The
abundance of process definition languages on the one hand,
and low-level analysis techniques on the other, suggests that
an intermediate between the design of a workflow process
and its analysis is required. Petri nets are a prime example
of such a model. In various extensions –most notably reset
and inhibitor arcs, color, time and hierarchy– they provide
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solid ground to workflow analysis. However, as Petri nets are
token-driven by nature, they are on their own not sufficient
for dataflow verification.

Services are autonomous, loosely coupled software com-
ponents that can be integrated into more complex systems
via publicly available interfaces. When designing a service-
based system, the developer focuses on a seamless integra-
tion of existing services, rather than on the implementation
of new functional modules. This integration or composition
of services requires a proper synchronization, buffering and
ordering of the exchanged messages, as well as a trans-
formation of data formats of the different services. While
the routing of messages can be sufficiently modeled with
traditional Petri nets, the data manipulation aspect requires
more powerful concepts [3], [4].

Conceptually, service-oriented computing is similar to
exogenous coordination, which advocates the separation of
computation provided by services on the one hand, and
their coordination provided by some ‘glue code’ [5] on the
other. The Reo coordination language [6] adheres to this
principle and provides concepts and tools to construct such
glue code to integrate services given a specification of their
behavioral interfaces. A Reo process model is essentially a
set of complex connectors (also called circuits) composed
of channels which provide the basic form of interaction
between two parties by imposing constraints on the data they
exchange. The application of Reo to business process and
service modeling is discussed more extensively in [7], [8].
The formal semantics for Reo [9], [10] makes it possible to
analyze the behavior of a connector using model checking
techniques. In our recent work [11], we present a tool for
converting Reo to mCRL2, a specification language based on
the process algebra ACP extended with time and data [12].
Specifications in this language can be analyzed by the
model checking tool available in the mCRL2 toolset itself,
or converted into an LTS in various formats and used as
input for external model checking tools. The mCRL2 model
checker is capable of dealing with state spaces containing
millions of states and transitions and it has proven its power
in large scale industrial applications. In particular the support
for structured data types and function definitions supported
by mCRL2 are of major importance for data-aware analysis,
as required in the setting of service-based systems.

In this paper, firstly, we extend the approach of [11] to



deal with timed process models. For enabling time-aware
service interaction, Reo introduces special channels with
internal timers. Their semantics is given by timed constraint
automata or TCA [13]. Given graphical timed Reo models,
we automatically generate equivalent mCRL2 specifications
for subsequent model checking and other analysis with
the mCRL2 toolset. Secondly, we show how the behavior
abstraction mechanism in Reo can be used to reduce the
size of the generated mCRL2 specification and improve its
processing time. Finally, we discuss a fragment of a classical
auction scenario to illustrate our approach to modeling and
analysis of timed data-centric service models.

The rest of this paper is organized as follows. In Sec-
tion II, we summarize the basics of Reo. In Section III,
we present the mCRL2 specification language and briefly
describe the translation of Reo to mCRL2. In Section IV,
we extend our approach with the translation of timed Reo
to mCRL2. We address model abstraction and mCRL2 code
minimization in our framework in Section V and present
tool support in Section VI. In Section VII we apply Reo
and mCRL2 for the analysis of an auction. Sections VIII
and IX discuss related work and conclusions.

II. REO COORDINATION LANGUAGE

Reo is a channel-based coordination language in which
components and services are coordinated exogenously by
so-called connectors [6]. Connectors are essentially graphs
where the edges are user-defined communication channels
and the nodes implement a fixed routing policy.

Channels in Reo are entities that have exactly two ends,
also referred to as ports, which can be either source or
sink ends. Source ends accept data into, and sink ends
dispense data out of their channel. Reo allows directed
channels as well as ones with respectively two source or
sink ends. Although channels can be defined by users in
Reo, a set of basic channels suffices to implement rather
complex coordination protocols. The most basic channel
in Reo is the Sync channel, which is a directed channel
that accepts a data item through its source end if it can
instantly dispense it through its sink end. The LossySync
channel behaves similarly except that it always accepts data
items through its source end. The data item is transferred
if it can be dispensed through the sink end, and is lost
otherwise. The SyncDrain has two source ends and accepts
data through them only simultaneously, and deletes them
immediately. The AsyncDrain channel accepts data items
through either of its two source ends, but never from both
at the same time. The FIFO is an asynchronous channel
with a buffer of capacity one. The basic set of Reo channels
also includes ones with data dependent behavior or that
perform data manipulation. For instance, the Filter channel
loses the data item at its source end if the it does not
match a certain pattern, which is defined in terms of a
data constraint for a particular instance of this channel.
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Table I
GRAPHICAL NOTATION AND SEMANTICS FOR CHANNELS AND NODES

Furthermore, data manipulation can be implemented using
the Transform channel. It applies a user-defined function to
the data item received at its source end and yields the result
at its sink end.

Channels can be joined together using nodes. A node can
be a source, a sink or a mixed node, depending on whether
all coinciding channel ends are source ends, sink ends or a
combination of both. Source and sink nodes together form
the boundary nodes of a connector, allowing interaction
with its environment. Source nodes act as synchronous
replicators, sink nodes as mergers. Mixed nodes combine
both behaviors by atomically consuming a data item from
one sink end at the time and replicating it to all source ends.

The Reo channels introduced above can be formally
modeled using constraint automata [9]. The transitions in
a constraint automaton are labeled with sets of ports that
fire synchronously and with data constraints on these ports.
Figure I depicts the graphical notation and the constraint
automata semantics1 for the basic channels and of the
Merger and Replicator primitives, which can be used to
construct nodes compositionally. The constraint automaton
for the FIFO is shown with respect to the data domain
Data = {0, 1}.

The application of Reo to business process modeling
resembles those of Petri nets. Intuitively, a FIFO channel
corresponds to a place with capacity one in a classical
Petri net. The notion of a Petri net transition is generalized
in Reo and can be composed of multiple synchronous
channels. The constraint automata-based semantics for Reo

1Observe that constraint automata do not reflect properly the semantics
of the LossySync channel suggesting that it can decide whether to lose or
transfer data non-deterministically. This problem is known as the problem
of context-dependency modeling in Reo. Several formalisms have been
proposed to solve it. The detailed discussion of this issue is out of the
scope of this paper.
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is compositional, meaning that the behavior of a complex
Reo circuit can be obtained from the semantics of its
constituent parts using a product operator. This puts Reo
in line with hierarchical Petri nets, suitable for modeling
complex workflows as the models can be easily decomposed
and their parts analyzed separately. Furthermore, a hiding
operator can be used for abstracting from internal behavior.
This abstraction mechanism can be used to turn a connector
with observable data flow at its boundary ports into a
component, which subsequently can be used for the design
of more complex systems.

III. MODEL CHECKING REO WITH MCRL2

A strength of Reo as a workflow modeling language is
its being amenable to formal verification. Currently, the
most feature-complete and efficient way to analyze Reo
process models is to generate a mCRL2 specification and to
use the corresponding verification facilities. In this section,
we briefly describe mCRL2 and its application to model
checking Reo.
mCRL2 is a specification language based on the process

algebra ACP. The basic notion in mCRL2 is the action.
Actions represent atomic events and can be parametrized
with data. Actions in mCRL2 can be synchronized using the
synchronization operator |. Synchronized actions are called
multiactions. Processes are defined by process expressions,
which are compositions of actions and multiactions using
a number of operators. The basic operators include (i)
deadlock or inaction δ, (ii) alternative composition p+q, (iii)
sequential composition p · q, (iv) conditional operator or if-
then-else construct c→ p�q where c is a boolean expression,
(v) summation Σd:Dp used to quantify over a data domain D,
(vi) at operator a@t indicating that multiaction a happens at
time t, (vii) parallel composition p ‖ q, (viii) encapsulation
∂H(p), where H is a set of action names that are not allowed
to occur, (ix) renaming operator ρR(p), where R is a set
of renamings of the form a → b and (x) communication
operator ΓC(p), where C is a set of communications of the
form a0|...|an 7→c, which means that every group of actions
a0|...|an within a multiaction is replaced by c.

The mCRL2 language provides a number of built-in
datatypes (e.g., boolean, natural, integer) with all standard
arithmetic operations predefined. Moreover, a datatype defi-
nition mechanism allows users to declare new types or sorts.
An arbitrary structured type in mCRL2 can be declared by
a construct of the form

sortS = struct c1(p11:S1
1 , . . . , p

k1
1 :Sk1

1 )?r1 | . . . |
cn(p1n:S1

n, . . . , p
kn
n :Skn

n )?rn ;

It defines the type S together with constructors ci : S1
i ×. . .×

Ski
i → S, projections pji : S → Sj

i , and type recognition
functions ri : S → Bool .

The mCRL2 toolset includes a tool for converting mCRL2
specifications into linear form (a compact symbolic repre-
sentation of the corresponding LTS to speed up subsequent

Sync = Σd:Data A(d)|B(d) · Sync
LossySync = Σd:Data (A(d)|B(d) + A(d)) · LossySync
SyncDrain = Σd1,d2:Data A(d1)|B(d2) · SyncDrain

AsyncDrain = Σd:Data (A(d) + B(d)) · AsyncDrain

FIFO(f : DataFIFO) = Σd:Data(isEmpty(f)→ A(d) · FIFO(full(d))

� B(e(f)) · FIFO(empty))

Filter = Σd:Data (expr(d)→ A(d)|B(d) �A(d)) · Filter
Transform = Σd:Data A(d)|B(f(d)) · Transform

Merger = Σd:Data (A(d)|C(d) + B(d)|C(d)) ·Merger

Replicator = Σd:Data A(d)|B(d)|C(d) · Replicator
XOR = Σd:Data (A(d)|B(d) + A(d)|C(d)) · XOR

Join = Σd1,d2:Data A(d1)|B(d2)|C(tuple(d1, d2)) · Join
Table II

mCRL2 ENCODING FOR CHANNELS AND NODES

manipulations), a tool for generating explicit LTSs from
linear process specifications (LPS), tools for optimizing and
visualizing these LTSs, and many other useful facilities. A
detailed overview can be found at the mCRL2 web site.

For model checking, system properties are specified as
formulae in a variant of the modal µ-calculus extended
with regular expressions, data and time. In combination with
an LPS such a formula is transformed into a parametrized
boolean equation system (PBES) and can be solved with
the appropriate tools from the toolset. Analysis at the level
of LTS, in particular, deadlock detection or checking of the
presence or absence of certain actions, is also possible.

A constraint automaton is essentially an LTS with labels
representing two kinds of constraints: synchronization and
data constraints. Synchronization constraints represent sets
of Reo port names where data flow is observed simultane-
ously during a transition. Data constraints model conditions
on transition enactment and show data assignments on port
names. mCRL2 models for Reo circuits can be generated in
the following way: observable events, i.e., data flow on the
channel ends, are represented as atomic actions, while data
items observed at these ports are modeled as parameters of
these actions. Analogously, we introduce a process for every
node and actions for all channel ends meeting at the node.
The encodings for the basic Reo channels and nodes are
depicted in Table II.

In the context of a given connector, we assume a global
datatype modeled as the custom sort Data in mCRL2. Given
such a datatype, we can use the mCRL2 summation operator
to define data dependencies imposed by channels. For the
FIFO channel we additionally define the datatype

sort DataFIFO = struct
empty?isEmpty | full(e:Data)?isFull

which allows us to specify whether the buffer of the channel
is empty or full, and if it is full, what value is stored in it.

As in the constraint automata approach, we construct
nodes compositionally out of the Merger and the Replicator
primitives. A process for a node that behaves like an
ExclusiveRouter is defined analogously. The exclusive router
is not a primary primitive in Reo, but a circuit composed of
basic Reo channels and nodes. However, the exclusive router
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is frequently used in circuit design. Therefore, we introduce
a special notation for it. For dataflow modeling the node
Join, comes in handy. This node synchronizes all ends of
incoming channels, forms a tuple of data items received and
replicates it to the source ends of all outgoing channels.

To handle the data structures formed by the Join node,
we need to close our global datatype under tupling. Thus, if
a circuit needs to coordinate services operating on domains
D1, . . . ,Dn and contains one or more Join nodes with two
incoming ends, we define

sort Data = struct
D1(e1:D1) | ... | Dn(en:Dn) | tuple(p1:Data, p2:Data)

More generally, when Join nodes with k incoming ends are
present in a circuit, tuplek(p1:Data, . . . , pk:Data) is added
to the definition of the global datatype.

Given process definitions for all channels and nodes, a
joint process that models the complete Reo connector is
built by forming a parallel composition of these processes
and synchronizing actions for coinciding channel/node ends.
Optionally, the mCRL2 hiding operator can be employed for
abstracting the flow in the internal nodes. Channel/node end
synchronization is performed using two the mCRL2 opera-
tors communication and encapsulation. For minimization of
the intermediate state spaces while generating the mCRL2
specification, we exploit the structure of the circuit and
build the process for the whole Reo connector in a stepwise
fashion. In our previous work [14], we showed that the
operational semantics of the mCRL2 specification obtained
is equivalent to the constraint automata semantics of the Reo
connector2.

IV. TRANSLATION OF TIMED REO

In this section, we extend the translation of Reo to mCRL2
to include timed channels. Timed channels are used in
Reo for timing constraints on service interaction or process
activity [13]. For instance, a deadline t for the availability of
some data can be represented using a channel with a FIFO
buffer that loses its data item after t units of time. Another
example is a timer channel (denoted as ) that can
be seen as an asynchronous blocking channel with internal
states: when the timer is switched off, the channel consumes
any value of sort Data , starts the timer and generates a
special ‘timeout’ value at its sink end after a predefined
amount of time. Its use is illustrated in Section VII.

Often it is useful to influence the behavior of a timed
channel. To enable such control, we define channels that
react in a special way to specific data inputs. For example,
a so-called timer with off and reset option allows the timer to
be stopped before the expiration of its delay when a special

2In the same paper, we showed how to address the problem of context-
sensitivity in Reo by propagating the information about the presence
or absence of requests on the boundary nodes of a connector using
parameterized actions.

‘off’ value is consumed through its source end. Similarly, the
‘reset’ option allows the timer to be reset to 0 when a special
‘reset’ value is consumed. The operational model for timed
Reo channels is given by timed constraint automata [13],
TCA for short. TCA essentially represent constraint au-
tomata with clock assignments and timing constraints. A
TCA for a timer with off and reset option channel is shown
in Figure 1(a). In this model, the state s represents a timer
which is switched off while the state s corresponds to the
timer being switched on. For the mapping of such timer
channels to mCRL2, we need to capture off, reset and timeout
signals and define

sort DataTimer = struct reset?isReset | off ?isOff |
timeout?isTimeOut | other(e:Data)?isOther

Timer channels also behave differently when switched on
or switched off. Taking this into account, the timer with off
and reset option can be specified as a parameterized process

Timer(isOFF :Bool , x:Real , t:Real) =
isOFF → (Σd:DataTimer isOther(d)→

A(d).Timer(false, 0, t)) �
((x < t)→ (Σd:DataTimer

isReset(d)→ A(d).Timer(false, 0, t) +
isOff (d)→ A(d).Timer(true, x, t) +
tick@x.Timer(false, x+ 1, t)) �

B(timeout).Timer(true, x, t))

where isOFF :Bool indicates whether the timer is off or on,
x is the current time, t is the timer delay, A and B are source
and sink ends of the channel and the action tick occurring
at time x represents the progress of time.

Figure 1(b) shows an LTS obtained from the mCRL2
specification for the timer initially off, set to 0 and with
a timeout delay of 3 time units. The initial state is labeled
by 0. Other states in this LTS correspond to the situation
where the timer is on and the time evolves from 1 to 3.
In each of these states, the timer can be reset or switched
off. The reset action does not change the state of the timer,
i.e., it remains switched on, while the ‘off’ option makes
the timer return to the initial state. We can abstract from the
current time in this model by hiding the tick action, yielding
the LTS shown in Figure 1(c).

V. ABSTRACTION AND mCRL2 CODE MINIMIZATION

Basic Reo channels together with timed channels are suf-
ficiently expressive to enable the modeling of the major
data flow patterns. However, Reo counterparts for some
frequently used modeling primitives can be rather complex.
For example, Figure 2(a) shows a circuit composed of
17 channels and 12 nodes that behaves as a variable: after
an initial value for the variable is set via the port write, this
value is stored in an internal buffer and can be repeatedly
read at the port read or updated.
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(a) TCA

(b) LTS with observable time actions

(c) LTS with hidden time actions

Figure 1. Semantics of the timer channel with off and reset options

At a first glance, the design of Reo circuits may ap-
pear difficult. However, in most cases the compositional
semantics of Reo allows for breaking down the task into
pieces which are easier to manage. For example, Figure 2(b)
shows an equivalent Reo model for the variable connector
using two shift lossy FIFO buffers represented as separate
components. Each ShiftLossyFIFO (see Figure 2(c)) accepts
a data item at its in port and keeps it in an internal buffer
until the data item is consumed at the out port. If a new data
item arrives before the previous one has been consumed, the
circuit loses the old data element and replaces it with the
new one. By combining two buffers we obtain the behavior
of the variable: a data item at the port write is replicated
and stored in both ShiftLossyFIFO buffers. When a data
item is taken from one buffer, a copy of the item from the
second buffer is placed into the first, so the same value can
be consumed again. Assigning a new value to the variable
amounts to replacing the data items in both ShiftLossyFIFO
subcomponents.

Since the semantics of Reo is compositional, we can
construct hierarchical software models using component
abstractions for lower-level connectors. Thus, a shiftLossy-
FIFO component is used to build the variable circuit. The
variable circuit in its turn can be transformed into a compo-
nent with two observable ports, write and read, and used in
higher-level process models. In Section VII, we use such a
component as part of an auction process.

The translation approach discussed in Section III gener-
ates one process for each channel and node. This yields
29 processes in total for the variable circuit. Additionally,
2 processes are created for the writer and reader components.
For synchronizing actions corresponding to the ends of
connected channels and nodes, mCRL2 communication and
hiding operators are applied 36 times over various stages.
Figure 3 shows the data-agnostic LTSs for the shiftLossy-
FIFO and variable circuits produced by the mCRL2 tools.
However, it is noticed that the behavior observed at the
external ports of these circuits is rather simple and can be
expressed more directly. For example, the variable can be
described by the mCRL2 process Var = Write.(Write +
Read).Var . The LTS for this process is exactly as shown
in Figure 3(b).

(a) Shift lossy FIFO (b) Variable

Figure 3. Data agnostic LTS semantics

Assuming Data = {a, b}, the data-aware shiftLossyFIFO
and variable circuits are denoted by the LTSs of Figure 4.
Each state in these models corresponds to a value of the
shiftLossyFIFO and variable components, and transition
labels represent dataflow observed at the external ports.
Similarly to the data-agnostic case, the process

Var(f :DataFIFO) =
Σd:DataWrite(d).Var(full(d)) + Read(e(f)).Var(f)))

represents the behavior for the variable.

Figure 4. Data-aware LTS for variable (top) and shift-lossy FIFO (bottom)
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(a) Plain model (b) Hierarchical model (c) Shift lossy FIFO and its component interface

Figure 2. Reo model of a variable

The converter from Reo to mCRL2 presented in Section VI
generates optimized mCRL2 code for some predefined fre-
quently used components (e.g., variables). In principle, the
abstraction mechanism allows us to mimic the structure of
high-level workflow modeling languages by defining com-
ponents for their basic primitives such as various gateways,
compensation pairs, and so on. This abstraction mechanism
is also used for the formalization of BPMN and BPEL
specifications using Reo [15]. In particular, BPEL variables
can be represented in Reo as components with associated
constraint automata semantics.

VI. TOOL SUPPORT

ECT [16], short for Eclipse Coordination Tools, is a frame-
work for modeling, verification and execution of component-
based and service-oriented systems. It consists of a set of
integrated tools for the Eclipse platform.3 The framework
provides functionality for the conversion of high-level mod-
eling languages, such as UML, BPMN and BPEL to Reo,
for editing and animation of Reo models, generation of
automata-based semantical models and executable code from
Reo and integrations with existing model checking tools.

We developed a converter that generates an mCRL2 spec-
ification from a graphically given Reo circuit, potentially
with the timer channels. A screenshot of the tool is shown in
Figure 5. The generation of mCRL2 code can be customized
using various options. For instance, the option with com-
ponents incorporates process definitions for the components
attached at the boundary of a connector. The option with
data enables data-aware encoding. Datatypes of components
and services coordinated by Reo, as well as data constraints
for data dependent channels such as Filter or Transform
channels can be defined using the same interface. Note that
these are saved as annotations in the Reo model and are
propagated to the final mCRL2 specification. This way Reo
circuits can be compiled automatically into mCRL2 without
any manual editing.

The tool further includes an integration with model check-
ing facilities of the mCRL2 toolset and its state space
visualization tools. In particular, we use the mcrl22lps

3http://www.eclipse.org

tool for the generation of the linear process representation of
mCRL2 code, lps2lts and lpsconvert for generating
and minimizing labeled transitions systems, lps2pbes for
symbolic model checking of modal µ-calculus formulas, and
finally ltsgraph for visualization of state spaces. Related
verification tools, such as CADP 4 that relies on the same
LTS format, can be called from within ECT.

The translation of Reo to mCRL2 specification requires
polynomial time from the number of basic channels in the
model. The performance of the dataflow analysis depends
on the time period and the complexity of the input domain
and filter constraints which affect the total number of states
in the final state space. To give you an idea about the toolset
performance, the generation of an explicit state space for the
timer channel with the delay in 1000000 time units requires
around 11 minutes on a standard machine with 4 cores and
8GB of memory, running Linux 2.6.27 and the January 2010
release version of mCRL2 (revision 201001). Note that the
generation of the explicit state space is not needed if the
mCRL2 symbolic model checking utility based on the PBES
solver is used.

VII. CASE STUDY

In this section, we illustrate the approach to the verification
of timed data-aware process models using Reo and mCRL2.
As example we choose part of a typical auction process. In
this process, a seller opens an auction that runs for a prede-
termined period. During this time, an auction participant can
submit bids, and if the new bid is higher than the starting
price and any bid submitted previously, it is accepted as such
and stored in the system. After the auction period expires,
the participant who submitted the highest bid is the winner
and made known to the seller of the item.

The left part of Figure 5 shows a Reo model for this
scenario and the generated mCRL2 specification. In this
model, the first writer, on the left, instantiates the auction.
The second writer represents a component that models a
bidder. The reader component corresponds to the seller and
consumes the outcome of the auction. A component Variable
is used to hold the information about the current state of

4http://www.inrialpes.fr/vasy/cadp
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the auction. A timer channel with ports startAuction and
timeExpired is used to control the lifetime of the auction. It
accepts any data item of the global sort Data and delays its
output for a predefined amount of time, i.e., 5 time units.
During this period, the value of the variable can be updated
with the information regarding the highest submitted bid.
This behavior is realized by a synchronous drain with a
filter condition connecting ports readBidInfo and newBid.
Since the semantics of the variable does not allow us to read
and write to it simultaneously, a FIFO channel is needed to
store the item till the next step. When the timeout expires,
the timer channel disposes a token through its sink end
that together with the output from the variable component
enables the synchronous drain to fire and to send the result
of the auction to the seller of the item.

Figure 6(a) shows a data-agnostic LTS for the auction
circuit with data flow observable at ports startAuction, sub-
mitBid, announceTheWinner, writeBidInfo and readBidInfo.
Figure 6(b) is a time-aware version of the model where
data flow at the external ports startAuction, submitBid,
announceTheWinner is shown along with the tick action
representing progress of time.

As such, the models are suitable for verifying temporal
and timed properties. For example, we can check whether for
every auction the seller will eventually receive notification
using the µ-calculus formula

[ true∗ · startAuction.true∗ ]
〈 true∗ · announceTheWinner · true∗ 〉 true .

With a slightly modified version of this property

[ true∗ · startAuction@0 · true∗ ]
〈true∗ · announceTheWinner @5 · true∗〉 true

one can verify that the auction runs exactly 5 units of time.
Figure 6(c) shows a data-aware LTS for the circuit. In

this model, transitions are labeled with parametrized actions
where action parameters represent data values observed
on the selected circuit ports. For reasons of presenta-
tion, we restrict the input domain of the bidder to tuples
(bidderID , bidderPrice) satisfying the constraint

(bidderID(d) > 0) ∧ (bidderPrice(d) < 2) ∧
(bidderPrice(d) = bidderID(d)) .

We can update our property with the information about data
parameters of the actions observed at the circuit ports:

∀d:Data .

val((bidderID(e1(d)) > 0) ∧ (bidderPrice(e1(d)) < 2) ∧
(bidderPrice(e1(d)) = bidderID(e1(d)))) ∧

[ true∗·startAuction(d)·true∗ ]

〈true∗·announceTheWinner(d)·true∗〉 true .

The boolean function val(expr :Bool), provided in the
mCRL2 property specification language, is used to evaluate
a boolean condition that restricts the domain of the data

(a) Data-agnostic LTS

(b) LTS with observable timer actions

(c) LTS with data flow

Figure 6. Semantics of the auction process

parameter. Here, e1 is a projection function used to retrieve
necessary information from a data item of sort Data.

Another Reo model for the given scenario is shown in
Figure VII. The model illustrates the use of data manipula-
tion operations as supported in our verification framework.
The data provided by the first writer is described by the data
structure

sort DataWriter1 = struct auctionInfo (
auctionID :Pos, auctionOpen:Bool , startPrice:Nat ,
bidderID :Nat , bidderPrice:Nat)?isAuctionInfo;

Here an auctionID is a positive number that identifies
the auction instance, auctionOpen is a boolean variable
which is set to true iff the auction is active, and bidderID
and bidderPrice represent the information about the bidder

7



Figure 5. Reo model of an auction process and its mCRL2 specification

Figure 7. Reo model of an auction process with data transformations

who submitted the highest bid and the amount offered.
The constructor auctionInfo and the recognition function
isAuctionInfo are used to create an object d of the proper
type and, given a data item d, check if it is of the type
auctionInfo, respectively.

Input for the bidder component is of type

sort DataWriter2 = struct bidInfo (
newBidderID :Pos, newBidderPrice:Pos)?isBidInfo;

where newBidderID and newBidderPrice are used to identify
the bidder and the proposed price.

In the model we do not limit the format in which the
output is provided to the reader. Therefore, the global data
domain on which the circuit operates is determined by
the data types provided by the writers. Since the circuit
contains also the join node joinBids the global data domain

is described as

sort Data = struct d1(e1:DataWriter1)?isDataWriter1 |
d2(e2:DataWriter2)?isDataWriter2 |
tuple(t1:Data, t2:Data)?isTuple;

When a new bid is submitted, the information about the
current state of the auction and the new bid is merged using
the join node joinBids. The resulting tuple tuple(d1, d2),
with d1 a value of sort DataWriter1 and d2 a value of
sort DataWriter2, passes through the filter channel with the
condition

auctionOpen(e1(t1(d))) ∧
(bidderPrice(e1(t1(d))) < newBidderPrice(e2(t2(d)))) ∧
(startPrice(e1(t1(d))) ≤ newBidderPrice(e2(t2(d))))

iff the auction is open, and the price of the new bid is at
least the start price and exceeds the previously submitted
bid. If the condition holds for a given input, the subsequent
transformer channel gets the tuple, and transforms it to the
value of sort DataWriter1 using the combination of the
construction and projection functions

auctionInfo(auctionID(e1(t1(d))),
auctionOpen(e1(t1(d))), startPrice(e1(t1(d))),
newBidderID(e2(t2(d))), newBidderPrice(e2(t2(d))))

Since all actions operate on the sort Data, this value then is
wrapped using the constructor d1.

When the auction time expires, its status is changed to
‘closed’ by the transformer channel that implements

d1(auctionInfo(auctionID(e1(d)), false, startPrice(e1(d)),
bidderID(e1(d)), bidderPrice(e1(d))))

8



Similar to the FIFO channel with ports newBidInfo and
writeBidInfo, the FIFO channel with ports auctionClosed
and rewriteBidInfo is used to store the modified data el-
ement till the next step, for comsumption by the variable
component.

VIII. RELATED WORK

There are various tools for the analysis of workflow models
using Petri net based semantics. Among the most well
known verification tools for Petri nets are Woflan [17] and
CPN Tools [18]. Woflan provides means for the verification
of logical correctness of workflow nets, a restricted version
of Petri nets for process modeling. CPN Tools represent a
toolkit for editing, simulating and analyzing colored Petri
nets. Yasper [19] is a modeling framework that supports
Petri nets extended with inhibitor and reset arcs. Raedts
et al. [20] uses the mCRL2 toolset for analyzing Yasper
models. However, the translation proposed in this work only
considers the number of data tokens, but not their content.

The tools mentioned above provide excellent support for
process control flow analysis, but do not target at dataflow
verification. For dataflow modeling, Hidders et al. [3], [21]
extend Petri nets with nested relational calculus, a database
query language over composite data types. The authors
introduce a set of refinement rules which, being applied
hierarchically, guarantee that the final workflow net is sound.
Similar to this approach, we deal with concrete data items
rather than abstract tokens. However, [3], [21] do not provide
integration with model checking tools for verification of
the constructed dataflow models. Trčka et al. [4] consider
workflow correctness criteria analyzing Petri net-based mod-
els extended with read, write and destroy operations to
enable mixed control- and dataflow analysis. This work is
conceptually close to ours. Reader and writer components in
our framework perform the same functions as read and write
operations in this work, while the loss of data by lossy or
synchronous drain channels is similar to their destruction.
The authors provide a set of CTL* properties to identify
some common workflow errors. Being based on µ-calculus,
the mCRL2 property specification format subsumes CTL*,
and, therefore we believe that corresponding properties can
be stated and verified in our framework as well. Additionally,
mCRL2 provides means for further data manipulation not
covered by [4].

TINA [22] and Roméo [23] are frameworks for the
verification of timed Petri nets. With respect to timed
analysis, ECT is not as mature as these tools. However, the
compositional semantics of Reo and its extensibility make
the toolset capable of analyzing timed data-aware behavior
on hierarchical process models. Despite the abundance of
workflow management systems and Petri net analyzing tools,
at the moment none of them integrates all these facilities.

Kazhamiakin et al. [24], [25] present approaches for the
modeling and analysis of data- and time-related properties

of web service compositions. Here, BPEL-based service
models are represented as state transition systems augmented
with data and time constraints and verified using NuSMV
and UPPAAL. This is suitable for the verification of service
compositions already implemented, but does not support
the modeling of choreographies that require data and time-
aware coordination. Models and frameworks were developed
to check service/process compatibility, including data-aware
and time-aware business protocol compatibility in [26], [27],
[28]. Our work generalizes these approaches by providing a
graphical language that allows designers to build connectors
and, thus, create valid service compositions from services
that may not be directly compatible. The paper [29] pro-
vides an overview of efforts within the Sensoria project
on exploiting the COWS process algebra as stepping stone
towards further tooling for the design and verification of
service architectures. The temporal logic UCTL dedicated
to the verification of service-oriented applications, again
involving COWS, and its model checker UMC, are discussed
in [30]. Exogenous coordination as underlying Reo is also
advocated in [31], where a modal logic is proposed specific
to connectors. However, at present, data and time are not
supported in this approach. Kemper [32] presents a SAT-
based approach for bounded model checking of TCA [13].
In this work, the behavior of a TCA is represented by
formulae in propositional logic with linear arithmetic to
be analyzed by various SAT solvers. Since TCA provide
operational semantics for timed Reo, this approach can be
used for model checking time properties of Reo connectors.
However, at the moment there is no tool for generating TCA
from graphical data-aware Reo circuits.

IX. CONCLUSIONS

In this paper, we presented the mapping of timed Reo
connectors to the process algebra mCRL2, and discussed
its application to timed data-centric workflow analysis. The
mCRL2 toolset supports efficient full-featured model check-
ing for Reo. Together with other tools from ECT, our work
provides a user-friendly environment for graphical modeling
of component/service-based systems and business processes,
which relieves developers from the need to encode the
behavior of their systems in the scripting language mCRL2
directly. Larger case studies are to be conducted to establish
the scalability of our approach, for example, for Reo to
become widely accepted by the business process modeling
community as a foundation for graphical workflow design.
In potential, we feel, it offers an approach complementary
to Petri nets for the verification of service-based process
models.
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